Supplementary Information

Supplementary information for

Minute-scale persistence of a GPCR conformation state triggered by non-cognate G protein interactions primes signaling.

Gupte et al.

*Contents-*Supplementary Figure 1 – Supplementary Figure 7 Supplementary Table 1 – Supplementary Table 3.

Supplementary Figure 1 - Hot-spot substitutions in Ga peptides affect G protein activation and downstream signaling from V_{1A} -R. (a) Activation of G protein (Gaq) is monitored by the increase in BODIPY fluorescence upon agonist stimulation of membranes harvested from HEK293T cells expressing V_{1A}- R, and reconstituted with purified Gaq. Presence of the indicated Ga peptides, (cognate (Qp), non- cognate (Sp), cognate to non-cognate (Qp \rightarrow Sp), and non-cognate to cognate (Sp \rightarrow Qp)) affects the magnitude of G protein activation, expressed as a percentage normalized to the change observed in the absence of added peptide (-). (b) Downstream signaling from cells expressing equivalent amounts of V_{1A}-R SPASM sensor was measured by monitoring IP₁ levels following agonist stimulation. Box-and-whisker plots: centre line is median, box ends are upper and lower quartiles, whisker ends are $1.5 \times interquartile range$ (IQR) from four independent experiments with at least three replicates per experiment ($n \ge 4$). Statistically significant differences were assessed by a one- way ANOVA, followed by Tukey's post-ANOVA test. Significance is denoted by asterisks, *, p < 0.05.

Equivalent sensor expression of the different V_{1A}-R SPASM sensors (c) and β_2 -AR SPASM sensors (corresponding to downstream assays in Fig. 2d) is inferred from the fluorescence intensity of equal numbers of cells for each sensor. Values are mean \pm S.D from at least 3 separate experiments.

Supplementary Figure 2 - Depletion of biotinylated Qp. (a) Streptavidin-coated magnetic beads (brown circles) bind to biotinylated Qp (bioQp) from solution. Binding is quantified by Western blotting of the samples for biotin (i- 30 μ M bioQp, ii- supernatant after binding to Streptavidin-coated magnetic beads, iii - 30 μ M Qp, iv- buffer control). (b) Streptavidin-coated magnetic beads (brown circles) deplete bioQp to sub-critical concentration, in the presence of β_2 -mCer membranes. Reactions containing 30 μ M bioQp, 10 nM β_2 -mCer and isoproterenol were probed by immunoblotting at the indicated dilutions (reflecting theoretical bioQp concentration (1-4)). These were compared to the undiluted supernatant obtained after treatment of the sample with streptavidin-coated magnetic beads for 30 s (5), and a no peptide control (6). Treatment of the samples with Streptavidin-coated magnetic beads reduces bioQp concentration to 1.6 μ M across 4 experiments.

Supplementary Figure 3 - Photocleavage of PC-Qp by UV irradiation. (a) Design of photocleavable Qp (PC-Qp) by replacing the indicated Tyrosine (Y356) residue in Qp sequence with 3-amino-3-(2-nitro)phenyl- propionic acid (Anp). Reaction scheme depicting photocleavage products of PC-Qp upon UV irradiation, with average m/z of the resulting fragments. (b) Quantification of the extent of photocleavage of PC-Qp by MALDI-MS. UV irradiation of full length PC-Qp in the presence of native membranes causes the concentration of the full length PC-Qp to fall to 4.58 μ M, which is less than the critical concentration (*C*_C) required for GPCR priming. (c) Change in FRET ratio following isoproterenol treatment (100 μ M) of β_2 -AR-Sp sensor in the presence of indicated concentrations of Qp or PC-Qp. Values are mean \pm S.D from 3 experiments (b) or mean \pm S.D from at least 12 replicates across 3 experiments (c). Statistically significant differences were assessed Students' *t*-test test. Significance is denoted by asterisks, *, p < 0.05.

Supplementary Figure 4 – β_2 -AR-ICL3 is capable of stimulating downstream signaling. (a) Schematic representation of the β_2 -AR-ICL3 sensor designed to report on conformational changes in the receptor, compared to the wild-type β_2 -AR-mCer. (b) cAMP accumulation in HEK293T cells expressing increasing amounts of β_2 -AR-ICL3 sensor, upon stimulation with isoproterenol (10 μ M), compared to buffer-treated cells. Increasing sensor expression correlates with greater cAMP accumulation ($R^2 = 0.76$). Each data point represents mean \pm S.D from 4 replicates in a single experiment. Experiments were repeated thrice to obtain multiple x-y pairs. Data was fit to a linear regression to find correlation coefficient. (c) Cells expressing either the control β_2 -AR-mCer or the β_2 -AR-ICL3 sensor to equivalent levels were stimulated with varying concentrations (0.3 fM to 30 μ M) of isoproterenol, and the cAMP response measured. The increase in cAMP is expressed as a percentage, normalized to the cAMP response observed from β_2 -AR-mCer expressing cells at saturating concentration of isoproterenol. The cAMP response data were fit to a four-parameter logistic function to obtain dose-response curves and estimate potency (*pEC*₅₀). Values are mean \pm S.D from at least 9 repeats across 3 experiments

Supplementary Figure 5 - Forskolin synergizes signaling downstream of endogenous β_2 -AR. (a) cAMP accumulation in HEK293T cells over-expressing Gaq (mCer-tag), following stimulation with forskolin (Fsk) at either 2 μ M or 10 μ M, fenoterol (10 μ M), or a combination of forskolin (2 μ M) and fenoterol (10 μ M).

