Supporting Information (SI)

Tracing microplastics in aquatic environments based on sediment analogies

Kristina Enders, Andrea Käppler, Oliver Biniasch, Peter Feldens, Nicole Stollberg, Xaver Lange, Dieter Fischer, Klaus-Jochen Eichhorn, Falk Pollehne, Sonja Oberbeckmann and Matthias Labrenz

Files in this SI Appendix: Text S1 to S3, Figures S1 to S4, Tables S1 to S3

Text S1. Composition and distribution of MP categories

Paint resins. Paint resin distribution was subject to great fluctuations and local hotspots appear with highest abundances in the Alter Strom of $210 \pm 69 \text{ kg}^{-1}$ DW. The background level of paint outside the hotspot areas can be described as relatively constant and ranges between 0 to 10 kg^{-1} DW. Paint resins were grouped according to most frequently appearing categories. Alkyd resin (which incorporates acrylic resins as they are often applied in combination and also exhibit spectral similarities) comprising 90% of all measured paint resin particles, was by far the most dominating category. Polyurethane (PU) resin was a separate group with a percentage frequency of 2%. PU-alkyd combinations (urethanisied alkyds) were common and classified as alkyd. With 6%, epoxy resins were the second most common group. Slightly less than 2% could not be clearly assigned to any of the above. However, spectral bands showing indications of paint resin origin and the presence of typical morphological features were deemed sufficient criteria to include these particles as paint resins.

PS beads. PS beads appeared in a very patchy distibution pattern, only at station S1, S2 and S5 ranging from 24 ± 21 to 317 kg^{-1} DW. For some PS beads found at station S2, very high spectral quality with correlation scores between 80% and 97% enabled a precise allocation as either sodium polystyrene sulfonate (SPSS) or calcium polystyrene sulfonate (CPSS), both being ionomers. This revealed their identity as ion exchangers. For these PS beads, a colour gradient from transparent to orange to brownish to black and sizes approximating 500 to 900 μ m were detected. Station S1 solely contained opaque non-transparent beads that matched with pure PS within a slightly broader size range of 500 to 1100 μ m. A mixture of both types along with polystyrene divinylbenzene (PS-DVB) occurred very abundantly, with 317 kg⁻¹ DW recorded at station S5 (Fig S1). Due to the high numbers of PS beads and the occurrence of spectral masking, only subsets were spectroscopically examined (N_{spectra}, see Fig. S1). Others were identified based on identical morphological features wherefore relative abundances of the PS bead species were not ascertainable. In some cases, clear identification was limited either due to the masking by foreign spectra of water or other inorganic residues. It is not unusual that ion exchangers have a high moisture retention⁴⁸, which might explain this spectral overlay as well as the different degrees of softness found. Depending on the manufacturer and age the crosslinkage and water load of the ion exchangers can vary vastly and as a result its density. Therefore an accurate specification of the density cannot be made. Since the basis polymer is PS, they were categorised accordingly. This assumption is acceptable as for the latter correlation analysis no differentiation between the different HD polymers was made.

Ordinary polymers. Ordinary polymers were most abundant at station S3, approximately 200 m downriver past the wastewater treatment plant (WWTP), amounting to 93 kg⁻¹ DW. Also, the two stations S4 and S5 reached elevated numbers in both particles and fibres of 19 kg⁻¹ DW and 9 to 10 kg^{-1} DW, respectively, compared to all other Warnow samples. In contrast to LD, HD ordinary polymer numbers dropped quickly after station S3. Apart from this elevated region, numbers of ordinary polymers remained relatively low between 4 to 9 kg⁻¹ DW within the estuarine transect and only 1 kg⁻¹ DW within the Baltic Sea opening past the estuary (S8, S9). Fibres found in the Arkona basin fibres by polymer composition showed indication of maritime sources: PA, the material most fishing ropes and nets are made of. Included in this group is the high tech fabric poly paraphenylene terephthalamide (aka Kevlar) which finds many applications in the marine sector due to its thermal and fire resistance and lightweight strength. Further, acrylates (acryl) for fishing ropes and PAN primarily found as copolymer also has various marine applications (sails, fishing rods).

