Revisiting the β-lactams for Tuberculosis Therapy: A Compound-Compound Synthetic Lethality Approach

Shiqi Xiao^a, Haidan Guo^a, Warren S. Weiner^{b,c}, Clinton Maddox^d, Chunhong Mao^e, Hendra Gunosewoyo^f, Shaaretha Pelly^a, E. Lucile White^d, Lynn Rasmussen^d, Frank J. Schoenen^c, Jeffrey Aubé^g, William R. Bishai^a, and Shichun Lun^{a#}

Supplemental material

Methods

Compound handling for verification: All compounds were dissolved in DMSO at 4.096 mg/mL and stored at -80°C. To complete activity verification and determine minimum inhibitory concentrations (MICs), the compounds were pre-diluted eight times with 7H9 without Tween 80. 100 μ l of diluted compounds were transferred to Column 2 (an empty well) of the 96-well plate. 100 μ l of diluted compounds were transferred to Column 3 (pre-dispensed 100 μ l of assay media). 2-fold serial dilutions were carried out from Column 3 to Column 11, resulting in a 256 μ g/mL to 0.5 μ g/mL concentration range. 100 μ l of diluted bacterial cells (ca. 10⁴ CFU) were added to Column 2 through Column 11.

Compound handling for Structure-Activity Relationship (SAR): All compounds were dissolved in DMSO at 2.048 mg/mL and stored at -80°C. To complete activity

verification and determine minimum inhibitory concentrations (MICs), the compounds were pre-diluted eight times with 7H9 without Tween 80. 100 μ l of diluted compounds were transferred to Column 2 (an empty well) of the 96-well plate. 100 μ l of diluted compounds were transferred to Column 3 (pre-dispensed 100 μ l of assay media). 2-fold serial dilutions were carried out from Column 3 to Column 11, resulting in a 128 μ g/mL to 0.25 μ g/mL concentration range. 100 μ l of diluted bacterial cells (ca. 10⁴ CFU) were added to Column 2 through Column 11.

Figure legends

Figure S1. Concentration response of Meropenem (upper panel) and Clavulanic acid (lower panel) on *M. tuberculosis* H37Rv.

Figure S2. Bioavailability assay by serum inhibition titration (SIT). Vehicle (0.5% CMC) was a negative control and 10 mg/kg of INH was a positive control. Compounds 3 (217A) and 4 (217B) were tested, in the presence of 2 μ g/mL of meropenem, at two dose levels (100 and 300 mg/kg) and three time points (15, 30, and 60 min) (A and B). Compound 6 (212E) was analyzed at 300 mg/kg and 30 min in the presence of 0, 2, 4, and 8 μ g/mL of meropenem (C-F). Bacterial growth was shown as a relative fluorescence unit.

Figure S3. AmiGO 1.8 gene ontology (GO) enrichment analysis. The enriched GO terms are shaded with p-values indicated. The darker the shade, the better the p-value is. The colors of the edges between the GO terms represent the relationships: "is_a" in blue, "part_of" in lightblue, "regulates" in black, and "positively_regulates" in green.

Supplementary tables

Table S1. Structure-Activity Relationship (SAR) for N-arylindole chemotype

Table S2. Structure-Activity Relationship (SAR) for Benzothiophene chemotype

Table S3. Gene expression profile upon *N*-arylindole (217A) treatment as determined by

 RNA-seq.

Table S4. Differential expression upon *N*-arylindole (217A) treatment as analyzed by RNA-seq. Linear fold change (FC) cut off was set at ≥ 2.0 or ≤ -2.0 . Significant differentially expressed genes (p ≤ 0.05) are highlighted in light brown (up-regulated: n=15) or light green (down-regulated: n=34).

Figure S1. Concentration response of Meropenem (upper panel) and Clavulanic acid (lower panel) on *M. tuberculosis* H37Rv.

Figure S2. Bioavailability assay by serum inhibition titration (SIT). Vehicle (0.5% CMC) was a negative control and 10 mg/kg of INH was a positive control. Compounds 3 (217A)

and 4 (217B) were tested, in the presence of 2 μ g/mL of meropenem, at two dose levels (100 and 300 mg/kg) and three time points (15, 30, and 60 min) (A and B). Compound 6 (212E) was analyzed at 300 mg/kg and 30 min in the presence of 0, 2, 4, and 8 μ g/mL of meropenem (C-F). Bacterial growth was shown as a relative fluorescence unit.

Figure S3. AmiGO 1.8 gene ontology (GO) enrichment analysis. The enriched GO terms are shaded with p-values indicated. The darker the shade, the better the p-value is. The colors of the edges between the GO terms represent the relationships: "is_a" in blue, "part_of" in lightblue, "regulates" in black, and "positively_regulates" in green.

