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Appendix Figure S1. The scale and hardness of identifying multi-gene marker-panels.
A. A hypothetical example showing that a marker-panel achieving optimal accuracy may be 
composed of genes that are poor markers on their own.
B. The number of different gene-combinations that can be constructed (y-axis) as a function of 
different sizes of marker panels (x-axis). Plotted are results when selecting marker 
combinations from the entire mouse gene list (23,433 genes, black) and when gene 
combinations are selected from a curated list of cell surface markers that is used by default in 
the COMET framework (979 genes, red) (the gene list to select marker panels from in COMET 
can be changed by the user). A proof for the computational hardness of identifying optimal 
marker panels can be found in the Methods section. 
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Appendix Figure S2. An overview of the COMET framework including inputs, outputs, and 
the XL-mHG binarization procedure.
A. Inputs and outputs of the COMET tool, shows what information is necessary to retrieve 
marker panel results.
B.  Extension of Figure 2A, the XL-mHG test sets a threshold of expression and binarizes 
based on this choice of threshold.



Figure S3

CD9_negation + CSF1R_negation + CCND2_negation CD9_negation TP: 0.96 TN: 0.22 CSF1R_negation TP: 0.95 TN: 0.20 CCND2_negation TP: 0.96 TN: 0.20



Appendix Figure S3. An example of a 3-gene combination output (CD9-CSF1R-CCND2-) 
from COMET (cluster of interest is circled), generated for the follicular B cell cluster from the 
splenic data shown in Figure 5A. This example demonstrates how the addition of multiple 
markers, including negations, can clear out contaminating clusters.
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Appendix Figure S4. The XL-mHG test enjoys desirable properties for marker discovery 
compared to standard differential expression tests on simulated gene expression data.
Simulated data is generated for one gene   in two cell clusters   and  , where   denotes the 
cluster of interest (Methods). Comparison of the XL-mHG test to the standard mHG test 
reveals the important role of parameters X and L.
A. The XL-mHG test outperforms various differential expression tests in identifying favorable 
marker genes to be used as markers from simulated datasets (Methods) with respect to 
robustness to small effect-sizes for Gaussian expression data (center) and Negative Binomial 
count data (bottom).
B. The XL-mHG test outperforms various differential expression tests in identifying favorable 
marker genes to be used as markers from simulated datasets (Methods) with respect to 
sensitivity to sample size for Gaussian expression data (center) and Negative Binomial count 
data (bottom). 
Error bars indicate one standard deviation across 100 simulation runs (thresholded below at 0 
and above at 1).
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Appendix Figure S5. The XL-mHG test outperforms standard classifiers for marker recovery 
on simulated Gaussian gene expression data.
A. Outline of the synthetic gene expression matrix generated with n cells and p genes 
(Methods). Cells are divided into two clusters   and  , where   denotes the cluster of interest. 
Three categories of genes are considered: genes which are upregulated in   (good markers), 
genes which are upregulated in only a small subset of cells in   (poor markers) and genes 
which are not differentially expressed across   and   (non-markers). The Scaled Sum of Ranks 
(SSR) metric (Methods) is used to assess the performance of four classification methods at 
recovering good markers from the expression matrix: XL-mHG test, Random Forests (RF), 
Extra Trees (XT) and Logistic regression. SSR=1 is the optimal value.
B. SSR versus proportion of poor markers in the data set (left). The XL-mHG picks up the 
correct good markers regardless of the proportion of poor markers, while this proportion 
affects both LR (via an increase in fold change between   and  ), RF and XT. Out-of-bag error 
(OOB error) is included for RF and XT (right).
C. SSR versus mean of poor markers in the data set (left). The XL-mHG test picks up the 
correct good markers regardless of the mean of poor markers. Poor markers with very high 
expression are valuable for RF and XT, and contribute to increase the fold change between   
and  , resulting in suboptimal performances of RF, XT and LR. Out-of-bag error (OOB error) is 
included for RF and XT (right).
Error bars indicate one standard deviation across 20 simulation runs.
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Appendix Figure S6: The XL-mHG test outperforms standard classifiers for marker recovery 
on simulated gene counts data.
A. Graphical representations of the simulation engine used to generate synthetic 
transcriptomic counts data (Methods). Shaded nodes indicate observed variables. A 
hierarchical Poisson-Gamma model (left) is utilized to generate a cell-by-gene matrix of true 
counts (ground truth). Technical and efficiency noises are then introduced using an efficiency 
scaling factor followed by Poisson resampling (center). This procedure produces gene count 
matrices of the type shown on the right.
B. SSR versus proportion of poor markers in the data set (left). The XL-mHG picks up the 
correct good markers regardless of the proportion of poor markers, while this proportion 
affects both LR (via an increase in fold change between   and  ), RF and XT. Out-of-bag error 
(OOB error) is included for RF and XT (right).
C. SSR versus mean of poor markers in the data set (left). The XL-mHG test picks up the 
correct good markers regardless of the mean of poor markers. Poor markers with very high 
expression are valuable for RF and XT, and contribute to increase the fold change between   
and  , resulting in clear suboptimal performances LR. Performances are also suboptimal for 
RF and XT. Out-of-bag error (OOB error) is included for RF and XT (right).
Error bars indicate one standard deviation across 20 simulation runs.
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Appendix Figure S7. Flow cytometry analysis to compare the protein level stainings of CD19, 
Ly-6D, CD20, and CD79b to the established T cell marker CD3 (Meuer et al, 1983). Limited 
co-staining was observed, highlighting the markers’ specificity as B cell markers. (SP= single 
positive).
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Appendix Figure S8. The marker combination Ly-6D+CD3- predicted by COMET for B cells 
achieves improved B cell staining.
A. COMET output t-SNE visualization of the marker combination Ly-6D+CD3-.
B. Bar graph showing the overall cell counts in non-B cell clusters for Ly-6D+ and Ly-6D+CD3-, 
as predicted from the binarization procedure of COMET. Addition of the second marker 
decreases the overall counts in these other clusters.
C. Flow cytometry analysis of the expression of the T cell marker CD3, the dendritic cell 
marker (CD11c), and the neutrophil marker (Gr-1) in the Ly-6D+ and Ly-6D+CD3- populations 
confirms that the Ly-6D+CD3- marker panel improves clean out of contamination for all 
populations tested (Hestdal et al, 1991; Merad et al, 2013; Meuer et al, 1983). The 
Ly-6D+CD3- marker panel was selected based on available antibodies. 
Error bars indicate the mean and SD. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗∗p < 0.0001.
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Appendix Figure S9. Gene signature scores identify follicular and marginal zone B cell 
populations.
A. Marginal zone B cell signature scores identify cluster 2 (from Figure 5A) as the marginal B 
cell cluster (signature: marginal zone B cells vs. follicular B cells (Kleiman et al, 2015), 
Wilcoxon Rank-Sum test p-value of 7.8e-25 between clusters 2 and 0). Shown are signature 
scores computed for each cell (divided into clusters) and violin plots generated by the Scanpy 
function score_genes. Cluster 4 was not considered marginal due to its lack of expression of 
the marker gene CD21 (Figure 2C). 
B. Follicular B cell signature scores identify cluster 0 (from Figure 5A) as the follicular B cell 
cluster (signature: follicular B cells vs. marginal zone B cells, Wilcoxon Rank-Sum test p-value 
of 7.5e-31 between clusters 0 and 2) (Kleiman et al, 2015). Shown are signature scores 
computed for each cell (divided into clusters) and violin plots generated by the Scanpy 
function score_genes. Scores in t-SNE visualization are capped at zero. Cluster 3 was not 
considered follicular due to a strong batch effect defining that cluster (C). Cluster 4 was not 
considered follicular due to its lack of expression of the marker gene CD23 (Figure 5B).
C. Visualization of splenic immune populations generated by Tabula Muris and available on 
their website (Tabula Muris Consortium, 2018) website, including all CD45+ cells analyzed. 
Cluster 3 (circled) in the data contains a significant batch effect driven by mouse of origin. We 
therefore do not relate to cluster 3 in our follicular / marginal zone B cell analysis.
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CD55 1.89E-22 1.21 0.64 0.64 1

