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Supplementary Note 1: Mobility data

Trip flows

We use aggregate mobility data from Location History. This anonymous aggregated data comes from
users who opted-in to share their location data, which already is a vital source of information for estimates
of live traffic and parking availability [1]. Due to the popularity of Android phones, this data set
includes minute-resolution location data for 5% of the world’s population. We apply machine learning
to anonymized logs data to segment a raw GPS trace into semantic trips [2]. All anonymized trips are
processed in aggregate to extract their origin and destination location and time. For example, if n users
traveled from location a to location b within time interval t, the corresponding cell (a, b, t) in the tensor
would be n± e, where e is Laplacian noise to provide strong differential privacy guarantees. This means
that someone trying to determine whether a user was included in this dataset would at best improve their
level of certainty over a random guess by ∼ 16%. Note that this models the most conservative scenario
and that attempting to get precise data about a user is, in general, significantly harder. This design
protects individual data from being manually inspected and only heavily aggregated flows of populations
are shared. Furthermore, the dataset is generated only once and only mobility flows involving sufficiently
large number of accounts are processed by the model. This design protects individual data from being
manually inspected and only heavily aggregated flows of populations are shared (at the level of counties,
states, large S2 cells). The underlying data is already used as a vital source of information for estimates
of live traffic and parking availability. This process provides strong privacy guarantees by bounding the
posterior probability—as learned by analyzing the dataset—that any particular user’s data was used in
producing an output. Furthermore, only flows involving a sufficient number of individuals are processed
by the model (n > 100). No individual user data is ever inspected or modeled, only heavily aggregated
flows of large populations. The data corresponds to weekly aggregation of flows for the year 2016.

S2 cells

S2 cells are a space tessellation that divide Earth in cells of similar area and was first developed by Eric
Veach in 2005 at Google. The system of cells is hierarchical, with a total of thirty levels of successive
smaller sizes that fit one inside the other. The earth is placed inside a cube and is then projected into
each face with a non-linear transformation to preserve the areas. The cube is then tessellated in cells of
varying size depending on the desired level. Finally, the Hilbert curve (a fractal-like space filling curve
that maps a 2D space to 1D) is used to index each cell, being fast to encode and decode, while preserving
spatial locality. Further information can be found in [3]. The mobility data corresponds to trip-flows
between level-13 S2 cells, with sizes ranging between 0.76km2 and 1.59km2.

Supplementary Note 2: List of cities

In this section, we list the considered cities and the definition of their spatial boundaries. Due to easier
access to urban indicators of cities and their standardized definition within the same country, we first
describe US cities and then their global counterparts. The cities studied include metropolitan and
micropolitan areas of the US and the most populated worldwide metropolitan areas excluding Chinese
cities, where we have incomplete data. When studying urban structure and its relation with urban
indicators, the definition of city boundaries can strongly influence the findings [4, 5]. Consequently the
boundaries delineated for US cities are different when analyzed within the context of the US and when
comparing them to worldwide cities. In the former case, metrics are calculated according to boundaries
defined by the US census, while in the latter we use the ones outlined by the OECD.

US cities

The definition of metropolitan areas used for US cities correspond to Core Based Statistical Areas
(CBSA), defined by the Office of Management and Budget (OMB) and used in the census [6]. The
boundaries of the metropolitan and micropolitan areas are delimited by aggregating counties associated
with an urban center with more than 104 inhabitants together with adjacent ones strongly connected to
the core by commuting flows.

Hierarchical organization of urban mobility and its connection with city livability



A. Bassolas et al. 4

Supplementary Figure 1: Shape of Core Based Statistical Areas (CBSA) in our data

The complete list of metropolitan areas (127 cities) is detailed in Supplementary Table 1, while their
shapes are shown in Supplementary Fig. 1 (obtained from [7]). Having determined the boundaries of the
metropolitan areas, the mobility network of each city is constructed by including all the S2 cells inside
the urban area as nodes, and trip-flows between them as weighted edges.

City Population City Population City Population City Population
Akron 703 Albany 870 Albuquerque 887 Allentown 821
Asheville 424 Atlanta 5286 Augusta 564 Austin 1716
Bakersfield 839 Baltimore 2710 Baton Rouge 802 Beaumont 403
Birmingham 1128 Boise City 616 Boston 4552 Bridgeport 916
Brownsville 406 Buffalo 1135 Canton 404 Cape Coral 618
Charleston 664 Charlotte 2217 Chattanooga 528 Chicago 9461
Cincinnati 2114 Cleveland 2077 Colorado Springs 645 Columbia 767
Columbus 1901 Corpus Christi 428 Dallas 6426 Dayton 799
Deltona 590 Denver 2543 Des Moines 569 Detroit 4296
Durham 504 El Paso 804 Fayetteville 463 Flint 425
Fort Wayne 416 Fresno 930 Grand Rapids 988 Greensboro 723
Greenville 824 Harrisburg 549 Hartford 1212 Houston 5920
Huntsville 417 Indianapolis 1887 Jackson 567 Jacksonville 1345
Kansas City 2009 Killeen 405 Knoxville 837 Lafayette 466
Lakeland 602 Lancaster 519 Lansing 464 Las Vegas 1951
Lexington 472 Little Rock 699 Los Angeles 12828 Louisville 1235
Madison 605 Manchester 400 McAllen 774 Memphis 1324
Miami 5564 Milwaukee 1555 Minneapolis 3348 Mobile 412
Modesto 514 Nashville 1670 New Haven 862 New Orleans 1189
New York 19567 North Port 702 Ogden 597 Oklahoma City 1252
Omaha 865 Orlando 2134 Oxnard 823 Palm Bay 543
Pensacola 448 Philadelphia 5965 Phoenix 4192 Pittsburgh 2356
Port St. Lucie 424 Portland (OR) 2226 Portland (ME) 514 Providence 1600
Raleigh 1130 Reading 411 Reno 425 Richmond 1208
Riverside 4224 Rochester 1079 Sacramento 2149 Salinas 415
Salt Lake City 1087 San Antonio 2142 San Diego 3095 San Francisco 4335
San Jose 1836 Santa Maria 423 Santa Rosa 483 Scranton 563
Seattle 3439 Shreveport 439 Spokane 527 Springfield (MO) 436
Springfield (MA) 621 St. Louis 2787 Stockton 685 Syracuse 662
Tampa 2783 Toledo 610 Tucson 980 Tulsa 937
Vallejo 413 Virginia Beach 1676 Visalia 442 Washington 5636
Wichita 630 Winston 640 Worcester 916 York 434
Youngstown 565

Supplementary Table 1: Set of US cities and their population in thousands of inhabitants.
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We provide in Supplementary Table 2 the number of nodes and links in US cities.

City Cells Links City Cells Links City Cells Links City Cells Links
New Haven 394 4479 Lexington 322 3572 Youngstown 296 2270 Syracuse 288 2894
Baton Rouge 472 4646 Colorado Springs 470 6743 Bakersfield 334 5592 Visalia 201 2430

Akron 506 3969 Albany 439 3932 Albuquerque 519 8938 Allentown 406 4232
Asheville 253 2291 Atlanta 4156 46333 Augusta 306 3175 Austin 1110 17247
Bakersfield 334 5592 Baltimore 1433 19581 Baton Rouge 472 4646 Beaumont 320 3336
Birmingham 636 5696 Boise City 430 5427 Boston 1945 23220 Bridgeport 356 4428
Brownsville 270 4437 Buffalo 595 7178 Canton 234 2231 Cape Coral 588 5913
Charleston 577 6385 Charlotte 1573 16250 Chattanooga 334 2840 Chicago 5557 71939
Cincinnati 1441 13188 Cleveland 1271 13489 Colorado Springs 470 6743 Columbia 506 5067
Columbus 1099 12097 Corpus Christi 335 4919 Dallas 4245 65381 Dayton 642 5916
Deltona 332 3805 Denver 1582 26083 Des Moines 500 4981 Detroit 2880 29038
Durham 276 3248 El Paso 503 9718 Fayetteville 287 2980 Flint 309 2160

Fort Wayne 278 2663 Fresno 465 7284 Grand Rapids 460 4455 Greensboro 366 4320
Greenville 513 4615 Harrisburg 351 3285 Hartford 614 5740 Houston 4014 59051
Huntsville 265 2655 Indianapolis 1343 13168 Jackson 276 2079 Jacksonville 1045 12063
Kansas City 1597 16938 Killeen 271 3723 Knoxville 516 4268 Lafayette 196 1745
Lakeland 513 4779 Lancaster 302 2437 Lansing 268 2669 Las Vegas 946 21535
Lexington 322 3572 Little Rock 419 4310 Los Angeles 3959 107810 Louisville 826 9364
Madison 318 3213 Manchester 186 1832 McAllen 635 8673 Memphis 912 9290
Miami 2275 55179 Milwaukee 948 10786 Minneapolis 2354 21556 Mobile 283 2565
Modesto 264 4138 Nashville 1128 11928 New Haven 394 4479 New Orleans 644 10297
New York 6213 110798 North Port 499 5868 Ogden 453 5012 Oklahoma City 803 9906
Omaha 585 6499 Orlando 1751 26738 Oxnard 377 5837 Palm Bay 462 4876

Pensacola 358 3334 Philadelphia 2868 36644 Phoenix 2383 38830 Pittsburgh 1098 9807
Port St. Lucie 353 3555 Portland 1209 18955 Portland1 164 1339 Providence 816 9321

Raleigh 847 8967 Reading 142 1754 Reno 275 3852 Richmond 812 8639
Riverside 2687 38968 Rochester 496 5370 Sacramento 1279 17531 Salinas 240 3053
Salisbury 317 2486 Salt Lake City 642 10191 San Antonio 1286 22012 San Diego 1464 26469

San Francisco 1819 33974 San Jose 735 15799 Santa Maria 145 1685 Santa Rosa 242 3203
Scranton 272 2574 Seattle 2071 30966 Shreveport 228 2323 Spokane 290 3951
Springfield 242 2698 Springfield1 313 3517 St. Louis 1829 17665 Stockton 376 5577
Syracuse 288 2894 Tampa 1908 27540 Toledo 416 4073 Tucson 560 8392
Tulsa 561 6133 Vallejo 244 3318 Virginia Beach 1079 15051 Visalia 201 2430

Washington 2830 43166 Wichita 413 4619 Winston 304 2928 Worcester 269 2566
York 151 1588 Youngstown 296 2270

Supplementary Table 2: Number of nodes and links in US cities.