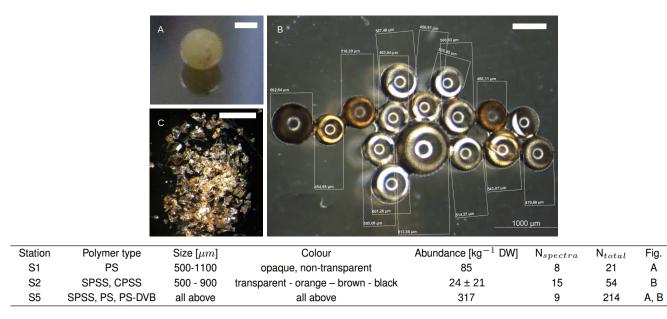
Text S2. Contamination control

Results. Controls taken alongside the sediment trap samples only contained cellulose fibres (resulting from a heavy usage of paper towels in the laboratory) and no plastic polymers. Additionally, the sediment trap control bottle from the field contained no plastic in the analysed size fraction, giving an indication of a contaminant-free work flow. By contrast, the sediment sample control representing the MPSS passage revealed three blue fibres comprised of polyesters (PET). PET fibre abundances found in the Warnow sample set correlate significantly with overall fibre abundances (r = 0.71, p = 0.02) suggesting that contamination of these PET fibres is marginal, as an otherwise randomised or constant background value is expected. Moreover, the likelihood to find PET fibres among sediment-related samples is generally rather high, as it is a HD polymer (1.37 g cm⁻³) and among the major polymer types produced⁶⁶. Furthermore, their coinciding appearance with other fibres, especially at S5 with high PET numbers of 15 kg⁻¹ DW, as well as highest values in the Alter Strom, indicate a rather low contamination level. The widespread occurrence of PET in the sample set, conversely, usually within the same colour regime (transparent- blue - black) can be interpreted as an indicator of contamination. As the limited number of controls do not allow for a quantitative assessment of

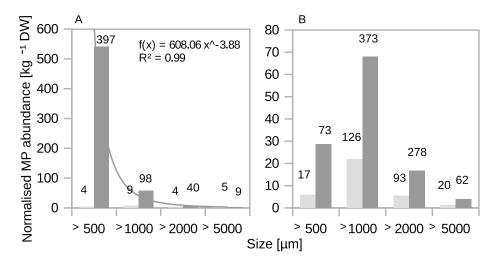
contamination, a conservative interpretation requires an entire exclusion of PET fibres from the final results. This includes the data from the sediment trap samples as the surrounding conditions (operators, laboratory facility) did not change and air-born sources are most probable. Although the purification process of the sediment trap samples included less intensive chemical treatment, PET appeared frequently across the samples sets, with more than half (Akrona basin, $n_{PET fibre} = 17$) or all (Gotland basin, $n_{PET fibre} = 9$) of the polymers identified being assigned to this polymer type.

A second polymer type was eliminated from the results retrospectively; PTFE. This is because the conclusion must be drawn that these MP originate from the treatment within the MPSS, as several parts, such as within the separation chamber and the outlet valve, are made from this polymer. We observed that, without exception, all PTFE particles found have the same appearance (transparent-whitish, within the same size class, morphologically similar). The low but non-correlated and yet widespread occurrence throughout the sediment samples (including Arkona basin sediment sample) and absence in the sediment trap samples which did not undergo the MPSS treatment strengthens an MPSS-associated PTFE contamination. The pH adjustment of the sodium polytungstate solution was done in a Schott flask with a PTFE screw cap which was subsequently refilled into the MPSS. Abrasion of PTFE particles is possible. Although, the sodium polytungstate solution has a lower density than average PTFE (2.1 - 2.3 g cm⁻³), surface tension effects could lead to the flotation, and consequent retrieval, of these small particles⁶⁷.

Contamination prevention and controls - Methods. To comply with requirements of quality assurance, both the application of control samples and best practice contamination prevention measures throughout both lab and field work were ensured. A cellulosic laboratory coat and nitrile gloves were worn at all times. Prior to use, all instruments and vials were sanitised with tap water and rinsed with deionised and micro-filtrated water (MilliQ, $0.2 \mu m$). Where possible prefiltered 70% ethanol was used for decreasing the water drops surface tension in which plastic particles or fibers potentially could remain. Sieves were additionally ultra sonificated (up to three times for 10 minutes). Frequently used metal and glassware were flamed. Filtration measures were undertaken within a laminar flow chamber in order to avoid air-born contamination. During microscopy, petri dishes were kept closed and the Bogorov chamber was covered with aluminum foil while awaiting further analysis.


