

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

Supplementary Figure Legends

Figure S1. The allelic exchange vector pCOP88 integrates the *P_{bacA}-cas9-cat-guide RNA module into pPD1. pCOP88 derivatives contain elements from the allelic exchange vector pLT06 (1). These include a temperature sensitive <i>repA* (*repA*^{ts}) allele that facilitates forced integration of pCOP88 derivatives into target DNA sequences under non-permissive temperature (42°C) and a P-*pheS* cassette that allows for the cellular utilization of *p*-chloro-phenylalanine as a counter-selectable marker. The *PbacA-cas9-cat*-guide RNA module is flanked by 1-kb pPD1 homology regions used for the homologous recombination of the module into native pPD1.

Figure S2. *E. faecalis* V583 restricts conjugation of pKH88 derivatives originating from *E. faecalis* CK135. (A) The ratio of *E. faecalis* V583 and OG1SSp transconjugants following *in vitro* co-culture with *E. faecalis* CK135(pKH88) derivative donors. (B) Comparison of normalized *E. faecalis* V583 transconjugant and *E. faecalis* V583 recipient numbers following *in vitro* co-culture with *E. faecalis* CK135(pKH88) derivative donors.

Figure S3. Schematic cartoon of the antibiotic dysbiosis mouse model.

Figure S4. Intestinal colonization of *E. faecalis* populations following co-colonization with OG1SSp(pAM771) and CK135(pKH88) donors in antibiotic-treated mice. (A) Recipients. (B) Donors. (C) Transconjugants. Markers; S – streptomycin, Sp – spectinomycin, R – rifampicin, F – fusidic acid, Cam – chloramphenicol.

Figure S5. Intestinal colonization of *E. faecalis* populations following co-colonization with OG1SSp(pAM771) and CK135(pKH88) donors in gnotobiotic mice. (A) Recipients. (B) Donors. (C) Transconjugants. The solid horizontal line indicates the limit of detection. Markers; S – streptomycin, Sp – spectinomycin, R – rifampicin, F – fusidic acid, Cam – chloramphenicol.

Figure S6. Non-targeted *E. faecalis* intestinal transconjugant populations do not bloom following oral **erythromycin treatment of gnotobiotic mice.** 27 days post co-colonization with *E. faecalis* OG1SSp(pAM771) and CK135(pKH88[sp-*ermB*]) (targeting group) or with *E. faecalis* OG1SSp(pAM771) and CK135(pKH88[sp-

tetM]) (non-targeting group), mice received a single 40 µg dose of oral erythromycin. The number of recipients, transconjugants and erythromycin resistant transconjugants were enumerated from fecal pellets before and after oral erythromycin treatment. The solid horizontal line indicates the limit of detection. Markers; Erm – erythromycin, S – streptomycin, Sp – spectinomycin, Cam – chloramphenicol.

Organism	Strain Name	Description	Ref
E. coli	EC1000	<i>E. coli</i> cloning host, providing <i>repA in trans</i> .F- , <i>araD139 (ara ABC-leu)</i> 7679, <i>galU, galK, lacX74,</i> <i>rspL, thi, repA</i> of pWV01 in <i>glgB, km</i>	(2)
E. faecalis	V583	MDR bloodstream isolate, resistant to vancomycin, gentamicin, and erythromycin	(3)
	OG1SSp	Spectinomycin-streptomycin-resistant derivative of OG1	(4)
	CK135	OG1 <i>rpoB_{H486Y}</i> (spontaneous Rif ^r derivative)	(5)
	CK135RF	Spontaneous fusidic acid-resistant derivative of CK135	This study
	OG1RF ΔEfaRFI	OG1RF EfaRFI (OG1RF_11622-11621) deletion mutant	(6)

Table S1. Strains used in this study

Plasmid	Description	Ref
pLT06	Encodes temperature-sensitive <i>repA</i> and <i>pheS</i> *	(1)
	counter-selection	
pHA101	pLT06 + oriT	(7)
pCOP88[sp-tetM]	pL106 derivative used to knock in CRISPR-	This study
	targeting construct with a spacer targeting <i>tetM</i>	
pCOP88[sp- <i>ermB</i>]	pLT06 derivative used to knock in CRISPR-	This study
	targeting construct with a spacer targeting <i>ermB</i>	
pKH88[sp- <i>ermB</i>]	pPD1 derivative with CRISPR-targeting cassette	This study
	for <i>ermB</i> ; also encodes <i>cat</i>	
pKH88[sp- <i>tetM</i>]	pPD1 derivative with CRISPR-targeting cassette	This study
	for <i>tetM</i> ; also encodes <i>cat</i>	
pAM771	Non-cytolytic derivative of the PRP pAD1	(8)
	mutagenized with Tn917, encodes erythromycin	
	resistance via ermR	
pCF10	PRP; encodes tetracycline resistance via <i>tetM</i>	(9)
pPD1	PRP; encodes Bac-21 bacteriocin	(10)

