Supporting Information for:

g-C₃N₄-Mediated Synthesis of Cu₂O To Obtain Porous Composites with Improved Visible Light Photocatalytic Degradation of Organic Dyes

Ganesh Reddy Surikanti^{†‡§}, Pooja Bajaj^{†‡§} and Manorama V Sunkara^{*†‡}

Nanomaterials Laboratory, Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500 007 and

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.

^{†‡§}Equally contributing authors

 $*^{\dagger \ddagger}To$ whom all Correspondences should be addressed.

E-mail: manorama@iict.res.in and manorama@csiriict.in (Manorama V Sunkara), Tel.: +91

40 27193225; Fax: +91 40 27193991.

Figure S1: Pictorial representation of reaction with the sequence of color changes for the formation of $g-C_3N_4/Cu_2O$ composite.

Figure S2: FE-SEM images of as synthesized (a) CN/Cu-1 (b) Cu-CN-2 (c) CN/Cu-3 (d) CN/Cu-4 (e) CN/Cu-5 and (f) CN/Cu-6 composites.

Figure S3: EDS data of the synthesized (a) CN/Cu-1(b) CN/Cu-2 (c) CN/Cu-3 (d) CN/Cu-4 and (e) CN/Cu-6 composites.

Figure S4: (a) Point id image of CN/Cu-5 catalyst showing three different locations and their corresponding EDS data are (b) Spectrum 1 (c) Spectrum 2 and (d) Spectrum 3.

Figure S5: FE-SEM images of as synthesized $g-C_3N_4$ (a) before sonication (CNBS) and (b) after one hour sonication (CNAS).

Figure S6: FESEM images of CN/Cu-5 catalyst as a function of temperature variation (a) 60° C (b) 70° C (c) 80° C and (d) 90° C respectively.

Figure S7: FT-IR spectra of as synthesized (a) Cu₂O (b) g-C₃N₄ and (c) CN/Cu-5 composite.

Figure S8: UV-Visible absorbance of Methylene Blue dye degradation with (a) Cu_2O (b) $g-C_3N_4$ (c) CN/Cu-1 (d) CN/Cu-2 (e) CN/Cu-3 (f) CN/Cu-4 (g) CN/Cu-5 and (h) CN/Cu-6 catalyst under visible light irradiation for 120 min.

Figure S9: UV-Visible absorbance of Rhodamine-B dye with (a) Cu_2O (b) $g-C_3N_4$ (c) CN/Cu-1 (d) CN/Cu-2 (e) CN/Cu-3 (f) CN/Cu-4 (g) CN/Cu-5 and (h) CN/Cu-6 catalyst under visible light irradiation for 120 min.

Figure S10: LC-MS chromatogram of Methylene Blue dye. LC showing the change in the area with time 't' and mass spectra showing the degraded products at various m/z values.

Figure S11: LC-MS chromatogram of Rhodamine B dye. LC showing the change in the area with time 't' and mass spectra showing the degraded products at various m/z values.

Table S1: Intermediates identified during the degradation of Methylene Blue dye

Product	MW	Name
1	284	Methylene Blue
2	218	2-amino-5- (methylamino)- hydroxybenzenesulfonic acid
3	158	Benzenesulfonic acid

Table S2: Intermediates identified during the degradation of Rhodamine-B dye

Product	MW	Name
1	443	Rhodamine-B
2	415	N,N-diethyl-N'-
		ethylrhodamine
3	387	N,N-diethylrhodamine
4	90	2-hydroxy propanoic acid