Worldwide cities

The Organization for Economic Cooperation and Development (OECD) provides boundaries for func-
tional urban areas in member countries [8]. Using a gridded population dataset, urban cores are defined
as clusters of adjoining grid cells with a population density above a certain threshold—1500 inhabitants
per km2 for all regions except Mexico and United States, where due to lower density the threshold is
1000 inhabitants per km2. Many Asian and African cities are not part of the dataset. For these, we
use data from the Atlas of Urban Expansion [9] (AOUE), which provides a definition of city boundaries
based on the extension of the built-up area. Finally, for cities not included in either the OECD or AOUE
lists, we define a boundary by clustering S2 cells within 4km of each other, up to 50km from the city
center, until we a connected component emerges in the network. For sake of completeness all analysis
conducted in this work is done for each definition of city boundary for sake of consistency. The complete
list of global cities cities (172) is shown in Supplementary Table 3, together with the boundary definition
for each city; Supplementary Fig. 2 shows the location of the cities on a map colored by continent.

Hierarchical organization of urban mobility and its connection with city livability
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Supplementary Figure 2: Worldwide cities selected for the study, colored by continent.
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City Boundaries City Boundaries City Boundaries City Boundaries
Abidjan Other Abuja Other Accra AOUE Ahmedabad AOUE
Alexandria AOUE Amsterdam OECD Ankara Other Athens OECD
Atlanta OECD Auckland AOUE Austin OECD Baghdad Other
Baltimore OECD Bamako AOUE Bandung Other Bangalore Other
Bangkok AOUE Barcelona OECD Barranquilla OECD Belgrade AOUE
Belo Horizonte AOUE Berlin OECD Bogota D.C. OECD Boston OECD
Brasilia Other Brisbane OECD Brussels OECD Budapest AOUE
Buenos Aires AOUE Busan OECD Cairo AOUE Calgary OECD
Cali OECD Campinas Other Cape Town Other Caracas AOUE
Charlotte OECD Chicago OECD Chittagong Other Cincinnati OECD
Cleveland OECD Coimbatore AOUE Columbus OECD Copenhagen OECD
Daegu OECD Daejeon OECD Dakar Other Dallas OECD
Damascus Other Dar es Salaam Other Delhi Other Denver OECD
Detroit OECD Dhaka AOUE Douala Other Dublin OECD
Durban Other Faisalabad Other Fort Worth OECD Fortaleza Other
Fukuoka OECD Guadalajara OECD Guatemala City AOUE Gwangju OECD
Hanoi Other Hamburg OECD Helsinki OECD Hiroshima OECD
Ho Chi Minh City AOUE Hong Kong Other Houston OECD Hyderabad AOUE
Ibadan AOUE Istanbul AOUE Izmir Other Jaipur AOUE
Jakarta Other Jiddah Other Johannesburg AOUE Kabul AOUE
Kampala AOUE Kano Other Kanpur AOUE Kansas City OECD
Karachi AOUE Kiev Other Kigali AOUE Kolkata AOUE
Kuala Lumpur Other Kumasi Other Kuwait City Other Lagos AOUE
Lahore AOUE Las Vegas OECD Lille OECD Lima Other
Lisbon OECD London OECD Los Angeles OECD Luanda AOUE
Lucknow Other Lyon OECD Madras Other Madrid OECD
Manchester OECD Manila AOUE Marseille OECD Medan AOUE
Medellin OECD Melbourne OECD Memphis OECD Mexicali OECD
Mexico City OECD Miami OECD Milan OECD Minneapolis OECD
Monterrey OECD Montreal OECD Moscow AOUE Mumbai AOUE
Munich OECD Nagoya OECD Nagpur Other Nairobi Other
Naples OECD New York OECD Orlando OECD Osaka OECD
Ottawa-Gatineau OECD Ouagadougou Other Palembang AOUE Paris OECD
Philadelphia OECD Phoenix OECD Pittsburgh OECD Portland OECD
Porto OECD Porto Alegre Other Puebla OECD Pune AOUE
Raleigh OECD Recife Other Rio de Janeiro Other Rome OECD
Sacramento OECD Saint Petersburg AOUE Salt Lake City OECD Salvador Other
San Antonio OECD San Diego OECD San Francisco OECD Sana’a’ Other
Santiago OECD Santo Domingo Other SaoPaulo AOUE Sapporo OECD
Seattle OECD Sendai OECD Seoul OECD Shizuoka Other
Singapore AOUE Stockholm OECD Surabaya Other Surat Other
Sydney OECD Tampa OECD Tel Aviv Other Tijuana OECD
Tokyo OECD Toronto OECD Vancouver OECD Vienna OECD
Warsaw OECD Washington OECD

Supplementary Table 3: Set of global cities and the corresponding method used to calculate its bound-
aries.

Hierarchical organization of urban mobility and its connection with city livability



A. Bassolas et al. 8

A
100 101 102

kout,kin

10 5

10 4

10 3

10 2

10 1

P(
k o

ut
),P

(k
in

)

New York
kout

kin

B
100 101 102

kout,kin

10 5

10 4

10 3

10 2

P(
k o

ut
),P

(k
in

)

Los Angeles
kout

kin

C
100 101 102

Distance (km)

10 6

10 5

10 4

10 3

10 2

10 1

PD
F

Paris
Los Angeles
Tokyo

D
100 101 102

Distance (km)

10 5

10 4

10 3

10 2

10 1

100

CC
DF

Paris
Los Angeles
Tokyo

Supplementary Figure 3: In- and out-degree distributions for aNew York and b Los Angeles. Distribution
of trip-lengths for Paris, Los Angeles and Tokyo (pdf c and cdf d).

Supplementary Note 3: Calculation of hotspots

Network metrics

The networks consist of S2 cells as nodes, and annual trip-flows as links within the boundaries of the
corresponding metropolitan areas. The links are directed and weighted, and normalized by the total
number of trips in the metropolitan area for the year 2016. Supplementary Fig. 3 shows the in- and
out-degree distributions for the New York and Los Angeles indicating that they are quite similar. One
of the more commonly studied measures in the context of individual and urban mobility networks is the
distribution of displacements [10, 11, 12]. While traditionally this is done on disaggregated data generated
from Call Data Records (CDR’s), the data available to us consists of population flows. Nevertheless one
can make a correspondence by plotting the trip-length distribution shown in Supplementary Fig. 3,
where the pdf’s (a) and cdf’s (b) are shown for three cities: Tokyo, Paris and Los Angeles. The observed
distributions are similar to that measured in previous analysis done on disaggregated data [13, 14], with
a heterogeneous power-law-like decay between 1km and 10km and a city-size dependent cut-off.

Definition

Hotspots can be broadly defined as spatial units with activity markedly higher than other in the city,
defined by a threshold. This activity can be quantified through a variety of metrics including the number
of individuals [15] or the population density [16]. Here, as we are concerned with mobility networks, we
define the activity as the total trip-flow originating or arriving at a given node. Given the directional
nature, we have two metrics: the inflow and outflow, calculated for each node i thus,

fouti =

N∑
j=1

wij ; f ini =

N∑
j=1

wji, (1)

Hierarchical organization of urban mobility and its connection with city livability
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Supplementary Figure 4: Scatter plot of trip outflow and inflow aggregated over S2 cells for the 100 most
populated cities in the United States.

where wij is the number of annual trips from node i to node j, normalized by the total number of annual
trips in the city. Given the relatively stable population at each location, modulo noise introduced by
the detection limits of the mobile technology, the in- and out-going trips are symmetric as shown in
Supplementary Fig. 4, a scatter plot of fout and f in for all nodes in the 100 largest cities (by population)
in the United States.

To determine the threshold for a cell to be labeled a hotspot we use the so-called Loubar method
proposed in [15] based on the Lorenz curve for the trip outflow. The Lorenz curve is the sorted cumulative
distribution of outflows and is obtained by plotting, in ascending order, the normalized cumulative
number of nodes vs. the fraction of total outflow. The area between diagonal and the curve corresponds
to the standard Gini coefficient widely used to measure inequality. The threshold is obtained by taking
the derivative of the Lorenz curve at (1,1) and extrapolating it to the the point at which it intersects
the x-axis. In our analysis, we extend the method to iteratively obtain consecutive hotspot levels. Once
hotspot nodes at a level l have been extracted, they are excluded from the distribution, and the threshold
is recalculated such that a new hotspot at level l + 1 is assigned.

