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This supporting information file contains 3 sections. The first section gives the proof

of the theorem. The second section provides additional simulation results and the third

section provides a list of genes in KEGG “Metabolism of Xenobiotics by Cytochrome P450”

pathway.

1 Proofs

The proof of the theorem is given in this section. We closely follow the proof in Lin et al.

(2015) to establish the theory. First, we prove Condition (C2) holds for the sample matrix

of X̂ with a smaller α.

Lemma 1. If the tuning parameters λj in the first step are selected to satisfy 16φ
κ2 rsλmax

(2M1+

λ
max

) ≤ α
2(4−α)

and Condition (C2) holds, then with probability at least 1−
∑p

j=1 q exp(
−nλ2

j

8σ2

j

),
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the matrix Ĉ = 1
n
(X̂)TX̂ = 1

n
(GΓ̂)TGΓ̂ satisfies

‖(ĈSS + 2µ2LSS)
−1‖∞ ≤

2(4− α)

8− 3α
φ (S1)

‖(ĈScS + 2µ2LScS)(ĈSS + 2µ2LSS)
−1‖∞ ≤ 1−

3

4
α. (S2)

Proof. By applying (A.1) and (A.2) in the proof of theorem 1 in Lin et al. (2015), similar to

their derivation, we have φ‖ĈSS −CSS‖∞ ≤ α
2(4−α)

and φ‖ĈScS −CScS‖∞ ≤ α
2(4−α)

. Then,

we have

‖(ĈSS + 2µ2LSS)
−1 − (CSS + 2µ2LSS)

−1‖∞

≤
φ‖ĈSS + 2µ2LSS −CSS + 2µ2LSS‖∞

1− φ‖ĈSS + 2µ2LSS −CSS + 2µ2LSS‖∞
φ

=
φ‖ĈSS −CSS‖∞

1− φ‖ĈSS −CSS‖∞
φ

≤
α

8− 3α
φ.

The triangle inequality implies

‖(ĈSS + 2µ2LSS)
−1‖∞

≤‖(ĈSS + 2µ2LSS)
−1 − (CSS + 2µ2LSS)

−1‖∞ + ‖(CSS + 2µ2LSS)
−1‖∞

≤
α

8− 3α
φ+ φ

=
2(4− α)

8− 3α
φ.
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Then we have

‖(ĈScS + 2µ2LScS)(ĈSS + 2µ2LSS)
−1 − (CScS + 2µ2LScS) ∗ (CSS + 2µ2LSS)

−1‖∞

=‖(ĈScS −CScS)(ĈSS + 2µ2LSS)
−1 − (CScS + 2µ2LScS)

∗ (CSS + 2µ2LSS)
−1(ĈSS −CSS)(ĈSS + 2µ2LSS)

−1‖∞

≤‖(ĈScS −CScS)‖∞‖(ĈSS + 2µ2LSS)
−1‖∞ + ‖(CScS + 2µ2LScS)(CSS + 2µ2LSS)

−1‖∞

∗ ‖(ĈSS −CSS)‖∞ ∗ ‖(ĈSS + 2µ2LSS)
−1‖∞

≤
α

2(4− α)φ

2(4− α)

8− 3α
φ+ (1− α)

α

2(4− α)φ

2(4− α)

8− 3α
φ =

2− α

8− 3α
α

≤
1

4
α.

Finally we have

‖(ĈScS + 2µ2LScS)(ĈSS + 2µ2LSS)
−1‖∞

≤‖(ĈScS + 2µ2LScS)(ĈSS + 2µ2LSS)
−1 − (CScS + 2µ2LScS)

∗ (CSS + 2µ2LSS)
−1‖∞ + ‖(CScS + 2µ2LScS)(CSS + 2µ2LSS)

−1‖∞

≤
1

4
α + 1− α

=1−
3

4
α.