The sodium polytungstate solution was recycled each time by filtration through a 15 μm gaze, ensuring that the density separation solution was free of contamination within the detection limit. Given the used separation density, flouropolymeric compounds such as polytetrafluorethylen (PTFE, 2.2 gcm⁻³) is not accounted for as the density would need to be increased significantly. The application of PTFEs as coatings of containers, hoses and sealings, bears the potential for unknown systematic contamination, as was the case in the present study. There are multiple reasons for excluding PTFE from particle-based study designs. Production volumes are proportionally low and PTFE MP probably enters the environment preferentially in the lower micrometer or nanometer size range since it has become highly relevant as nano-coatings⁶⁸. The omnipresence of perfluorochemicals (PFCs) in nature along with the ecotoxicological risk have been studied extensively. Specific mass-based detection methods of PFCs already exist⁶⁹.

In general the use of plastic items was avoided where possible. Restrictions are to be noted during sediment trap sampling, as the aperture is partly made out of plastic or coated with paint. The contamination risk for particles > 500 μm is, however, calculable as MP collection bottles closed underwater and were not opened until analysis. It is expected that any system-caused MP contamination would be identifiable by a correspondence between the characteristics of any used and found particles or a repetitive occurrence of the same kind of particles throughout the sample set.


Control steps accounting for contamination during the processing procedures were taken according to the same procedures as the sediment samples or sediment trap samples were processed. In parallel to the sediment samples ($n_{Warnow} = 14$; $n_{Arkona+Gotland} = 2$), a total of three controls, where two were covering the MPSS treatment and another one the exposure time during the visual identification process in the Bogorov chamber, were acquired. The degree of contamination during the sediment trap sample processing ($n_{Arkona+Gotland} = 2$ with 18 - 20 subsamples each) was evaluated by means of three controls in total. One separate collection bottle in the sediment trap set-up accounted for possible contamination during this part of the field sampling process. The bottle was filled with MilliQ water while sampling time and bottle lid opening and closing movements resembled the actual sampling. In this way, potential abrasion from the bottles entirely comprised of PE would be detected.

Text S3. Methodological remark on density separation threshold

The crux of MP field studies is the missing standardisation of MP isolation techniques. Density separation is most commonly used, however, setups greatly vary and the critical density is often below that of many HD polymers which prevents a detailed distribution analysis of the full spectrum of synthetic polymers⁷⁰. The authors consider a density separation threshold of 1.8 g cm⁻³ as scientifically reasonable, as it includes the full spectrum of commonly excepted plastic polymers. It also accounts for the majority of dried paint resins²⁹, which were calculated to posses an average specific gravity of approximately 1.6 g cm⁻³. The chemical composition of paint resins: polymer base resin, pigments and additives, resembles that of commodity plastics with a larger proportion of heavy pigments. Due to the higher loads of heavy metals, the inclusion of paint resins into MP studies is highly relevant, particularly from an ecotoxicological perspective⁴⁴.

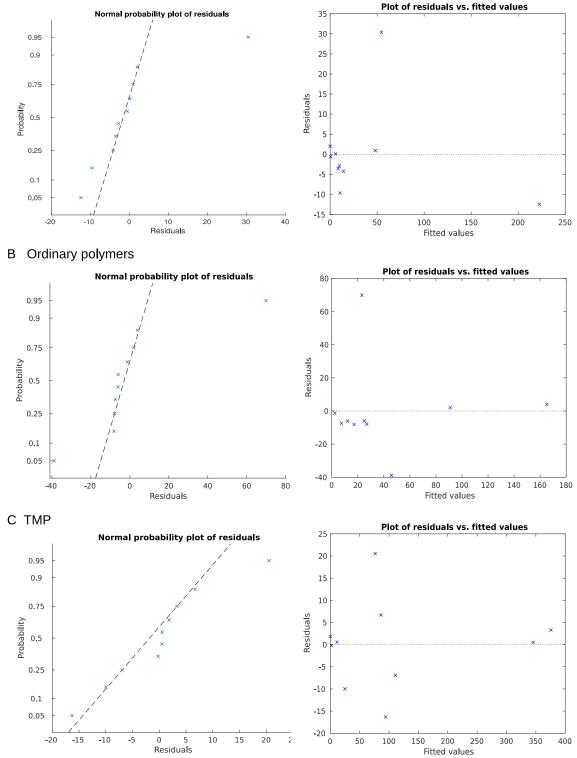


Fig. S1. Specifications on the identified group of PS beads, displayed via a selection of images (A-C) and details per station in the table beneath. A - opaque PS bead, B - ion exchanger beads based on sulfonated PS in different variations in size and colour, C - disintegration of ion exchanger bead into particles of $< 50 \ \mu m$ caused by the exertion of pressure of the ATR-FTIR crystal. This was likely fostered by physical degradation of ion exchangers for instance by oxidation⁴⁸. Scale bars equal 500 μm .