The procedure is illustrated for up to l = 5 for New York and Los Angeles in Supplementary Fig. 5a,b.
The Lorenz curves are depicted in progressively transparent shades of blue as one goes down in levels, and
the corresponding derivatives at (1, 1) from red to yellow. The shape of the outflow distribution changes
the assignation of hotspot levels (Supplementary Fig. 5c,d). New York, with a more peaked distribution,
has a lower number of nodes in the first hotspot levels compared to Los Angeles. The hotspot level with
the maximum number of nodes assigned is shifted, being level three in Los Angeles and five in New York.
In general, the majority of cities have a similar shape, with less number of nodes in high and low levels,
but a high variability in the location of the peak. The total number of hotspot levels varies between
cities and it is correlated with the city size or the number of nodes in the network. Despite the difference
in the number distribution of nodes in hotspots levels, the distribution of the total outflow of the nodes
assigned to each hotspot level is relatively homogeneous across cities. (Supplementary Fig. 5e,f). Indeed,
the majority of flows are contained in the first three or four levels.

Supplementary Note 4: Flow-hierarchy Φ

Having extracted the hotspots, we next seek to quantify their interaction. Given that hotspots correspond
to levels of high activity, a natural question to ask is whether the majority of the urban population are
restricted to higher-level hotspots or do they transition between hotspots of varying levels of activity?
We define a matrix T whose elements Tij correspond to trips between hotspots i and j, normalized by
the total number of trips in the city. Supplementary Fig. 5e,f shows that the majority of the flow is
contained in the first three or four levels of hotspots, indicating that cities tend to be top-heavy with
the population traveling between areas of high activity.

Hierarchical organization of urban mobility and its connection with city livability
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Supplementary Figure 5: Hotspot levels calculated using the Loubar method for a New York and b Los
Angeles. Distribution for number of nodes per level in c New York and d Los Angeles. Distribution of
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Definition

As a first pass, an effective way to check for this is to calculate Tr T which measures the extent to which
populations traverse only within hotspots of the same level. Indeed, if all flows were contained within
same-level hotspots, the matrix will be diagonal with zero entries in off-diagonal elements, and would
constitute an extreme level of hierarchy. Fig. 2a,b in the main manuscript suggests that this is not the
case and a significant amount of interaction occurs between hotspots of different levels. On the other
hand, as Supplementary Fig. 6 indicates, the majority of interactions among hotspots of the same level,
occurs at the top, as Tr T3x3 captures essentially all such flows.

While all cities in our dataset, seem to be top-heavy in terms of flows, they may have different levels
of hierarchy depending upon the extent of interaction among the hotspot levels. Since the archetypal
hierarchical structure is a tree, the extent to which cities are tree-like or flat in terms of population flow
is captured by the flow-hierarchy defined as,

Φ =
∑L−1
i=1 (Tii + Ti(i+1) + T(i+1)i) + TLL (2)

=
∑L
i,j=1 Tij(δij + δi(j−1) + δ(i−1)j),

corresponding to the tri-diagonal sum of the matrix T. Here L corresponds to the total number of hotspot
levels (which varies from city to city). The metric is one if the flow interaction occurs only between same-
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Supplementary Figure 6: Trace of the complete matrix compared to normalized flow between a level 1
hotspots, b level 1-2 hotspots, and c level 1-3 hotspots

or adjacent-level hotspots and close to zero if flows are flat, i.e distributed uniformly across all L hotspots.
Thus Φ measures to what extent population flows in cities are tree-like. In Supplementary Fig. 7, we
plot Tr T against Φ indicating a linear dependence (as expected), however, while the former captures
only half the flows, Φ captures practically twice the amount of total flows in the system.
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Supplementary Figure 7: Flows between same-level hotspots compared to Φ.
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City Φ City Φ City Φ City Φ

Ho Chi Minh City 0.954 Sana’a’ 0.952 Abuja 0.951 Lahore 0.948
Luanda 0.948 Jiddah 0.948 Manila 0.948 Hanoi 0.947
Faisalabad 0.945 Kolkata 0.941 Ouagadougou 0.938 Alexandria 0.938
Lagos 0.937 Accra 0.937 Kanpur 0.936 Madras 0.936
Karachi 0.935 Mexicali 0.935 Jakarta 0.934 Kano 0.932
Porto 0.932 Lyon 0.931 Dhaka 0.931 Cairo 0.931
Surabaya 0.93 Dakar 0.93 Istanbul 0.93 Paris 0.929
Salvador 0.928 Mexico City 0.928 Coimbatore 0.927 Bangalore 0.925
Ahmedabad 0.925 Lisbon 0.922 Fortaleza 0.922 Milan 0.922
Delhi 0.921 Abidjan 0.921 Santo Domingo 0.92 Medan 0.92
Barcelona 0.919 Chittagong 0.919 Hyderabad 0.918 Guadalajara 0.918
Rome 0.918 New York 0.916 Bangkok 0.914 Jaipur 0.914
Bogota D.C. 0.913 Brussels 0.912 Lima 0.912 Surat 0.911
Barranquilla 0.91 Recife 0.91 Lucknow 0.909 Fukuoka 0.909
Marseille 0.908 Athens 0.908 Budapest 0.907 SaoPaulo 0.907
Lille 0.907 Kumasi 0.906 Bandung 0.905 Mumbai 0.905
Belo Horizonte 0.905 Dar es Salaam 0.904 Douala 0.904 Munich 0.903
Cali 0.903 Berlin 0.902 Sapporo 0.901 Kabul 0.9
Nagpur 0.9 Vienna 0.9 Philadelphia 0.9 Saint Petersburg 0.899
Tijuana 0.899 Nagoya 0.897 Moscow 0.896 Warsaw 0.894
Shizuoka 0.894 Tel Aviv 0.893 Belgrade 0.893 Hamburg 0.893
Ibadan 0.893 Puebla 0.893 Naples 0.892 Ankara 0.892
Boston 0.892 London 0.891 Copenhagen 0.891 Baghdad 0.891
Montreal 0.889 Amsterdam 0.889 Kampala 0.888 Buenos Aires 0.887
Kuala Lumpur 0.887 Monterrey 0.886 Daejeon 0.884 Porto Alegre 0.884
Palembang 0.883 Seoul 0.882 Pune 0.881 Johannesburg 0.881
Kuwait City 0.881 Hiroshima 0.88 Madrid 0.879 Chicago 0.878
Guatemala City 0.876 Izmir 0.876 Gwangju 0.875 Daegu 0.875
Osaka 0.874 Medellin 0.869 Rio de Janeiro 0.868 Toronto 0.868
Brasilia 0.866 Kiev 0.866 Manchester 0.865 San Francisco 0.864
Sendai 0.864 Caracas 0.864 Singapore 0.863 Santiago 0.863
Nairobi 0.862 Dublin 0.859 Busan 0.858 Tokyo 0.858
Kigali 0.857 Bamako 0.856 Los Angeles 0.855 Durban 0.854
Las Vegas 0.852 Campinas 0.849 Damascus 0.847 Cape Town 0.844
Melbourne 0.843 Stockholm 0.842 Ottawa-Gatineau 0.84 Calgary 0.838
Sydney 0.836 Cleveland 0.831 Miami 0.83 Baltimore 0.829
Pittsburgh 0.827 Memphis 0.826 Brisbane 0.826 Tampa 0.817
Minneapolis 0.816 Phoenix 0.816 Vancouver 0.815 Detroit 0.814
Atlanta 0.814 Dallas 0.814 Washington 0.813 Houston 0.812
San Diego 0.812 Austin 0.811 Salt Lake City 0.81 Orlando 0.807
Columbus 0.806 Sacramento 0.806 Seattle 0.803 Helsinki 0.803
Hong Kong 0.803 Fort Worth 0.799 Portland 0.798 Auckland 0.798
San Antonio 0.794 Kansas City 0.793 Denver 0.791 Raleigh 0.789
Cincinnati 0.786 Charlotte 0.771

Supplementary Table 4: Values of Φ for the set of global cities studied.
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Supplementary Figure 8: Flow-hierarchy of cities using the OECD definition of functional urban areas
compared to a US Core Based Statistical Areas, b Atlas of Urban Expansion and c the alternative
definition which includes all spatially adjacent cells.
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Supplementary Figure 9: Relation between Φ calculated with the original S2 cells and grids of larger size
in US cities. The cell sizes are a 2 km x 2 km, b 3 km x 3 km and c 4 km x 4 km.

Dependence on boundary effects

It has been shown that various city metrics and its connection to urban indicators are strongly affected
by the definition of city boundaries [4, 17, 18]. In order to check for the robustness of Φ we next compute
the flows for different definitions of the boundary as discussed in Sec. Supplementary Note 1:.

Supplementary Fig. 8 compares the values of Φ computed from the OECD definition of boundaries
against three alternative definitions: CBSA’s in US cities, the ATLAS definition, and the definition based
on the continuity of the cells. In all three cases, there is a strong level of agreement between the different
variants of Φ . This indicates that the characterization of cities boundaries relatively stable and the
metric is robust to different definitions of what constitutes a city. Note that for all figures presented in
the manuscript we employ the OECD definition of boundaries.

Additionally, as a further verification, we map the Location History data into grids of progressively
lower resolution in Supplementary Fig. 9 to check the stability of Φ across multiple spatial scales. As can
be seen, despite the (slow) increase in value, the relative ranking of the cities is maintained indicating a
robust dependence.

Supplementary Note 5: Φ from commuting data

The methodology developed through this work to quantify the hierarchical organization of mobility flows
is general and can be applied to any dataset. In Supplementary Fig. 10, we show the comparison between
Φ obtained from the Location History dataset and its counterpart measured from commuting data.
This data at block level was obtained from the US census (https://lehd.ces.census.gov/data).
Despite a light correlation, the differences between Φ measured from both dataset are large, which implies
that the commuting mobility displays a different organization. Moreover, the mobility of commuters
seems to be, in general, less hierarchical than the overall mobility of citizens.