Proof of the Theorem. Here we closely follow the proof in Lin et al. (2015). For an index

set I, define XI as the submatrix consisting of the jth columns of X, where j ∈ I. By

Karush-Kuhn-Tucker conditions, the solution β̂ of Equation (2.4) in the main content must

satisfies

1

n
X̂

T

Ŝ (Y − X̂β̂)− 2µ2L
T

Ŝ
β̂ = µ1 sign(β̂Ŝ) (S3)

‖
1

n
X̂

T

Ŝc(Y − X̂β̂)− 2µ2L
T

Ŝcβ̂‖∞ ≤ µ1. (S4)
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Let β̂Sc = 0. We first find β̂S from (S3), then we prove such β̂ also satisfies (S4). Besides,

we prove such β̂ possesses the property of consistency.

Using the similar argument in Lin et al. (2015), we can find constants c0, c1, c2 > 0 such

that, if we select µ1 as in the Theorem, then with probability at least 1− c1(pq)
−c2, we have

‖
1

n
X̂

T
η −

1

n
X̂

T
(X̂ −X)β)‖∞ ≤

α

2(4− α)
µ1. (S5)

From now on, we base our analysis on (S5). By using the equality Y = XSβS + η, we

have Y − X̂β̂ = η − (X̂S −XS)βS − X̂S(β̂S − βS). Replacing Ŝ with S, we write (S3) as

ĈSS(β̂S − βS) + 2µ2LSSβ̂S + 2µ2L
T
ScSβ̂Sc =

1

n
X̂

T

Sη −
1

n
X̂

T

S (X̂S −XS)βS − µ1 sign(β̂S).

After some algebra, we have

β̂S − βS = (ĈSS + 2µ2LSS)
−1
[1

n
X̂

T

Sη −
1

n
X̂

T

S (X̂S −XS)βS − µ1 sign(β̂S)− 2µ2LSSβS

]

(S6)

By Lemma 1 and (S5), we have

‖β̂S − βS‖∞ ≤ ‖(ĈSS + 2µ2LSS)
−1‖∞

[

‖
1

n
X̂

T

Sη −
1

n
X̂

T

S (X̂S −XS)βS‖∞

+ ‖µ1 sign(β̂S)‖∞ + ‖2µ2LSSβS‖∞

]

≤
2(4− α)

8− 3α
φ
[ α

2(4− α)
µ1 + µ1 + 2µ2CL

]

=
2(4− α)

8− 3α
φ
[ 8− α

2(4− α)
µ1 + 2µ2CL

]

< b0

which implies sign(β̂S) = sign(βS). Besides, we know β̂Sc = 0 by definition. Hence, we have

Ŝ = S. Let β̂S be defined by (A6) with sign(β̂S) replaced by sign(βS). Now, we need to

check if (S4) holds. By using the equality Y − X̂β̂ = η − (X̂S −XS)βS − X̂S(β̂S − βS)
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and (S6), we have

1

n
X̂

T

Sc(Y − X̂β̂)− 2µ2L
T
Scβ̂

=
1

n
X̂

T

Scη −
1

n
X̂

T

Sc(X̂S −XS)βS − (ĈScS + 2µ2LScS)(ĈSS + 2µ2LSS)
−1

∗
[ 1

n
X̂

T

Scη −
1

n
X̂

T

Sc(X̂S −XS)βS − µ1 sign(β̂S)− 2µ2LSSβS

]

− 2µ2LScSβS.

By Lemma 1, (S5), and µ2CL ≤ α(16−3α)
4(4−α)(8−3α)

µ1, we have

‖
1

n
X̂

T

SC(Y − X̂β̂)− 2µ2L
T
SC β̂‖∞

≤‖
1

n
X̂

T

SCη −
1

n
X̂

T

SC(X̂S −XS)βS‖∞ + ‖(ĈScS + 2µ2LScS) ∗ (ĈSS + 2µ2LSS)
−1‖∞

∗
[

‖
1

n
X̂

T

SCη −
1

n
X̂

T

SC(X̂S −XS)βS‖∞ + ‖µ1 sign(β̂S)‖∞ + ‖2µ2LSSβS‖∞

]

+ ‖2µ2LSCSβS‖∞

≤
α

2(4− α)
µ1 + (1−

3

4
α)

[ α

2(4− α)
µ1 + µ1 + 2µ2CL

]

+ 2µ2CL

=
3α2 − 24α+ 32

8(4− α)
µ1 +

8− 3α

2
µ2CL

≤µ1.