Fig. S2. Normalised size distribution of HD (dark grey) and LD polymers (light grey) in (A) the Warnow estuary and (B) the Alter Strom. Absolute number counts n of measured MP are shown above the bars.

A Paint resins

Fig. S3. Plots showing the equality of residual variances and normality of residuals of (A) paint resins, (B) ordinary polymers and (C) TMP. Residual analysis ensured that GLM assumptions of homoscedasticity and normality hold.

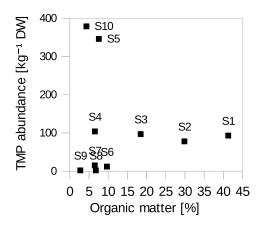


Fig. S4. Organic matter against TMP abundance.

Table 1. Comparison of systemic parameters of MP studies providing data on sediment grain size distribution. For "n.a." no or imprecise data was available. Significant correlations are marked with asterisks. No correlations are marked with minus with the suspected reasons in italic type. More studies provided data showing no or very weak correlations^{19–21}, however, study design and thus reasons for a low fit were comparable to the two listed. Note that correlation coefficients (r) were calculated based on log transformed MP data, as shown in Fig. 4E.

	Strand2013 ¹⁴	Vianello2013 ¹⁶	Ballent2016 ⁹	present	Alomar2016 ¹	Renzi2018 ¹⁸	
Min. Size [µ m]	38	32	63	500	63	400	
Location	Baltic, North	Lagoon of	Lake Ontario,	Warnow es-	Mallorca,	Adriatic Sea,	
	Sea, DK	Venice, IT	CA	tuary, DE	ES	IT	
Compartment	coastal, ma-	coastal	limnic	coastal	coastal	coastal, ma-	
	rine					rine	
Polymer analysis	partly	yes	yes	yes	no	по	
Max. density [g cm $^{-3}$]	1.2	1.2	1.5	1.8	n.a.	1.2	
Number of samples	22	10	50	10	6	7	
Sediment analysis	sieve&weigh	sieve&weigh	sieve&weigh	Laser-	sieve&weigh	sieve&weigh	
technique				diffraction			
Spatial connectivity	low	high	medium	high	medium	high	
Temporal connectivity	n.a.	high	low	high	medium	high	
Sediment variation	high	high	high	high	low	low	
r	0.48*	0.86*	0.68*	0.86*	-	-	
p-value	0.02	0.001	< 0.001	0.001	-	-	

Table 2. Specification on sampling stations in the Baltic Sea, both sediment as well as sediment trap samples.

Sediment samples	Date of sampling	Latitude	Longitude	Depth [m]
Arkona basin	02/09/2015	54.914 N	13.838 E	45
Gotland basin	22/08/2015	57.307 N	20.077 E	248
Sediment trap samples				
Arkona basin	12/2012-01/2014	54.884 N	13.862 E	35
Gotland basin	02/2013-11/2013	57.305 N	20.077 E	196

Table 3. Predictor variables, potential MP source terms and environmental parameters, for GLM test including measurements, parameter definition, tools used and references of data acquirement per station (St.).