To obtain further insights, we investigate the spatial distribution of hotspot levels in New York City
using the Location History dataset and commuting (Supplementary Fig. 11). A first observation is that

Hierarchical organization of urban mobility and its connection with city livability
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Supplementary Figure 10: Relation between Φ calculated with our Location History dataset and from
the commuting in US cities

the top level hotspots are more concentrated in the case of the complete mobility. Although, in both
cases the spatial distribution is relatively similar.

Supplementary Figure 11: Comparison of the spatial distribution of hotspot levels when considering
all the urban mobility or only the commuting in New York City. Hotspot levels in New York City for
a all the mobility and b only the commuting. The colors corresponding to the hotspot levels are: red
(top ranking hotspots), orange (level 2), yellow (level 3), green (level 4) and blue (levels 5 or more).
The underground map layout is produced using Carto. Map tiles by Carto, under CC BY 3.0. Data by
OpenStreetMap, under ODbL.

To provide a more detailed comparison of both maps, we plot in Supplementary Fig. 12 the difference
between hotspot levels (Commuting - Location History). Red and orange cells correspond to places that
are of high level according to the Location History data and low respect to commuting. In the opposite
side of the spectrum, blue and dark blue are locations with high rank in commuting and low in Location
History. Yellow corresponds to cells with equivalent hotspot levels in both datasets. Blue and dark blue
cells are mainly located in the suburbs, which usually correspond to residential areas. Conversely, orange
and red cells can be identified as transportation hubs, parks or leisure centers.

These cells are top ranking hotspots in the overall mobility because they attract multitudes for
activities such as concerts, sport activities, walking, etc, that do not require a large amount of workers
in terms of servicing providing and they occur in locations as, for instance, parks, stadiums, where there
are no dense residence concentrations. Examples of this type of hotspots can be seen in Supplementary
Fig. 12b with the lake of Central park, the Mets and Brooklyn Nets stadiums. Other locations where
the overall mobility dominates over commuting are large transportation hubs. Examples include Newark
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Supplementary Figure 12: Difference between cell hotspot levels with commuting and Location History
data (a) for all New York City and (b) in a zoom in the main city districts. The underground map layout
is produced using Carto. Map tiles by Carto, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

and JFK airports and the Newark Penn Station. Other places for which the rank is higher in the case
of the overall mobility are areas of concentration of restaurants, malls and leisure centers, where there
are workers but their numbers are much smaller than that of visitors.

Finally, to confirm that transportation hubs are more likely to be located in top hotspot levels of
the Location History dataset, we calculated how many transit stops fall in the top ranking hotspots in
both datasets (Supplementary Table 5). The top level hotspots of the Location History dataset contain
almost 700 more stops than the top level commuting hotspots.

Mobility data Loc. History Commuting
Stops 2803 2135

Supplementary Table 5: Number of transit stops in top hotspot levels for commuting and Location
History data.

Supplementary Note 6: Calculation of Φ from aggregated mo-
bility models

In this section, we investigate if Φ can be effectively reproduced using trip distribution models restricting
the analysis to US cities. To do so we will use the Gravity, the Radiation and the Population-weighted
opportunities model.
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Gravity model

In its simplest formulation, the gravity model assumes the flow of people between areas i and j is
proportional to a mass parameter mi and mj (which can be the population or the total out/inflow), and
inversely proportional to the distance [19, 20]. Mathematically, this can be expressed as

Tmij ∝ mimj f(dij). (3)

The deterrence function f(dij) depends only on the distance and it usually takes the form of a power
law or an exponential. Here, we will use an exponential decay

f(dij) = e−β dij , (4)

since it has been shown that it yields better results [21]. The parameter β is fitted from the data.

Radiation model

Despite the wide use of the gravity model, it had several limitations, which led to the development of
the radiation model [22]. Here, the main variable is not distance, but the number of job opportunities
between two areas i and j. The flow of trips departing from unit i ending in area j can be written as

Tmij = mi
mimj

(mi + sij) (mi +mj + sij)
, (5)

where mi and mj are the masses as in the gravity model and sij is the number of intervening job
opportunities. The standard choice in the radiation model is that the number of jobs is equivalent to
the mass.

Population-weighted opportunities model

Nevertheless, the radiation model showed strong discrepancies at intra-urban scales. One proposal to
improve the results is the so-called population-weighted opportunities model[23], in which the main
variable is the number of job opportunities around the destination instead of the origin and can be
written as

Tmij =
mj(

1
sji
− 1

M )∑N
k 6=imk(

1
sjk
− 1

M )
. (6)

Here N is the total number of unit areas in the city, M is the total mass of the city and sji is the number
of job opportunities between j and i. As in the radiation model, the job opportunities in every cell is
proportional to the mass.

Model comparison
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Supplementary Figure 13: Comparison of the flow-hierarchy Φ calculated from trip distribution models.
Using a the population (total number of commuters) and b the outflow as input. The models compared
are the gravity, the radiation, the population-weighted opportunities and the null model described in the
main manuscript.
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We focus here on US cities and evaluate the capability of trip distribution models to reproduce the
empirical value of Φ. To do so, we use two different quantities as input for the population mi of each unit
i: the total outflow of commuters obtained from the census, and the same obtained directly from the
Location History data. Supplementary Figs. 13a and b show the comparison obtained from the models
for each inputs. In Supplementary Fig. 13a, we see that the use of the total number of commuters
as input does a poor job of reproducing the empirical values. It is important to note that most of the
previous models have been extensively studied for commuting trips at a lower spatial resolution, yet the
dataset studied here includes all types of trips.

Supplementary Figure 14: Comparison of the matrix of flows between hotspots obtained for each of the
trip distribution models using the node outflow as input. The models compared are a the gravity, b the
radiation c and the population-weighted opportunities.
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Supplementary Figure 15: Comparison of Φ obtained for the nonlinear gravity model and from the
commuting dataComparison of the matrix of flows between hotspots obtained for the nonlinear gravity
model. a Comparison of the Φ obtained for the nonlinear gravity model and the Location History
data.b Comparison of the flow-hierarchy Φ for commuting and the equivalent metric calculated from trip
distribution models. The models compared are the gravity, the radiation and the population-weighted
opportunities.

However, when we use the outflow of Location History as input (Supplementary Fig. 13a) we see a
much better correlation of the flow-hierarchy between the models and the data, with the radiation model
being the most accurate. However, no model exactly reproduces the empirical values. The stronger
non-linearities present in the radiation model foster the flows between top hotspot levels leading to a
mild overestimation of Φ, while the linear dependence on the masses in the other two models generates
comparatively less flows between high-level hotspots thus leading to an underestimation. This can be
seen in the matrices of flows between hotspots (Supplementary Fig. 14 for New York City), where the
radiation model produces a hierarchical structure that most closely matches the real structure of New
York (Figure 3b). To confirm this hypothesis we test the gravity model with a non-linearity coefficient α
in the population of the destination (Supplementary Fig. 15), finding increasingly good agreement with
with empirical values as one moves from a linear to quadratic dependence.

To complete the picture, we run the same analysis but with commuting data alone (Supplementary
Fig. 15). The results are similar to those obtained from the Location History.
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Supplementary Figure 16: Connecting Φ to population-mixing in US cities. a Average degree 〈kin〉
and b the Gini coefficient of its distribution as function of Φ. c Average weight of incoming links 〈win〉
and d the Gini coefficient of its distribution. The Gini coefficient of a distribution is given by the area
between the Lorenz curve and the diagonal, which corresponds to the Lorenz curve of an homogeneous
distribution. Correlations are measured using Pearson, Spearman and LOESS with the corresponding
explained variances denoted as R2

P , R
2
S and R2

L, (details in Supplementary Note 9). Asterisks correspond
to significance-level of regressions (one * is less than 0.05, two less than 0.01 and three less than 0.001).
Some city names appear in the plots: ATL (Atlanta), CHA (Charlotte), CHI (Chicago), HOU (Houston),
LA (Los Angeles), MIN (Minneapolis), NY (New York City) and SF (San Francisco).

Supplementary Note 7: Population mixing

We provide here an examination the level of population-mixing in our considered cities. The population-
mixing is a particularly relevant measure in social-science applications capturing levels of inequality and
accessibility [24, 25]. The metrics proposed for estimating the level of mixing aim at quantifying this
effect. A simple measure of mixing is the average incoming degree 〈kin〉 of the cells. The stronger the
connectivity between cells, the larger the likelihood of urban citizens encountering each other. A related
measure is the the average weight of the incoming links for a cell i defined as

win
i =

1

kin
i

kin
i∑

j=0

wji. (7)

The average weight, win
i , can be used to calculate the average over all the cells in the city, 〈win〉, and

in addition, we also compute the Gini coefficient for both kin
i and win

i to understand the differences in
mixing across the city. In Fig. 16, we show the dependence of these metrics on Φ for US cities, finding a
weak but monotonic and statistically significant positive trend with Φ, implying stronger levels of mixing
in more hierarchical urban areas. Correlations are measured using Pearson, Spearman and LOESS with
the corresponding variances denoted as R2

P , R
2
S and R2

L (Details in Supplementary Note 9). Similar
results are obtained when a more involved mixing metric based on entropy measures is applied (see
Supplementary Note 7 and Supplementary Fig. 16). The Gini coefficients indicate that for cities with
larger Φ, the mixing is on average more concentrated due to the more intense flows of hotspots at the
same level. While the stronger connections between hotspots facilitate population-mixing, we note that
factors such as geography and transportation infrastructure are likely to play a role.