Since Ŝ = S, we see β̂ also satisfies (A4). Lastly, we have

‖β̂S − βS‖∞ ≤
2(4− α)

8− 3α
φ
[ 8− α

2(4− α)
µ1 + 2µ2CL

]

≤
2(4− α)

8− 3α
φ
[ 8− α

2(4− α)
µ1 + 2

α(16− 3α)

4(4− α)(8− 3α)
µ1

]

=
16(4− α)φC0

(8− 3α)2κ

√

r(log p+ log q)

n
.

This completes the proof of the theorem.

5



2 Additional simulations

2.1 Comparison of IVGC with IV when the signal to noise ratio

is reduced

We follow the same model setup reported in Table 3 of the manuscript, while reducing the

effect size of the β coefficients to check the selection performance of the method. Here we

reported the case with p = 600, q = 600 and n = 300 to show the impact of reducing the

size of the regression coefficients. Similar performance was observed for other combination

of p, q and n and hence are omitted. The nonzero β coefficients were replaced by β1 =

· · · = β5 = 0.2, β6 = · · · = β10 = 0.5, and βk ∼ U(0.2, 0.5), k = 1, · · · , 10. The results

are reported in Table S1. It can be seen that the true positive (TP) and MCC become

slightly lower, the false positive (FP) becomes slightly higher compared to the results in

Table 3 in the main context when signal becomes weaker. This implies that the variable

selection performance can be affected by weak regression signals. On the other hand, our

proposed method still performs better than the IV method does, indicating the relative gain

by incorporating network information.

2.2 Comparison of IVGC with 1-stage LASSO

In this scenario, we compared the performance of IVGC with a one-stage LASSO method

without considering instrumental variables and network information. In Lin et al. (2015),

the authors have shown the advantage of IV regression against the method without instru-

mental variables. Here reported the results under the scenario of n = 300, p = 600, and

q = 600. Similar results were observed for other settings by varying n, p and q, hence are

omitted. Table S2 summarizes the results. It is shown that IVGC actually has slightly hig-

her estimation loss and model error compared to the one-stage LASSO method. However,

IVGC has much smaller false positive rates and higher MCC values compared to the LASSO

method, under different network conditions, indicating the relative gain of the proposed met-
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Table S1: Comparison of IVGC with IV when the signal to noise ratio is reduced for p = 600,
q = 600 and n = 300. The numbers in the parentheses are the empirical standard errors.

Method numSNP Estimation Loss Model Error True Positive False Positive MCC
β1 = · · · = β5 = 0.2, β6 = · · · = β10 = 0.5

3 1.50 (0.72) 0.66 (0.19) 9.66 (0.73) 11.18 (8.66) 0.70 (0.13)
4 1.53 (0.77) 0.74 (0.22) 9.41 (0.97) 8.60 (7.71) 0.73 (0.14)
5 2.44 (1.39) 1.06 (0.41) 8.20 (1.84) 7.87 (7.98) 0.68 (0.18)

IVGC βk ∼ U(0.2, 0.5), k = 1, · · · , 10
3 1.63 (0.73) 0.68 (0.19) 9.91 (0.37) 11.12 (8.70) 0.71 (0.13)
4 1.74 (0.77) 0.74 (0.24) 9.59 (0.82) 8.64 (7.57) 0.74 (0.14)
5 2.51 (1.30) 0.99 (0.38) 8.41 (1.74) 7.94 (7.96) 0.69 (0.16)