Expressing in terms of R and G_{non}

$$[R^*] = k_{act} * [R]$$
$$[R.G_{non}] = [R][G_{non}] / K_{D}$$
$$[R^*.G_{non}] = \alpha. k_{act} [R][G_{non}] / K_{D}$$

 $R_{t} = R + R^{*} + R.G_{non} + R^{*}.G_{non}$ $[R_{t}] = [R] + (k_{act}^{*}[R]) + ([R][G_{t}] / K_{D}) + (\alpha. k_{act}^{*}[R][G_{t}] / K_{D})$ $[R_{t}] = [R] \{ 1 + k_{act}^{*} + ([G_{t}] / K_{D}) + (\alpha. k_{act}^{*}. [G_{t}] / K_{D}) \}$

$$k_{act} = [R^*] / [R]$$

$$K_{D} = [R][G_{non}] / [R.G_{non}]$$

$$\alpha k_{act} = [R^*.G_{non}] / [R.G_{non}]$$

$$K_{D} / \alpha = [R^*][G_{non}] / [R^*.G_{non}]$$

$$If R << G_{non'} G_{non} \sim G_t (total non cognate G protein)$$

$$[R^*] = k_{act} * [R]$$

$$[R.G_{non}] = [R][G_t] / K_{D}$$

$$[R^*.G_{non}] = \alpha \cdot k_{act} [R][G_t] / K_{D}$$

parameter estimation for fitting: $k_{act} = must$ be less than 1 $G_t = 10 \text{ nM}$ to 30 μ M K_D is estimated from Qp binding to β 2-mCer $K_D = 100 \mu$ M $\alpha = arbitary values between 0.01 and 100$

Ratio of primed to total receptor is calculated as

 $\begin{aligned} & \mathsf{R}^*/\mathsf{R}_t = (\mathsf{k}_{\mathsf{act}} * [\mathsf{R}]) / [\mathsf{R}] \{ 1 + \mathsf{k}_{\mathsf{act}} + ([\mathsf{G}_t] / \mathsf{K}_{\mathsf{D}}) + (\alpha. \, \mathsf{k}_{\mathsf{act}} \, . \, [\mathsf{G}_t] / \, \mathsf{K}_{\mathsf{D}}) \} \\ & \mathsf{R}^*/\mathsf{R}_t = \mathsf{k}_{\mathsf{act}} / \{ 1 + \mathsf{k}_{\mathsf{act}} + ([\mathsf{G}_t] / \, \mathsf{K}_{\mathsf{D}}) + (\alpha. \, \mathsf{k}_{\mathsf{act}} \, . \, [\mathsf{G}_t] / \, \mathsf{K}_{\mathsf{D}}) \} \end{aligned}$

Supplementary Figure 6 – Equilibrium model of GPCR priming through non-cognate G protein interactions.

(a) Receptor-non-cognate G protein interaction modeled on the Ternary Complex Model of cognate G protein signalling. Receptor interactions with the G protein enhance transition to the primed state as modeled by the cooperativity factor (α). Fraction of receptor in the primed state (R*/R₁) is calculated based on estimates of G protein concentration (10 nM to 30 μ M) and binding affinity of the non-cognate G peptide (Qp) to β 2-mCerulean membranes (100 μ M).

Supplementary Figure 7 – Equilibrium ternary complex model of GPCR signaling does not show augmented response in the presence of enhanced non-cognate G protein expression. Fraction of primed receptor (R^*/R_t) decreases with G protein expression, regardless of the fraction of spontaneously primed receptor (k_{act} ; **a**) or cooperativity factor (α ; **b**).

а

Supplementary Table 1

Three aspects of GPCR signaling that exhibit temporal persistence

(1) GPCR conformation $-\beta_2$ -AR ICL3 sensor (β_2 -AR conformation in parameter column);

(2) GPCR activation state – β_2 -AR-Sp SPASM sensor (Tethered Sp interaction with β_2 -AR); and

(3) G protein activation in *in vitro* reconstituted membranes (G protein activation). The details for each are tabulated

	Parameter	Priming	Sensor	Persistence time		
		Peptide	used			
				Minimum	Maximum	t½
1	Tethered Sp	bioQP	β ₂ -AR-Sp	90 s	150 s	330 s
	interaction with		SPASM	(1 ½ min)	(2 ½ min)	(5.6 min)
	β ₂ -AR					
2	Tethered Sp	PC-Qp	β ₂ -AR-Sp	165 s	240 s	
	interaction with		SPASM	(2¾ min)	(4 min)	
	β ₂ -AR					
4	β ₂ -AR	bioQp	β ₂ -AR-	150 s	240 s	
	conformation		ICL3	(2½ min)	(4 min)	
5	β ₂ -AR	PC-Qp	β ₂ -AR-	105 s	240 s	97 s
	conformation		ICL3	(1¾ min)	(4 min)	(1½ min)
6	G protein	PC-Qp	β ₂ -AR-	60 s		
	activation		cherry			

Supplementary Table 2

Sequences of Ga subunit c-terminus peptides with hot-spot substitutions highlighted in red.

Sp,DTENIRRVFNDCRDIIQRMHLRQYELL;. $Sp \rightarrow Qp$ DTENIRRVFNDCRDIIQRMHLRQYNLL (E392N)Qp,DTENIRFVFAAVKDTILQLNLKEYNLVQp \rightarrow SpDTENIRFVFAAVKDTIQQLNLKQYNLV (L349Q; E355Q)

Supplementary Table 2

Primers for creating the β_2 -AR-ICL3 sensor