We complete the previous results with a more elaborate metric, which aims at capturing the difference
of the incoming mobility flows in every cell i. Defining wji as the trip flow from cell j to i, we normalize
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Supplementary Figure 17: Population-mixing in US cities as a function of hierarchical structure. Average
flow entropy 〈H〉 as a function of Φ.

it by the total outflow of j, foutj , thus,

ρji =
wji
foutj

. (8)

The quantity ρji represents the fraction of trips starting in j and ending in i. Normalizing again with
respect to the trip-sources j,

pji =
ρji∑
k ρki

, (9)

yields a measure of the relevance of j as a source of trips to i. Next, we define an entropy Hi for every
cell i,

Hi =

∑kini
j=1 pji ln(pji)

ln(kini )
, (10)

where kini is the in-degree of i. The entropy can be averaged over cells to obtain 〈H〉. In Supplementary
Fig. 17, we show 〈H〉 as a function of Φ. The picture is more or less the same than the one provided in
the main manuscript, corroborating weak but statistically significant correlation between levels of mixing
and and increasing hierarchy as measured by Φ.

Supplementary Note 8: Metadata

Modal share of transport, emission of pollutants and health indicators for US
cities

• The modal share of commuting trips for all the US metropolitan areas was sourced from the census
website [26], which provides the percentage of commuting trips in terms of transportation mode.

• The smoking rate by city was obtained from [27].

• Pollutant emissions were obtained from the United States Environmental Protection Agency (US
EPA) which makes public a National Emissions Inventory (NEI) every three years. We used the
version corresponding to 2014 [28]. This inventory is at the scale of counties, which requires merging
them at the level of Metropolitan-Micropolitan areas. The total emissions for each metropolitan
area were calculated as the sum of emissions of the counties inside the metropolitan areas, and
then dividing it by the total population, to obtain the emissions per capita. The information about
which counties are included in each metropolitan area is available in [29].

• The incidence of ischemic stroke and all types of stroke, including morbidity and mortality, has been
obtained at the scale of counties was sourced from the Centers for Disease Control and Prevention
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(CDC) of the United States [30]. The aggregation procedure used is similar to the one used for the
emissions. The prevalence (cases per 104 individuals) was converted to total cases per county. This
was then aggregated for all counties in a metropolitan area and then divided by the population.
Obesity has been obtained from the same source and followed the same aggregation procedure.

• Transport and health indicators related to traffic fatal injuries have been obtained from [31].

• General mortality and mortality by age were obtained from [32].

• Mortality by chronic obstructive pulmonary disease was obtained from [33].

• Data about the location of acute care hospitals in the United States was obtained from [34].

Modal share of transport and pollutant emissions for global cities

• Modal share of transport obtained from [35].

• Greenhouse gas (GHG) emissions were obtained from the Climate Disclosure Project (CDP) [36]
where a set of worldwide cities make public their annual emissions in equivalent carbon dioxide
metric tones per capita.

• The OECD also reports CO2 emissions per capita within their defined boundaries for a large
number of cities [37] .

• Emissions of other pollutants, including NOx, obtained from the Emissions Database for Global
Atmospheric Research [38], which provides a grid map of emissions of a set pollutants. The total
emissions for each city were computed by summing up all the cells included in the city boundaries
and dividing by the population to obtain per capita emissions. The dataset and procedure is similar
to that used in [39]

Supplementary Note 9: Robustness of correlations

Metrics

Three types of correlation coefficients were used in this analysis. The first is Pearson’s r, which measures
the linear correlation between two variables, and is calculated as

rx,y =
cov(x, y)

σxσy
, (11)

where cov is the covariance, and σx (σy) is the standard deviation of the samples x (y). In a linear
regression model, the square of the Pearson correlation is the fraction of explained variance. We denote
the square of the Pearson correlation coefficient as R2

P .
The second is the non parametric Spearman correlation ρ based on rank l. Unlike the Pearson

coefficient, the Spearman is not necessarily linear as it evaluates the monotonic relation between two
variables. The formula is identical to that for r, with the replacement of x and y by their ranks lx and
ly,

ρx,y =
cov(lx, ly)

σlxσly
, (12)

We will denote the the square of the Spearman correlation coefficient as R2
S .

Finally, we employ a polynomial regression based on LOESS (locally estimated scatterplot smooth-
ing) [40, 41, 42, 43], which is a nonlinear piecewise regression; instead of fitting a concrete function it fits
a spline. We will denote this as R2

L. The p-values obtained with the LOESS regression are computed
using a F -test statistic thus,

F =
(TSSy −RSSLOESS)/(dfLOESS − 1)

(RSSLOESS)/(N − dfLOESS)
, (13)

where TSSy is the total sum of squares of the dependent variable, RSS is the residual sum of squares
obtained from the LOESS regression, N is the number of observations and df are the degrees of freedom
of the LOESS regression based on the equivalent number of parameters [44].
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US cities

We show here additional results for US cities complementing Fig. 3 in the main manuscript.

p-values for correlations reported in manuscript

Supplementary Table 6 shows the p-values obtained with the three regression techniques for the corre-
lations denoted in Fig. 3. The p-values are all below 10−3 indicated by three stars in the R2 values.
Metropolitan and micropolitan areas were filtered by population; only those cities with population > 1.4

million are shown. The sensitivity of the correlations to population threshold are indicated in Sup-
plementary Table 7 with thresholds varying between from 400000 to 2.6 million inhabitants. p-values
show that all indicators have a certain level of significance (<0.01) for all population thresholds below
2.6 million. In general the larger the cities, the stronger the correlations. We also tested the effect of
removing New York City from Fig. 3. Despite the slight drop in the correlations, it is only appreciable
in the modal shares by car and public transportation (Supplementary Fig. 18).

Method Drive M.Share PT M.share Walk M.Share NOx Emissions CO Emissions PM10 Emissions Isch. Stroke mort. Hosp. Dist. Traff. Injur.
Pearson 1.93e-05 4.11e-06 1.6e-06 2.01e-06 6.61e-05 6.95e-05 0.000288 1.48e-05 0.000117
Spearman 0.000231 8.03e-06 0.000261 8.78e-07 7.68e-06 0.000105 0.000996 2.64e-05 0.000361
LOESS 4.869e-07 9.31e-09 1.68e-07 2.56e-06 0.000147 2.28e-05 0.000341 2.25e-05 0.000899

Supplementary Table 6: Significance (p-values) for the correlations shown in Fig. 3.

0.75 0.85 0.9550

70

90

Ca
r m

od
al

 sh
ar

e 
(%

) CHAATL

CHI

MIN

SF

LA
HOU a

R2
P = 0.26**

R2
S = 0.25**

R2
L = 0.28***

0.75 0.85 0.95

10

20

30

PT
 m

od
al

 sh
ar

e 
(%

)

CHAATL

CHI

MIN

SF

LA
HOU b

R2
P = 0.32***

R2
S = 0.36***

R2
L = 0.34***

0.75 0.85 0.95

2

3

4

5

6

7

W
al

k 
m

od
al

 sh
ar

e 
(%

)