β1 = · · · = β5 = 0.2, β6 = · · · = β10 = 0.5
3 2.36 (0.91) 0.89 (0.20) 8.80 (0.88) 12.77 (10.93) 0.64 (0.14)
4 2.68 (0.91) 1.03 (0.21) 8.40 (0.97) 11.53 (10.97) 0.64 (0.15)
5 3.73 (1.07) 1.39 (0.28) 6.74 (1.08) 10.08 (10.94) 0.57 (0.16)

IV βk ∼ U(0.2, 0.5), k = 1, · · · , 10
3 2.63 (0.97) 0.97 (0.21) 9.59 (0.61) 14.15 (10.98) 0.66 (0.14)
4 2.68 (0.81) 1.02 (0.21) 8.99 (0.85) 9.81 (8.83) 0.69 (0.14)
5 3.73 (0.91) 1.33 (0.25) 7.18 (1.11) 10.13 (9.89) 0.59 (0.15)

hod against a nave LASSO method without considering instrumental variables and network

information.

2.3 Comparison of IVGC with IV by mimicking real situations

To mimic the real situation, we did a real data guided simulation. We picked 10,000 SNPs

from the real data located consecutively on chromosome 1. By using the real data SNPs,

the nature of the linkage disequilibrium (LD) structure is well preserved. We then randomly

sample individuals by treating the original data as the pseudo population. Then we followed

the steps as stated in the original manuscript for the follow up analysis. For this simulation,

we considered the scenario with n = 600, p = 100 and q = 10, 000. The results are summa-

rized in Table S3. Again, the results show smaller estimation loss and model error of the

IVGC method compared to the IV method without network constraint, although the TP,

TP and MCC are quite similar between the two methods.
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Table S2: Comparison of IVGC with 1-stage LASSO for p = 600, q = 600 and n = 300. The
numbers in the parentheses are the empirical standard errors.

Method numSNP Estimation Loss Model Error True Positive False Positive MCC
βk = 0.5, k = 1, · · · , 10

3 1.71 (0.93) 0.74 (0.25) 9.99 (0.1) 11.46 (9.04) 0.71 (0.13)
4 1.78 (0.95) 0.86 (0.28) 9.89 (0.43) 8.47 (8.09) 0.76 (0.14)
5 2.9 (1.64) 1.23 (0.47) 9.15 (1.37) 8.16 (8.62) 0.73 (0.15)

IVGC βk ∼ U(0.5, 1), k = 1, · · · , 10
3 2.8 (1.20) 1.20 (0.33) 9.96 (0.18) 11.49 (9.09) 0.71 (0.13)
4 2.75 (1.16) 1.40 (0.34) 9.96 (0.27) 8.75 (8.12) 0.76 (0.13)
5 3.92 (2.06) 1.83 (0.59) 9.30 (1.26) 6.86 (6.12) 0.76 (0.14)

βk = 0.5, k = 1, · · · , 10
3 1.11 (0.48) 0.32 (0.08) 10 (0) 37.32 (20.84) 0.48 (0.11)
4 0.97 (0.40) 0.29 (0.07) 10 (0) 29.73 (17.40) 0.52 (0.11)

1-stage 5 0.91 (0.36) 0.28 (0.06) 10 (0) 25.85 (15.58) 0.55 (0.12)

LASSO βk ∼ U(0.5, 1), k = 1, · · · , 10
3 1.02 (0.44) 0.31 (0.07) 10 (0) 33.01 (19.01) 0.50 (0.12)
4 1.01 (0.46) 0.30 (0.07) 10 (0) 32.12 (18.80) 0.51 (0.11)
5 0.93 (0.43) 0.28 (0.07) 10 (0) 27.00 (17.97) 0.55 (0.12)

Table S3: Comparison of IVGC with IV by mimicking real situations for p = 100, n = 300
and q = 10, 000. The numbers in the parentheses are the empirical standard errors.