Table S3. Primers used in this study

Primer Name	Sequence (5'-3')	Use
pCOP88 Ori for	TGCAGCGTTTCTTTGAATAG	Create pCOP88
nCOP88 Ori	GCTTTGCAAAGTCTGAAAAC	Create nCOP88
rev		
		Create pCOD99
pcopos pries	I GCCACCITCGITTICAGACITTGCAAAGCCAA	
cat for	GTTAAGGGATGCAGTTTAAAAATG	
		0 1 00000
pCOP88 PheS	GGCATGATGGTTGCCGGTCGATAAACCCAGCG	Create pCOP88
cat rev	AAC	
pCOP88 cas9	AAACATTACTCTATAGCAAACACAGTTAACCACG	Create pCOP88
for		
pCOP88 cas9-	CAATATCAGAATCAATCCACTCCTGAATCCCATT	Create pCOP88
cat-PSRT rev	С	
pCOP88 Arm 1	CTGGGTTTATCGACCGGCAACCATCATGCCTAA	Create pCOP88
for	АТТТТТАТС	
pCOP88 Arm 1	GTTAACTGTGTTTGCTATAGAGTAATGTTTTAAT	Create pCOP88
rev	ТТТТТСТСТТТТСАС	
pCOP88 Arm 2	GGATTCAGGAGTGGATTGATTCTGATATTGCCA	Create pCOP88
for	ATC	
pCOP88 Arm 2	CTAAAACGTCCTATTCAAAGAAACGCTGCAAGT	Create pCOP88
rev	CAACTAGAATCTGCTG	
cas9 rev	TTTATTAAAGTTCATCTAGTCGACAACTTTACGG	Create pCOP88
	CGTGTTTC	
1		1

cat for	AAAGTTGTCGACTAGATGAACTTTAATAAAATTG	Create pCOP88
	ATTTAGACAAT	
cat rev	TCAACAAACTGGCCCGTTTGTTGAACTACTTTAT	Create pCOP88
	AAAAGCCAGTCATTAGGC	
PSRT for	AGTAGTTCAACAAACGGGCC	Create pCOP88

References

- Thurlow LR, Thomas VC, Hancock LE. 2009. Capsular polysaccharide production in *Enterococcus faecalis* and contribution of CpsF to capsule serospecificity. J Bacteriol 191:6203-10. doi:10.1128/JB.00592-09.
- Leenhouts K, Buist G, Bolhuis A, Ten Berge A, Kiel J, Mierau I, Dabrowska M, Venema G, Kok J. 1996.
 A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253:217-224. doi:10.1007/s004380050315.
- Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, Clarke B. 1989. In vitro susceptibility studies of vancomycin-resistant *Enterococcus faecalis*. Antimicrob Agents Chemother 33:1588-91. doi:10.1128/aac.33.9.1588.
- Dunny GM, Brown BL, Clewell DB. 1978. Induced cell aggregation and mating in *Streptococcus faecalis*: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA 75:3479-3483. doi:10.1073/pnas.75.7.3479.
- 5. Kristich CJ, Little JL. 2012. Mutations in the beta subunit of RNA polymerase alter intrinsic cephalosporin resistance in enterococci. Antimicrob Agents Chemother 56:2022-7. doi:10.1128/AAC.06077-11.

- Huo W, Adams HM, Trejo C, Badia R, Palmer KL. 2019. A type I restriction-modification system associated with *Enterococcus faecium* subspecies separation. Appl Environ Microbiol 85:e02174-18. doi:10.1128/AEM.02174-18.
- Bhardwaj P, Ziegler E, Palmer KL. 2016. Chlorhexidine induces VanA-type vancomycin resistance genes in enterococci. Antimicrob Agents Chemother 60:2209-21. doi:10.1128/AAC.02595-15.
- 8. Ike Y, Clewell DB. 1984. Genetic analysis of the pAD1 pheromone response in *Streptococcus faecalis*, using transposon Tn917 as an insertional mutagen. J Bacteriol 158:777-783.
- 9. Dunny G, Funk C, Adsit J. Direct stimulation of the transfer of antibiotic resistance by sex pheromones in *Streptococcus faecalis*. Plasmid 6:270-278.
- 10. Fujimoto S, Tomita H, Wakamatsu E, Tanimoto K, Ike Y. 1995. Physical mapping of the conjugative bacteriocin plasmid pPD1 of *Enterococcus faecalis* and identification of the determinant related to the pheromone response. J Bacteriol 177:5574-5581. doi:10.1128/jb.177.19.5574-5581.1995.