CHAATL

CHI
MIN

SF

LA

HOU c

R2
P = 0.35***

R2
S = 0.23**

R2
L = 0.43***

0.75 0.85 0.95
0.2

0.4

0.6

0.8

1.0

1.2

NO
x 

em
iss

io
ns

 p
er

 c
ap

ita

×10 2

CHA

ATL

CHI

MIN

SFLA

HOU

d

R2
P = 0.41***

R2
S = 0.51***

R2
L = 0.47***

0.75 0.85 0.95

0.25

0.50

0.75

1.00

CO
 e

m
iss

io
ns

 p
er

 c
ap

ita

×10 1

CHA

ATL
CHI

MIN

SFLA

HOU

e

R2
P = 0.31***

R2
S = 0.42***

R2
L = 0.36***

0.75 0.85 0.95

4

6

PM
10

 e
m

iss
io

ns
 p

er
 c

ap
ita

×10 4

CHA
ATL

CHI
MIN

SF
LA

HOU
f

R2
P = 0.25**

R2
S = 0.28***

R2
L = 0.40***

0.75 0.85 0.9520

30

40

50

60

IH
S 

de
at

h 
ra

te CHA
ATL

CHI
MIN

SFLA

HOU

g

R2
P = 0.25**

R2
S = 0.23**

R2
L = 0.33***

0.75 0.85 0.95

4

5

6

7

8

Di
st

an
ce

 to
 h

os
pi

ta
l

CHAATL

CHI

MIN

SF
LA

HOU

h

R2
P = 0.43***

R2
S = 0.40***

R2
L = 0.46***

0.75 0.85 0.95

4

6

8

10

Tr
af

fic
 fa

ta
l i

nj
ur

ie
s

CHA

ATL

CHIMIN
SF

LA

HOU

i

R2
P = 0.29***

R2
S = 0.29***

R2
L = 0.31***

Supplementary Figure 18: (a-c) Modal share for trips to work (%) as a function of the city flow-
hierarchy: (a) Modal share by private car, (b) by public transport (PT) and (c) by walk. (d-f) Relation
between the flow-hierarchy and the emission of pollutants: (d) NOx, (e) CO and (f) PM10 emissions
in metric tons per capita. (g-i) Flow-hierarchy and health: (g) Ischemic stroke mortality in cases per
100,000 inhabitants, (h) Average distance to closest hospital and (i) Incidence of traffic fatal injuries per
100,000 residents.
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Population Drive M.Share PT M.share Walk M.Share CO Emissions NOx Emissions PM10 Emissions PM25 Emissions Isch. Stroke mort. Hosp. Dist. Traff. Injur.
400000 -0.37*** 0.42*** 0.50*** -0.49*** -0.48*** -0.28** -0.43*** -0.24** 0.41*** -0.31***
800000 -0.51*** 0.54*** 0.61*** -0.64*** -0.59*** -0.53*** -0.60*** -0.39** 0.50*** -0.37**
1000000 -0.58*** 0.63*** 0.67*** -0.61*** -0.54*** -0.51*** -0.59*** -0.43** 0.60*** -0.48***
1200000 -0.60*** 0.64*** 0.67*** -0.63*** -0.56*** -0.50*** -0.59*** -0.44** 0.61*** -0.51***
1400000 -0.63*** 0.67*** 0.68*** -0.69*** -0.60*** -0.51*** -0.59*** -0.55*** 0.64*** -0.58***
1800000 -0.68*** 0.71*** 0.69*** -0.66*** -0.57*** -0.52** -0.56*** -0.51** 0.68*** -0.56***
2000000 -0.71*** 0.74*** 0.73*** -0.66*** -0.54** -0.47** -0.53** -0.55** 0.71*** -0.55**
2200000 -0.69*** 0.72*** 0.72*** -0.69*** -0.56** -0.49** -0.57** -0.53** 0.70*** -0.53**
2600000 -0.71*** 0.73*** 0.76*** -0.62** -0.47** -0.41 -0.48** -0.50** 0.72*** -0.66**

Supplementary Table 7: Correlations between flow-hierarchy and modal share, pollution and health
measures for different population thresholds. * p-value<0.05 , ** p-value<0.01,*** p-value<0.001

Temporal evolution of correlations

Next, we analyze the temporal evolution of the correlation of Φ with urban indicators. We aggregated
the weekly networks into months, to test the stability of correlations in time. Supplementary Table 8,
indicates that, apart from some slight variations, both r and the corresponding p-values are stable at
the monthly level.

Year Month Drive M.Share PT M.share Walk M.Share CO Emissions NOx Emissions PM10 Emissions PM25 Emissions Isch. Stroke mort. Traff. Injur. Hosp. Dist.
2016 0 -0.56*** 0.61*** 0.62*** -0.67*** -0.58*** -0.50** -0.56*** -0.51*** -0.51*** -0.64***
2016 1 -0.58*** 0.62*** 0.63*** -0.70*** -0.63*** -0.50** -0.61*** -0.51*** -0.55*** -0.63***
2016 2 -0.58*** 0.63*** 0.66*** -0.71*** -0.62*** -0.51*** -0.60*** -0.53*** -0.56*** -0.63***
2016 3 -0.61*** 0.65*** 0.68*** -0.69*** -0.60*** -0.53*** -0.61*** -0.50** -0.55*** -0.64***
2016 4 -0.61*** 0.66*** 0.70*** -0.66*** -0.57*** -0.42** -0.53*** -0.49** -0.59*** -0.65***
2016 5 -0.61*** 0.66*** 0.69*** -0.67*** -0.58*** -0.47** -0.56*** -0.53*** -0.59*** -0.64***
2016 6 -0.62*** 0.66*** 0.67*** -0.68*** -0.59*** -0.46** -0.57*** -0.58*** -0.63*** -0.61***
2016 7 -0.61*** 0.65*** 0.64*** -0.67*** -0.59*** -0.48** -0.58*** -0.58*** -0.62*** -0.60***
2016 8 -0.63*** 0.67*** 0.65*** -0.71*** -0.63*** -0.53*** -0.62*** -0.56*** -0.60*** -0.61***
2016 9 -0.67*** 0.70*** 0.71*** -0.72*** -0.64*** -0.57*** -0.62*** -0.56*** -0.61*** -0.62***
2016 10 -0.66*** 0.69*** 0.72*** -0.68*** -0.61*** -0.55*** -0.58*** -0.51*** -0.54*** -0.64***
2016 11 -0.67*** 0.69*** 0.72*** -0.68*** -0.61*** -0.57*** -0.61*** -0.53*** -0.56*** -0.64***
2016 12 -0.68*** 0.69*** 0.73*** -0.71*** -0.64*** -0.58*** -0.62*** -0.58*** -0.54*** -0.63***

Supplementary Table 8: Temporal evolution of the correlations between Φ and modal share, pollution
and health measures. The weekly networks are aggregated into groups of four weeks. The population
threshold used is 1400000 * p-value<0.05 , ** p-value<0.01,*** p-value<0.001

Connection to other transportation metrics

The relationship between Φ and the use of different transport modes is studied through the modal share
of commuting trips. Commuting, however, may not be representative of the global mobility of cities
and thus we also check the correlation with other sources of data related to transport modalities. The
Bureau of Transport Statistics (BTS) [31], provides transport data on cities including Vehicle Miles
Traveled (VMT) per capita (including length of trips) and transit trips per capita which include more
than merely commuting trips. Supplementary Fig. 19 shows the relation between both metrics and Φ,
indicating a high correlation. Similar to that seen for modal share, the VMT is anti-correlated with Φ,
with a higher number of transit trips and a smaller number of VMT per capita in hierarchical cities, and
the opposite in those with less hierarchical structure.
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Supplementary Figure 19: Relation between Φ and a vehicle miles traveled, and b transit trips per capita
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Supplementary Figure 20: Relation between Φ and exposure rate of traffic fatal injuries.

It is also important to complement the correlation of Φ and traffic fatalities, with the exposure ratio,
also available from the Bureau of Transport. The exposure ratio modifies the number of fatal injuries
by accounting for modal share. This corrects for the influence of preferred modal share in each city. As
is seen in Supplementary Fig. 20, despite a slightly weaker correlation, the statistical significance of the
relation is intact.

Relating ischemic stroke to emergency service access

In Fig. 3 we report a strong correlation between the death rate from ischemic stroke and Φ. A possible
reason for this connection might be the degree of accessibility to emergency services. We test this
hypothesis by examining the prevalence of ischemic stroke and the rate of survival. In Supplementary Fig.
21 a we plot the incidence by ischemic stroke against the flow-hierarchy showing that the correlation is
significantly lower than the displayed with mortality. Thereby, the accessibility to public health facilities
–correlated with the flow-hierarchy– plays a role in the mortality by ischemic stroke. Moreover, if we plot
the ischemic stroke survival rate (Supplementary Fig. 21 b) calculated as one minus the rate between
individuals deceased and survivors the correlation increases again despite one outlier. Overall, those
cities with a higher flow-hierarchy display a higher rate of survivors from ischemic stroke.

Comparison with population density

We observe that US cities with a higher value of Φ have also high population densities (values for each
CBSA obtained from census [26]). Supplementary Fig. 23 shows the population density as a function
of Φ; while there is a positive correlation, the density accounts for only a fraction of the information
contained in Φ (R2

P = 0.52 ). Indeed, as marked in the figure, New York and Los Angeles have comparable
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Supplementary Figure 21: Relation between Φ and a the incidence of ischemic stroke; b the rate of
survival from ischemic stroke;
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Supplementary Figure 22: Comparison between the spatial distribution of population density in Los
Angeles and New York City. The top inset shows the Lorenz curve of the distribution of population
density at the level of ZCTA. Bearing in mind that the diagonal corresponds to an homogeneous even
distribution, it is clear that the distribution of population density in New York City is much more
unequal. The map of population densities also correspond to a Los Angeles and b New York. Again
while a few areas reach the maximum value in New York, in Los Angeles they do not even reach half of
it, displaying a more homogeneous map

0.75 0.80 0.85 0.90

500

1000

1500

2000

2500

3000

Po
pu

la
tio

n 
De

ns
ity

 (in
ha

b
sq

m
i) New York

Los AngelesR2
P = 0.49***

Supplementary Figure 23: Relation between Φ and population density.

average population densities, but different values of Φ. Φ appears to capture the spatial differences in
the population densities; as depicted in Supplementary Fig. 22, Los Angeles has a more homogeneous
density, while New York has a strong peak in the core of the city (a feature captured by Φ and not found
in the raw density values).

Previous work has examined the connection between population density, mode of transport , emission
of pollutants and traffic fatal injuries [45, 46, 47, 48, 49]. We repeat the analysis shown in Fig. 3, but
now using the population density as shown in Supplementary Fig. 24. While the correlations with the
modal share of commuting, and the average distance to the closes hospital [52], is comparable to that
seen for Φ, there is a significant decrease seen for emission of pollutants and health indicators. Indeed, Φ
displays a higher ρ for all urban indicators and a higher r in 7 of the 9 urban indicators. In addition, the
regression with Φ also has higher statistical significance (p-values<0.001) for all urban indicators. The
flow-hierarchy thus contains significantly more information about the city than the population density.