SELL 2.46E-21 1.22 0.79 0.47 2

CXCR4 3.98E-08 1.58 0.22 0.89 3

FCER2A 9.18E-21 0.84 0.74 0.50 4

ITGB7 4.84E-05 0.93 0.39 0.73 5

CD2 3.74E-07 0.59 0.55 0.58 6

EPCAM 1.17E-02 1.17 0.21 0.81 7

CCR7 1.05E-08 0.51 0.56 0.60 8

CD200 1.25E-02 0.94 0.29 0.77 9

BTLA 1.33E-03 0.63 0.57 0.54 10



Appendix Figure S10. COMET identifies single- and multi-gene marker panels for splenic 
follicular B cells. 
A.  COMET output of the top 10 ranked single genes for the follicular B cell cluster (shown in 
Figure 5A).
B. Flow cytometry gating strategy for follicular B cells (CD23+), marginal zone B cells (CD21+), 
and double negative B cells (DN). All viable CD19+ splenocytes were included.
C. Comparison of the marker combination CD62L+CD55+ to the single stain CD62L+ for the 
staining of follicular B cells confirms that staining with the 2-gene marker panel improves on 
staining with CD62L alone. ∗∗∗∗p < 0.0001.
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Appendix Figure S11. COMET is deployed to users over the web through an Amazon Web 
Services cloud backend coupled with a Flask application. A queue service (AWS SQS) grabs 
the submitted jobs and feeds them through a computing instance. Upon completion, a unique 
job ID is sent to the user’s email, allowing them to access the finalized results on any 
computer. All files are stored in an S3 bucket and available for four days. The basic interface is 
available at www.cometsc.com and is freely available.

http://www.cometsc.com
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