Method numSNP Estimation Loss Model Error True Positive False Positive MCC
βk = 0.5, k = 1, · · · , 10

3 0.77 (0.17) 0.49 (0.10) 10 (0) 3.00 (2.73) 0.88 (0.09)
4 0.92 (0.19) 0.69 (0.10) 10 (0) 2.33 (2.73) 0.90 (0.09)
5 1.11 (0.52) 0.73 (0.16) 9.97 (0.22) 1.75 (2.07) 0.92 (0.08)

IVGC βk ∼ U(0.5, 1), k = 1, · · · , 10
3 1.46 (0.25) 0.88 (0.12) 10 (0) 2.67 (2.46) 0.89 (0.09)
4 1.70 (0.28) 1.06 (0.13) 10 (0) 2.19 (2.09) 0.90 (0.08)
5 1.86 (0.65) 1.16 (0.22) 9.95 (0.35) 2.04 (2.04) 0.91 (0.08)

βk = 0.5, k = 1, · · · , 10
3 1.18 (0.26) 0.64 (0.11) 10 (0) 3.18 (2.45) 0.87 (0.08)
4 1.44 (0.3) 0.83 (0.12) 10 (0) 2.64 (2.66) 0.89 (0.09)
5 3.05 (0.7) 1.29 (0.23) 9.16 (0.76) 1.88 (2.24) 0.87 (0.10)

IV βk ∼ U(0.5, 1), k = 1, · · · , 10
3 1.65 (0.36) 1.03 (0.16) 10 (0) 3.19 (2.77) 0.87 (0.09)
4 1.95 (0.42) 1.13 (0.15) 9.99 (0.07) 2.79 (2.15) 0.88 (0.08)
5 4.34 (0.92) 1.88 (0.28) 9.13 (0.82) 2.37 (2.43) 0.85 (0.10)
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2.4 Comparison of IVGC with one-stage GC without considering

instrumental variables

To check the model misspecification of ignoring instrumental variables, we simulated data

considering instrumental variables, then analyzed the simulated data using IVGC and a one-

stage variable selection method imposing a graph constrained penalty ignoring instrumental

variables (denoted by 1-stage GC). We reported results under the case of p = 600, q = 600

and n = 300 in Table S4. Although the estimation loss and model error were slightly

larger for the IVGC method than the one-stage GC does, the one stage GC method has

substantially larger false positive and lower MCC values. When false positive rate is a great

concern, IVGC method should be preferred in practice.

Table S4: Comparison of IVGC with 1-stage GC for p = 600, q = 600 and n = 300. The
numbers in the parentheses are the empirical standard errors.

Method numSNP Estimation Loss Model Error True Positive False Positive MCC
βk = 0.5, k = 1, · · · , 10

3 1.71 (0.93) 0.74 (0.25) 9.99 (0.1) 11.46 (9.04) 0.71 (0.13)
4 1.78 (0.95) 0.86 (0.28) 9.89 (0.43) 8.47 (8.09) 0.76 (0.14)
5 2.9 (1.64) 1.23 (0.47) 9.15 (1.37) 8.16 (8.62) 0.73 (0.15)

IVGC βk ∼ U(0.5, 1), k = 1, · · · , 10
3 2.8 (1.20) 1.20 (0.33) 9.96 (0.18) 11.49 (9.09) 0.71 (0.13)
4 2.75 (1.16) 1.40 (0.34) 9.96 (0.27) 8.75 (8.12) 0.76 (0.13)
5 3.92 (2.06) 1.83 (0.59) 9.30 (1.26) 6.86 (6.12) 0.76 (0.14)

βk = 0.5, k = 1, · · · , 10
3 0.86 (0.39) 0.26 (0.07) 10 (0) 34.33 (16.76) 0.49 (0.10)
4 0.68 (0.35) 0.23 (0.07) 10 (0) 26.8 (15.84) 0.54 (0.12)

1-stage 5 0.62 (0.34) 0.21 (0.07) 10 (0) 24.55 (15.51) 0.56 (0.12)

GC βk ∼ U(0.5, 1), k = 1, · · · , 10
3 0.94 (0.41) 0.29 (0.07) 10 (0) 29.57 (17.01) 0.52 (0.11)
4 0.84 (0.32) 0.27 (0.06) 10 (0) 25.59 (13.97) 0.55 (0.11)
5 0.83 (0.31) 0.27 (0.06) 10 (0) 22.5 (13.64) 0.58 (0.11)
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2.5 The impact on false positive control by imposing a network

structure on null genes

In practice, one has no idea of whether a network of genes has any effect on the response Y.