Comparison with urban sprawl

The study of urban sprawl has been an active field among researchers, focusing on its quantification of
and consequences on health, environment, transport, and segregation among others. A summary of the
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Supplementary Figure 24: Results for US cities. Relation between the population density and modal
split, pollution and health. a-c Modal share for trips to work (%) as a function of the city trace: a
Modal share by private car, b by public transport and c by walk. d-f Relation between city density
and emission of pollutants: d NOX , e CO and f PM10 emissions in metric tons per capita. g-i Relation
between city density and health: g Death rate of ischemic stroke in cases per 100000 inhabitants, h
Average distance to closest hospital and i Incidence of traffic fatal injuries per 100000 residents (* p-
value<0.05 , ** p-value<0.01,*** p-value<0.001). Some city names appear in the plots: ATL (Atlanta),
CHA (Charlotte), CHI Chicago), HOU (Houston), LA (Los Angeles), MIN (Minnesota), NY (New York
City) and SF (San Francisco).
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Supplementary Figure 25: Relation between Φ and the sprawl composite index
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Supplementary Figure 26: Results for US cities. Relation between the sprawl composite index and
modal split, pollution and health. a-c Modal share for trips to work (%) as a function of the city sprawl
composite index: a Modal share by private car, b by public transport and c by walk. d-f Relation
between the sprawl composite index and emission of pollutants: d NOX , e CO and f PM10 emissions in
metric tons per capita. g-i Sprawl composite index and health: g Death rate of ischemic stroke in cases
per 100000 inhabitants, h Average distance to closest hospital and i Incidence of traffic fatal injuries
per 100000 residents (* p-value<0.05 , ** p-value<0.01,*** p-value<0.001). Some city names appear in
the plots: ATL (Atlanta), CHA (Charlotte), CHI Chicago), HOU (Houston), LA (Los Angeles), MIN
(Minnesota), NY (New York City) and SF (San Francisco).

main findings, including the quantification, causes and consequences of urban sprawl, can be found in
[50]. One of the drawbacks of computing urban sprawl is the need to gather multidimensional indices
including measures of population density and its gradient, the density of jobs, the mix of land use and
the topology of the road network. Keeping in mind this work aims to measure the hierarchical structure
of cities and not their sprawl, it is worth investigating the relation between sprawl indices and Φ, given
the latter’s observed connection with population density. One recent measure of sprawl proposed in [51]
combines density of population, mix of land use, strength of activity centers and accessibility of road
networks. Each of these features aggregate by itself several indicators so that the final composite index
includes 22 different variables.

In Supplementary Fig. 25, we plot the composite index in function of Φ finding a monotonically
increasing trend. This suggests that more compact cities are more hierarchical on average, although the
relation is far from deterministic given R2

P = 0.58. The effects of urban sprawl in transport, emission
of pollutants and health have been studied in several works [50], and here we assess how its correlation
with the urban indicators studied in this work. In Supplementary Fig. 26, we plot the composite index
against the measures studied in Fig. 3 of the main text. In most cases the correlations are comparable,
with slightly better results for the composite index in the modal split but better results for the flow-
hierarchy in emission indices. Similarly The p-values obtained (Supplementary Table 9) are similar to
those obtained for Φ (Supplementary Table 6). While both indicators contain similar information on
transport, emission of pollutants and health in cities, the advantage afforded by Φ is that it is directly
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measurable from mobility data, without the need to aggregate 22 variables. Furthermore, it can be easily
updated in time.

Method Drive M.Share PT M.share Walk M.Share NOx Emissions CO Emissions PM10 Emissions Isch. Stroke mort. mortality Hosp. Dist. Traff. Injur.
Pearson 1.32e-07 1.51e-07 4.35e-07 0.000595 0.00342 0.00704 0.000161 2.25e-05 9.45e-07
Spearman 1.22e-05 4.67e-06 3.11e-05 0.00339 0.00974 0.0526 0.00118 6.4e-05 8.45e-07
LOESS 8.242e-10 2.3e-10 4.11e-07 0.00347 0.0203 0.0442 0.00108 4.54e-05 3e-06

Supplementary Table 9: Significance (p-values) for the correlations shown in Supplementary Fig. 26.

Multivariate analysis of flow hierarchy with socioeconomic and behavioral factors

We have thus far, examined the direct relationship between Φ and the urban indicators, yet the latter
might also be influenced by other socioeconomic variables and behavioral factors. To check for this, we
conduct a multivariate analysis of Φ with health, environmental and modal share indicators, taking into
account other variables that might be relevant to test its significance.

We start with the modal share of transport. Reasonable choices for factors influencing this are the
GDP per capita and the percentage of poverty. While the GDP captures the overall economic situation of
a city, the percentage of poverty mirrors economic inequality. Our analysis indicates that the percentage
of poverty turned out to be statistically insignificant. The results for GDP and Φ are shown for the
modal share by car, public transportation and walking in Supplementary Tables 10, 11 and Table 12
respectively. In the modal share by car, both GDP and the Φ are highly significant (p-value<0.001)
and explain together half of the total variance. In the case of modal share by public transportation and
walking, Φ is more significant than the GDP.

Next we examine the emission of pollutants, again using the GDP per capita and the poverty-
percentage as additional variables. In contrast to transport, poverty is significant for emissions. The
multivariate analysis for the emissions of CO, NOx,PM10 and PM25 are shown in Supplementary
Tables 13, 14, 15 and 16 respectively. The flow-hierarchy Φ is significantly correlated with the emissions
of all the pollutants even when considering economic variables, among which the poverty-percentage is
the most correlated. For PM10 and PM25 emissions, the GDP per capita appears to be uncorrelated.

As shown in the main manuscript, Φ is connected to health indicators. It is thus worth examining
what the extent of this connection is when accounting for other standard variables that are related to
health. We start by checking if the distance to the closest hospital, as discussed in the main text, is
influenced by the economic situation of cities. Supplementary Table 17 indicates no discernible connection
between economic variables with the spatial distribution of healthcare facilities. For spatial distribution
of hospitals or the walkability of cities, we check the influence of the percentage of the population that
engages in binge drinking, the smoking rate, the percentage of population with obesity and economic
variables, the GDP per capita and the percentage of poverty. In all cases we perform a first analysis with
all the variables and discard some of them depending on the correlation obtained and its significance. We
start the analysis with the most general health indicator, mortality, specifically, age dependent mortality,
observing a correlation with the mortality between 0 and 5 years old and between 5 and 25 when other
possible variables related taken into account.

Other variables that are correlated according tare the smoking percentage in the mortality between
0 and 5 years old, and the GDP per capita in the case of ages between 5 and 25 years. We show in
Supplementary Tables 18 and 20 the analysis when all variables are considered for the mortality between
0 and 5 and between 5 and 25 respectively, and in Supplementary Tables 19 and 21 the final analysis
considering only the most significant ones in each case. While the smoking percentage can be relevant in
the early stages of live, as kids are more susceptible to smoke in the environment, it is not so relevant as
they grow up and become less sensible to the smoke. On the contrary, as kids grow up, the leading causes
of death are, among others, suicide and homicide, which are susceptible of being related to economic
variables such as the GDP per capita. When controlling that variables, the flow-hierarchy appears to be
significant in both cases. While in the window between 0 and 5 years old, the flow-hierarchy explains
10% of the variance explained by smoking, it explains 9% of the total variance of mortality between 5
and 25 years old.

Beyond the overall mortality, we also find correlations with other causes of death, likely a consequence
of the better accessibility to healthcare facilities. Supplementary Tables 22 and 23 show the multivariate
analysis for the mortal Chronic obstructive pulmonary disease (COPD) mortality when considering all
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possible variables and only the most significant respectively. As one could expect, the other relevant
variable apart from the flow-hierarchy is smoking rate. Despite the high correlation with the smoking
rate, the flow-hierarchy also explains part of the variance, concretely more than one third of the variance
explained by the smoking rate. In Supplementary Tables 24 and 25 we show the analysis of the mortality
by all type of strokes when considering all variables or only the most relevant ones. As it can be seen,
the flow-hierarchy is also correlated when controlling other variables, explaining one fourth of the total
variance.

Similarly, we show in Supplementary Tables 26 and 27 the multivariate analysis for the ischemic
stroke mortality, in which the flow-hierarchy is higher equally significant, and explains 10% of the total
variance. Interestingly more, the correlation with the ischemic stroke only appears in the death rate,
being not correlated with the hospitalization as can be seen in Supplementary Table 28. This reinforces
the connection between the death rate and the accessibility to hospitals, as the correlation is not with
the prevalence but with the survival. Finally we perform a multivariate analysis with the mortality by
transport fatalities, showing that the flow-hierarchy together with the GDP are significantly correlated
with it. Apart from the effect of an easier access to healthcare facilities, the modal share in cities also
plays a role in this case. As can be seen in Supplementary Tables 30 and 29, the flow-hierarchy explains
one fifth of the total variance of the mortality by fatal injuries in any mode of transport.

Supplementary Table 10: Multivariate analysis of the modal share by car

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 320.0161 0.216 1.0 14.946 0.000445***
GDP 389.2594 0.263 1.0 18.180 0.000139***
Residuals 770.8138 0.521 36.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 11: Multivariate analysis of the modal share by public transportation

Variable Sum Sq Variance Df F value P-value

GDP 176.2129 0.183 1.0 12.326 0.001222**
Flow-hierarchy 273.7042 0.284 1.0 19.145 0.000099***
Residuals 514.6638 0.534 36.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 12: Multivariate analysis of the modal share by walking

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 11.6408 0.303 1.0 20.984 0.000054***
GDP 6.8497 0.178 1.0 12.348 0.001211**
Residuals 19.9705 0.519 36.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In Tables 24 and 25 we show the analysis of the mortality by all type of strokes when considering all
variables or only the most relevant ones. As it can be seen, the flow-hierarchy is also correlated when
controlling other variables, explaining one fourth of the total variance.
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Supplementary Table 13: Multivariate analysis of the Emissions of CO

Variable Sum Sq Variance Df F value P-value

GDP 3.214E-03 0.208 1.0 13.960 0.000664***
Perc. of poverty 3.161E-03 0.205 1.0 13.732 0.000725***
Flow-hierarchy 9.971E-04 0.065 1.0 4.331 0.044803*
Residuals 8.058E-03 0.522 35.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 14: Multivariate analysis of the Emissions of NOx