St.	dist_WW1		dist_marina	pop_density	num_tourism	_1000m	dist_rain		num_metal		OM [%]	TOC/N	CaCO ₃	grain size	depth	max_shear	SAL
	[m]	[m]	[m]	_1000m [#]	[#]		water[m]	water[m]	_1000m[#]	_1000m[#]		[%]	[%]	<63µm[%]	[m]	stress[Nm ⁻²]	[PSU]
S 1	5220	2240	1428	10961	75		223	2700	1	0	41.3	14.3	8.7	65.9	1.5	-	1
S2		2440	85	17298	109		97	233	4	0	29.9	14.3	11.8	48.1	2.5	0.047	2
S 3	230	2240	501	851	8		203	459	5	6	18.5	14.3	14.8	48.1	1.5	0.043	3
S4	1040	1480	43	478	9		395	1247	7	15	6.5	9.9	12.2	56.4	7.0	0.048	4
S5	2970	480	440	468	6		320	3169	6	3	7.6	9.5	38.0	57.4	1.6	0.094	4
S6	4530	2050	372	9700	33		683	4710	1	0	9.7	11.3	10.3	38.7	1.2	0.042	6
S 7	6000	3560	610	1217	4		116	6192	0	3	6.1	10.1	15.3	48.3	6.5	0.036	10
S 8	8770	8720	2373	0	0		2372	11500	0	0	6.2	9.0	9.3	29.8	3.5	0.111	12
S9	11180	7340	63	1826	11		301	9400	0	0	0.5	8.2	1.5	7.3	4.0	0.032	12
S10	0 11180	7000	1	5838	121		150	9400	1	0	10.8	8.8	12.2	95.8	3.5	0.02	11
	Distance	Distance to	Distance	Cumulative	Cumulative nu	mber of	Distance	Distance	Number	Number	TOC=TC-	TOC	Calci	Measured	Water	maximum	min.
	to the	the nearest	to the	population	typical touristi	c activ-	to near-	to near-	of metal	of in-	TIC,	divided	-um	< 1mm,	depth	shear stress	salinity
de	nearest	recycling	nearest	density of	ity points defi	ned by	est rain	est rain	industry/	dustrial	organic	by Total	carbo-	siliclastic		over one	depth av-
definition	WWTP	station	point of	the statistical	number of rest	aurants,	water	water	com-	sectors	matter	Nitrogen,	nate	sedi-		year model	eraged,
itic	within	following	the nearest	blocks that	bars, cafes, be	eer gar-	drainage	drainage	panies	within a	(OM)	averaged		ments		run (2014)	Dec
ň	the	water paths	marina	are within the	dens, fast food		point, in-	point, in-	within a	1000m	= TOC	from two					2005
	water		within	1000m radius	rants hotels, parl	ks. zoos.	cluding	cluding	1000m	radius	* 2.22,	sample					
	layer		the water	of the station	picnic sites, view		second	second	radius		averaged	replicates					
	2		layer		museums, touri	· ·	order	order			from two	1					
			2		mation points,		streams	streams			sample						
					houses, carava	0					replicates						
					coffee shops, ar						1						
	Measure	Measure	NNJoin	Geoprocessing	· ·	gement	NNJoin	NNJoin	google	Geo pro-	In- modelle				modelled	estimate	
	line,	line, QGIS	plugin	tool-buffer	Tools-Merge	vector	plugin,	plugin,	maps	cessing	see Geological and chemical analysis situ in ma mea-			in matlab			
ਨ	QGIS	, 2	(Nearest	and Intersec-	U	process-	OGIS	Measure	measur-	tool-							
tools	2010		Neighbor	tion, QGIS	ing tool-buffe		2010	line,	ing tool,	buffer				sured			
-			Analysis),	, 2	Intersection, QC			OGIS	search	and Inter-							
			Measure		intersection, Q	510		QOID	for	section,							
			line, QGIS						'metal'	QGIS							
	open	Abfall-	open street	www.opendata-	Data from	'Quick	Coordinate	s Coordinates		Data						see section	Das Ost-
0	street	wirtschaft,	maps	hro.de/dataset/	OSM' QGIS		of inlets		maps	from						Hydro-	seemod-
original data reference	maps	Abfall-	maps	statistische	gin ^{24,25} , Based		and	and	po	'Quick						dynamic	ell der
ina	maps	entsorgungs-		bloecke	local tourist ad		max. dis-	max. dis-		OSM'						model	BAW
l da		anlagen,		(2017);	Tourismuskonz	,	charge	charge		OGIS						mouel	Tech-
ata		Recyclin-		Population	2022	epuon	volume:	volume:		plugin							nische
ref		ganlagen,		densities from	2022		Eu-	Eu-		Piugin							Doku-
ere			corton my	Kommunale			Eu- raWasser-	Eu- raWasser-									
nce	www.umweltkarten.mv- Kommunale												men-				
Ģ		regierung.de (2017)		Statistikstelle,			Nord GmbH	Nord GmbH									tation, 2015
		(2017)		Rostock			GIIIDH	GIIIDH									2013