If a group of genes have no effect on Y, will imposing a network structure increase the false

positive selection (FPS)? In our simulation setup, we have one group (the 3rd group) with a

network structure, but no effect at all. Here we reported the false positive of this group. As

a comparison, we randomly picked variable 16-20 (no network structure) and reported the

false positives on these 5 genes (as group 4). The results are summarized in Table S5. We

reported the case with n = 300, p = 600 and q = 600 and with β U(0.5, 1) for the first 10

variables. For the IV method, there is very little difference on FPS between the two groups.

For the IVGC method, we can see that imposing a network structure actually increases the

FPS a little bit, although the difference is not striking. Also the standard errors of FPS for

group 3 is a little larger than group 4. This actually fits to our intuition, and also raises our

attention in real applications: one should always be careful to borrow network information

in gene selection. Applying wrong network information can be harmful than imposing no

network structure at all.

Table S5: The impact on false positive control by imposing a network structure on null
genes. The numbers in the parentheses are the empirical standard errors.

Method numSNP FP of group 3 FP of group 4
3 0.14 (0.51) 0.10 (0.29)

IVGC 4 0.06 (0.28) 0.05 (0.22)
5 0.05 (0.26) 0.05 (0.22)

3 0.12 (0.37) 0.12 (0.34)
IV 4 0.08 (0.27) 0.07 (0.29)

5 0.06 (0.21) 0.08 (0.30)
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2.6 Simulation results with high correlation between the X vari-

ables

In this section, we reported the results by assuming a high correlation between the multiva-

riate X variables. The estimation procedure is the same as described in the main content.

We assumed cov(X) = Σ, where Σij = ρ|i−j|. We reported the results for ρ = 0.8. The

purpose of the simulation is to check if the first stage LASSO estimation has an impact on

the second stage gene selection if there are high correlations between the X variables. Table

S6 lists the result. Compared to Table 2 in the main content, we did not see much difference

between the two tables. Table 2 is for the case with ρ = 0.2. This results show that it

is generally safe to apply the LASSO algorithm at the first stage without considering the

correlation information between the X variables. Note that after regressing each X variable

with the G variable, the correlation between the fitted values is mainly determined by the

number of SNPs they share in common. The original correlation structure has little impact

on the correlation of the fitted value.

Table S6: Simulation results with ρ = 0.8 for p = 100, q = 100, n = 200 ∼ 1400 and
numSNP=4. The numbers in the parentheses are the empirical standard errors.

n Method Estimation Loss Model Error True Positive False Positive MCC
200 IVGC 1.33 (0.76) 0.74 (0.28) 9.93 (0.44) 4.35 (3.39) 0.83 (0.11)

IV 3.32 (0.92) 1.33 (0.31) 9.15 (0.8) 4.2 (3.56) 0.78 (0.12)
400 IVGC 0.81 (0.46) 0.46 (0.18) 9.98 (0.12) 3.77 (3.59) 0.85 (0.11)

IV 2.51 (0.62) 1 (0.21) 9.68 (0.53) 3.89 (3.32) 0.83 (0.11)
600 IVGC 0.63 (0.35) 0.34 (0.15) 9.99 (0.14) 3.82 (3.21) 0.85 (0.1)

IV 2.09 (0.5) 0.83 (0.19) 9.8 (0.49) 4.82 (3.73) 0.81 (0.12)
800 IVGC 0.51 (0.26) 0.29 (0.11) 9.95 (0.71) 3.68 (3.15) 0.85 (0.12)