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 2.296E-05 0.134 1.0 10.341 0.002799**
GDP 3.449E-05 0.201 1.0 15.533 0.000370***
Perc. of poverty 3.620E-05 0.211 1.0 16.305 0.000280***
Residuals 7.771E-05 0.453 35.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 15: Multivariate analysis of the Emissions of PM10

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 2.481E-08 0.086 1.0 4.470 0.041687*
GDP 3.246E-08 0.113 1.0 5.847 0.020941*
Perc. of poverty 3.651E-08 0.127 1.0 6.579 0.014767*
Residuals 1.943E-07 0.674 35.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 16: Multivariate analysis of the Emissions of PM25

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 4.953E-09 0.072 1.0 3.565 0.067324
GDP 4.908E-09 0.072 1.0 3.532 0.068532
Perc. of poverty 1.007E-08 0.147 1.0 7.249 0.010812
Residuals 4.863E-08 0.709 35.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 17: Multivariate analysis of the average distance to the closest hospital

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 6.482E+00 0.337 1.0 17.823 0.000164
GDP 1.768E-02 0.001 1.0 0.049 0.826771
Perc. of poverty 1.045E-03 0.000 1.0 0.003 0.957566
Residuals 1.273E+01 0.662 35.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Supplementary Table 18: Mortality age 0-5 (all variables)

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 6.681E-03 0.046 1.0 2.230 0.146562
Obesity 1.805E-02 0.124 1.0 6.023 0.020598*
GDP 9.333E-05 0.001 1.0 0.031 0.861183
Perc. of poverty 2.584E-03 0.018 1.0 0.863 0.360966
Smoking 2.228E-02 0.153 1.0 7.437 0.010902*
Alcohol 4.005E-03 0.027 1.0 1.337 0.257390
O3 concen. 1.516E-03 0.010 1.0 0.506 0.482782
CO concen. 6.581E-03 0.045 1.0 2.196 0.149522
NO concen. 4.890E-05 0.000 1.0 0.016 0.899257
SO concen. 1.288E-05 0.000 1.0 0.004 0.948184
Residuals 8.390E-02 0.576 28.0

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 19: Mortality age 0-5 (significant variables)

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 2.400E-02 0.069 1.0 6.082 0.018550*
Smoking 1.809E-01 0.521 1.0 45.850 6.6E-08***
Residuals 1.421E-01 0.409 36.0

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 20: Mortality age 5-25 (all variables)

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 3.216E-02 0.117 1.0 4.832 0.036364*
Obesity 8.740E-03 0.032 1.0 1.313 0.261507
GDP 1.874E-03 0.007 1.0 0.282 0.599865
Perc. of poverty 6.529E-03 0.024 1.0 0.981 0.330422
Smoking 4.332E-03 0.016 1.0 0.651 0.426558
Alcohol 9.499E-03 0.035 1.0 1.427 0.242224
O3 concen. 8.777E-04 0.003 1.0 0.132 0.719215
CO concen. 1.107E-02 0.040 1.0 1.663 0.207707
NO concen. 1.074E-02 0.039 1.0 1.614 0.214413
SO concen. 1.646E-03 0.006 1.0 0.247 0.622811
Residuals 1.863E-01 0.681 28.0

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Supplementary Table 21: Mortality age 5-25 (significant variables)

Variable Sum Sq Variance Df F value P-value

GDP 1.492E-01 0.326 1.0 19.921 0.000076***
Flow-hierarchy 3.943E-02 0.086 1.0 5.264 0.027711*
Residuals 2.696E-01 0.588 36.0

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 22: Mortality by COPD (all variables)

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 7.611E+01 0.024 1.0 1.234 0.276045
Obesity 1.676E+01 0.005 1.0 0.272 0.606206
GDP 3.235E+02 0.100 1.0 5.246 0.029734*
Perc. of poverty 1.957E+02 0.060 1.0 3.173 0.085738
Smoking 6.285E+02 0.194 1.0 10.192 0.003471**
Alcohol 1.161E+02 0.036 1.0 1.882 0.181005
O3 concen. 6.106E+00 0.002 1.0 0.099 0.755345
SO concen. 7.335E+01 0.023 1.0 1.189 0.284755
NO concen. 9.871E+00 0.003 1.0 0.160 0.692143
CO concen. 6.249E+01 0.019 1.0 1.013 0.322745
Residuals 1.727E+03 0.534 28.0

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 23: Mortality by COPD (significant variables)

Variable Sum Sq Variance Df F value P-value

Smoking 1.814E+03 0.353 1.0 24.869 0.000016***
Flow-hierarchy 7.041E+02 0.137 1.0 9.651 0.003681**
Residuals 2.626E+03 0.510 36.0

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Supplementary Table 24: Mortality by all type of strokes (all variables)

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 4.193E+02 0.164 1.0 6.070 0.020154*
Obesity 1.213E+01 0.005 1.0 0.176 0.678410
GDP 2.658E+00 0.001 1.0 0.038 0.845893
Perc. of poverty 1.558E+01 0.006 1.0 0.226 0.638494
Smoking 2.614E+01 0.010 1.0 0.378 0.543392
Alcohol 1.410E+01 0.006 1.0 0.204 0.654843
O3 concen. 1.135E+01 0.004 1.0 0.164 0.688242
CO concen. 2.276E-01 0.000 1.0 0.003 0.954630
NO concen. 1.135E+02 0.044 1.0 1.643 0.210361
SO concen. 4.595E+00 0.002 1.0 0.067 0.798364
Residuals 1.934E+03 0.757 28.0

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 25: Mortality by all type of strokes (significant variables)

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 7.225E+02 0.218 1.0 11.189 0.001933**
Obesity 2.618E+02 0.079 1.0 4.054 0.051591
Residuals 2.325E+03 0.703 36.0

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 26: Mortality by ischemic stroke (all variables)

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 6.078E+01 0.089 1.0 3.987 0.055647
Obesity 1.620E+02 0.237 1.0 10.627 0.002925**
GDP 6.234E+00 0.009 1.0 0.409 0.527689
Perc. of poverty 6.982E+00 0.010 1.0 0.458 0.504112
Smoking 2.551E-01 0.000 1.0 0.017 0.898000
Alcohol 1.689E-01 0.000 1.0 0.011 0.916911
O3 concen. 8.176E+00 0.012 1.0 0.536 0.470045
SO concen. 3.602E-02 0.000 1.0 0.002 0.961572
NO concen. 1.020E+01 0.015 1.0 0.669 0.420173
CO concen. 4.692E-01 0.001 1.0 0.031 0.861988
Residuals 4.268E+02 0.626 28.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 27: Mortality by ischemic stroke (significant variables)

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 1.133E+02 0.096 1.0 8.552 0.005938**
Obesity 5.933E+02 0.501 1.0 44.788 8.34E-8***
Residuals 4.769E+02 0.403 36.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Supplementary Table 28: Hospitalization by ischemic stroke (significant variables)

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 0.495 0.00580 1 0.6641 0.4205
Obesity 58.025 0.67961 1 77.7732 1.596e-10 ***
Residuals 26.859 0.31458 36
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 29: Mortality by transport fatalities (all variables)

Variable Sum Sq Variance Df F value P-value

Flow-hierarchy 4.311E+01 0.274 1.0 13.052 0.001025**
Obesity 2.783E-01 0.002 1.0 0.084 0.773453
GDP 5.495E+00 0.035 1.0 1.664 0.206329
Perc. of poverty 1.269E+00 0.008 1.0 0.384 0.539680
Smoking 1.306E+00 0.008 1.0 0.396 0.533845
Alcohol 1.925E-02 0.000 1.0 0.006 0.939621
Residuals 1.057E+02 0.672 32.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table 30: Mortality by transport fatalities (significant variables)

Variable Sum Sq Variance Df F value P-value

GDP 6.153E+01 0.281 1.0 20.153 0.000071***
Flow-hierarchy 4.717E+01 0.216 1.0 15.447 0.000369***
Residuals 1.099E+02 0.503 36.0
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Hierarchical organization of urban mobility and its connection with city livability



A. Bassolas et al. 34

0.80 0.85 0.90
Φ

0

20

40

60

80

100

G
H

G
 e

m
is

si
o
n
s 

(t
o
n
s 

p
e
r 

ca
p
it

a
)

a Africa

Americas

Asia

Europe

Oceania

0.80 0.85 0.90
Φ

0

5

10

15

20

25

30

35

N
O

x
 e

m
is

si
o
n
s 

(t
o
n
s 

p
e
r 

ca
p
it

a
)

b Americas

Asia

Europe

Oceania

0.80 0.85 0.90
Φ

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

M
o
d
a
l 
sh

a
re

 b
y
 P

T

c Africa

Americas

Asia

Europe

Oceania

Supplementary Figure 27: Relation between the flow-hierarchy, modal split and pollution averaged per
continent. (a) Modal share as a function of the city flow-hierarchy, (b) Greenhouse gas emissions per
capita in equivalent metric tons of CO2, (c) NOX emissions per capita.
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Supplementary Figure 28: Relation between Φ and CO2 emissions per capita.

Worldwide cities

Here, we show additional results for worldwide cities. In Supplementary Fig. 27, we compare Φ, averaged
over continents, to emissions and modal share of transport. The OECD also provides an estimation of
CO2 emissions in a subset of cities. In Supplementary Fig. 28, we show the correlation between the
flow-hierarchy and the emissions of CO2, observing a smaller but still significant correlation. Despite
a small group of outliers, the majority of cities are anti-correlated. with a negative correlation. More
hierarchical cities have smaller emissions of CO2.
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