Entry	Structure	PubChem CID	MIC at 0 μg/mL of MER	MIC at 4 µg/mL of MER
1	HZ HZ	7224	≥128	64
2	HO	16054	≥128	64
3		66518	64	64
4		70636	64	32
5		70642	≥128	≥128
6	HO	83336	≥128	64
7	HO	537520	≥128	≥128
8	Hz o	594174	16	32
9		658914	≥128	≥128
10		665108	≥256	16

Table S1. Synthetic lethality structure-activity relationship screen on 68 *N*-arylindole derivatives in the presence of 0 or 4 μ g/mL of meropenem (MIC: μ g/mL)

Entry	Structure	PubChem CID	MIC at 0 μg/mL of MER	MIC at 4 µg/mL of MER
11		705249	≥128	16
12		708055	≥128	64
13		746058	≥256	8
14		762508	64	32
15	HO	781247	≥128	64
16		804894	4	8
17		827826	16	8

Entry	Structure	PubChem CID	MIC at 0 µg/mL of MER	MIC at 4 µg/mL of MER
18		828023	64	≥128
19		873088	≥128	≥128
20	HO	878953	≥128	≥128
21		927090	≥128	64
22		931244	64	64
23		940424	≥128	8
24		947393	≥128	≥128

Entry	Structure	PubChem MIC at 0 μg/mL CID of MER		MIC at 4 μg/mL of MER
25		949476	8	8
26		949641	≥128	≥128
27		2055004	32	16
28		2329649	32	8
29	- HN	2778715	64	64
30		2882229	8	8
31	HO	3237314	64	64
32		3694883	16	8

Entry	Structure	PubChem CID	MIC at 0 µg/mL of MER	MIC at 4 µg/mL of MER
33	H O O	4072358	16	16
34		4777667	≥128	64
35		5175771	32	64
36		10846825	≥128	≥128
37		12682603	64	64
38	HO	14004102	≥128	64
39	No H	15157643	64	64
40	N-N-OH OC	18558847	64	32
41		21234080	16	8

Entry	Structure	PubChem CID	MIC at 0 µg/mL of MER	MIC at 4 µg/mL of MER
42		46891659	16	16
43		46891660	≥128	64
44		49842879	16	8
45	F	49842880	≥128	64
46		49842881	16	16
47		49842882	64	32
48		49842883	32	2
49		49867951	≥128	32
50	F C C C	49867952	32	32

Entry	Structure	PubChem CID	MIC at 0 μg/mL of MER	MIC at 4 µg/mL of MER
51	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	49867953	≥128	≥128
52	CI CI	49867954	64	64
53		49867955	≥128	≥128
54	N K K	53308687	≥128	≥128
55		53308688	64	32
56		53308689	≥128	64
57		53308690	≥128	≥128
58		53308691	≥128	64

Entry	Structure	PubChem CID	MIC at 0 µg/mL of MER	MIC at 4 µg/mL of MER	
59		53308692	16	8	
60		53308693	32	16	
61		53308694	≥128	64	
62		53308695	≥128	≥128	
63		53308696	8	4	
64		53308697	≥128	≥128	
65		53308698	≥128	64	

Entry	Structure	PubChem CID	MIC at 0 µg/mL of MER	MIC at 4 μg/mL of MER	
66		53308699	32	32	
67		53308700	8	4	
68	HO	53308701	≥128	≥128	
69	Rifampin (RIF)	5381226	0.125	0.125	
70	Isoniazid (INH)	3767	0.02	0.02	

Entry	Structure	PubChem CID	MIC at 0 μg/mL of MER	MIC at 2 µg/mL of MER	MIC at 4 μg/mL of MER
1	NH ₂	6145	≥128*	≥128*	≥128*
2	S O N N N N N H H	283977	64	64	64
3		853562	≥128*	≥128*	≥128*
4		1302558	64	64	64
5	N O O O O O O O O O O O O O O O O O O O	2308931	≥128*	≥128*	64
6	N N N N N N N N N N N N N N N N N N N	2731492	≥128*	≥128*	≥128*
7		2813497	64	2	2
8		3122100	64	32	16
9		7616028	32	64	64
10		13182769	8	2	1
11		16810982	32	32	32
12	S H	60705040	64	64	64
13		62686029	64	≥128*	≥128*

Table S2. Synthetic lethality structure-activity relationship screening on 39
bezothiophene derivatives (MIC in μ g/mL at 0, 2 and 4 μ g/mL of meropenem)

Entry	Structure	PubChem CID	MIC at 0 µg/mL of MER	MIC at 2 μg/mL of MER	MIC at 4 µg/mL of MER
14		66545913	≥128*	≥128*	≥128*
15		66545914	64	64	64
16		66545915	2	2	2
17		66545916	4	2	2
18		66545917	64	64	≥128*
19	NH O NH	66545918	≥128*	≥128*	≥128*
20	HN	66545919	32	16	16
21		66545920	≥128*	≥128*	≥128*
22	HN C N	66545921	64	16	4
23		66545922	≥128*	64	64
24		66545923	32	16	16

Entry	Structure	PubChem CID	MIC at 0 µg/mL of MER	MIC at 2 µg/mL of MER	MIC at 4 μg/mL of MER
25	S N N N	66545924	32	32	32
26	HN S	66545925	16	16	16
27		66545926	≥128*	≥128*	32
28		66545927	64	16	8
29	HN K	66545928	16	4	2
30	HN N O	66545929	2	2	1
31	S N N N	66545930	≥128*	≥128*	≥128*
32	HN CO	66545931	64	32	64
33	HN HN F O F F	66545932	16	16	16
34		66545933	64	64	64
35		66545934	2	2	2
36		66545935	≥128*	≥128*	≥128*

Entry	y Structure	PubChem CID	MIC at 0 µg/mL of MER	MIC at 2 µg/mL of MER	MIC at 4 µg/mL of MER
37	HN HN HN HN HN HN HN HN	66545936	64	16	16
38	HN N N O	66545937	≥128*	≥128*	64
39	HN N N	66545938	8	8	4