IV 1.59 (0.44) 0.65 (0.16) 9.93 (0.72) 4 (3.15) 0.84 (0.12)
1000 IVGC 0.46 (0.2) 0.26 (0.09) 10 (0) 3.89 (3.29) 0.85 (0.1)

IV 2.04 (0.47) 0.76 (0.17) 9.55 (0.5) 4.24 (3.48) 0.81 (0.11)
1200 IVGC 0.39 (0.2) 0.22 (0.08) 10 (0) 3.85 (3.41) 0.85 (0.1)

IV 1.84 (0.49) 0.72 (0.18) 9.82 (0.41) 4.47 (3.82) 0.82 (0.11)
1400 IVGC 0.41 (0.2) 0.22 (0.08) 9.99 (0.07) 3.68 (3.06) 0.85 (0.1)

IV 1.65 (0.45) 0.59 (0.14) 9.86 (0.36) 4.33 (3.6) 0.82 (0.11)
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3 Gene list in “Metabolism of Xenobiotics by Cyto-

chrome P450” pathway (hsa00980)

Table S7: List of genes in KEGG “Metabolism of Xenobiotics by Cytochrome P450” pathway

CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1 [KO:K07408]
CYP2C9 cytochrome P450, family 2, subfamily C, polypeptide 9 [KO:K17719]
CYP3A4 cytochrome P450, family 3, subfamily A, polypeptide 4 [KO:K17689]
CYP1B1 cytochrome P450, family 1, subfamily B, polypeptide 1 [KO:K07410]
GSTA5 glutathione S-transferase alpha 5 [KO:K00799]
GSTA2 glutathione S-transferase alpha 2 [KO:K00799]
GSTA4 glutathione S-transferase alpha 4 [KO:K00799]
GSTO2 glutathione S-transferase omega 2 [KO:K00799]
GSTM4 glutathione S-transferase mu 4 [KO:K00799]
GSTT2 glutathione S-transferase theta 2 (gene/pseudogene) [KO:K00799]
GSTT1 glutathione S-transferase theta 1 [KO:K00799]
GSTM3 glutathione S-transferase mu 3 (brain) [KO:K00799]
MGST1 microsomal glutathione S-transferase 1 [KO:K00799]
MGST3 microsomal glutathione S-transferase 3 [KO:K00799]
GSTP1 glutathione S-transferase pi 1 [KO:K00799]
GSTM1 glutathione S-transferase mu 1 [KO:K00799]
GSTM5 glutathione S-transferase mu 5 [KO:K00799]
MGST2 microsomal glutathione S-transferase 2 [KO:K00799]
GSTA1 glutathione S-transferase alpha 1 [KO:K00799]
GSTM2 glutathione S-transferase mu 2 (muscle) [KO:K00799]
GSTA3 glutathione S-transferase alpha 3 [KO:K00799]
GSTO1 glutathione S-transferase omega 1 [KO:K00799]
GSTT2B glutathione S-transferase theta 2B (gene/pseudogene) [KO:K00799]
GSTK1 glutathione S-transferase kappa 1 [KO:K13299]
EPHX1 epoxide hydrolase 1, microsomal (xenobiotic) [KO:K01253]
CYP2B6 cytochrome P450, family 2, subfamily B, polypeptide 6 [KO:K17709]
SULT2A1 sulfotransferase family, cytosolic, 2A, dehydroepiandrosterone

(DHEA)-preferring, member 1 [KO:K11822]
CYP1A2 cytochrome P450, family 1, subfamily A, polypeptide 2 [KO:K07409]
CYP2A6 cytochrome P450, family 2, subfamily A, polypeptide 6 [KO:K17683]
CYP2E1 cytochrome P450, family 2, subfamily E, polypeptide 1 [KO:K07415]
CYP2F1 cytochrome P450, family 2, subfamily F, polypeptide 1 [KO:K07416]
CYP2S1 cytochrome P450, family 2, subfamily S, polypeptide 1 [KO:K07420]
AKR1C2 aldo-keto reductase family 1, member C2 [KO:K00089 K00212]
AKR1C4 aldo-keto reductase family 1, member C4 [KO:K00037 K00089 K00092

K00212]
AKR1C1 aldo-keto reductase family 1, member C1 [KO:K00089 K00212]
DHDH dihydrodiol dehydrogenase (dimeric) [KO:K00078 [EC:1.1.1.179 1.3.1.20]
CYP2A13 cytochrome P450, family 2, subfamily A, polypeptide 13 [KO:K17685]
CYP2D6 cytochrome P450, family 2, subfamily D, polypeptide 6 [KO:K17712]
HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1 [KO:K15680]
CBR1 carbonyl reductase 1 [KO:K00079]
CBR3 carbonyl reductase 3 [KO:K00084]
UGT2A1 UDP glucuronosyltransferase 2 family, polypeptide A1, complex locus

[KO:K00699]
UGT2A3 UDP glucuronosyltransferase 2 family, polypeptide A3 [KO:K00699]
UGT2B17 UDP glucuronosyltransferase 2 family, polypeptide B17 [KO:K00699]
UGT2B11 UDP glucuronosyltransferase 2 family, polypeptide B11 [KO:K00699]
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(cont’d)

UGT1A1 UDP glucuronosyltransferase 1 family, polypeptide A1 [KO:K00699]
UGT1A3 UDP glucuronosyltransferase 1 family, polypeptide A3 [KO:K00699]
UGT2B10 UDP glucuronosyltransferase 2 family, polypeptide B10 [KO:K00699]
UGT1A9 UDP glucuronosyltransferase 1 family, polypeptide A9 [KO:K00699]
UGT2B7 UDP glucuronosyltransferase 2 family, polypeptide B7 [KO:K00699]
UGT1A10 UDP glucuronosyltransferase 1 family, polypeptide A10 [KO:K00699]
UGT1A8 UDP glucuronosyltransferase 1 family, polypeptide A8 [KO:K00699]
UGT1A5 UDP glucuronosyltransferase 1 family, polypeptide A5 [KO:K00699]
UGT2B15 UDP glucuronosyltransferase 2 family, polypeptide B15 [KO:K00699]
UGT1A7 UDP glucuronosyltransferase 1 family, polypeptide A7 [KO:K00699]
UGT2B4 UDP glucuronosyltransferase 2 family, polypeptide B4 [KO:K00699]
UGT2A2 UDP glucuronosyltransferase 2 family, polypeptide A2 [KO:K00699]
CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5 [KO:K17690]
AKR7A2 aldo-keto reductase family 7, member A2 (aflatoxin aldehyde reductase)

[KO:K15303]
AKR7A3 aldo-keto reductase family 7, member A3 (aflatoxin aldehyde reductase)

[KO:K15303]
ALDH3B1 aldehyde dehydrogenase 3 family, member B1 [KO:K00129]
ALDH3B2 aldehyde dehydrogenase 3 family, member B2 [KO:K00129]
ALDH1A3 aldehyde dehydrogenase 1 family, member A3 [KO:K00129]
ALDH3A1 aldehyde dehydrogenase 3 family, member A1 [KO:K00129]
ADH1A alcohol dehydrogenase 1A (class I), alpha polypeptide [KO:K13951]
ADH1B alcohol dehydrogenase 1B (class I), beta polypeptide [KO:K13951]
ADH1C alcohol dehydrogenase 1C (class I), gamma polypeptide [KO:K13951]
ADH7 alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide [KO:K13951]
ADH4 alcohol dehydrogenase 4 (class II), pi polypeptide [KO:K13980]
ADH5 alcohol dehydrogenase 5 (class III), chi polypeptide [KO:K00121]
ADH6 alcohol dehydrogenase 6 (class V) [KO:K13952]
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