Synthesis of Pyrrolo[2,3-*c*]isoquinolines *via* the Cycloaddition of Benzyne with Arylideneaminopyrroles: Photophysical and Crystallographic Study

Juan-Carlos Castillo,^{†,‡} Alexis Tigreros,[†] Yoann Coquerel,[§] Jean Rodríguez,[§] Mario A. Macías,^{*,} and Jaime Portilla^{*,†}

[†]Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia.

[‡]Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia.

[§]Aix Marseille Université, CNRS, Centrale Marseille, ISM2, 13397 Marseille, France.

Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia.

*Email: jportill@uniandes.edu.co

SUPPORTING INFORMATION

Cont	ent: Overview of reactants, substrates and products numbering p \$2	
1. 2	Copies of NMR spectra of novel compounds 6d–h and 8a–c p.S3	
3.	HRMS analysis data of novel compounds	1
4.	ORTEP plots of compounds 6e–g and 8b–c p.S1	8
5.	Tables and figures of crystallographic details	9

1. Overview of reactants, substrates and products numbering

5-Amino-1-(*tert*-butyl)-1*H*-pyrrole-3-carbonitrile (**4**), 2,4-dichlorobenzaldehyde (**5c**), benzaldehyde (**5d**), 4-methoxybenzaldehyde (**5e**), 4-(diphenylamino)benzaldehyde (**5f**), 4-fluorobenzaldehyde (**5g**), and 4-bromobenzaldehyde (**5h**).

Figure S2. Structure of arylideneaminopyrroles 6d-h

3-(tert-Butyl)-5-(4-methoxyphenyl)-3H-pyrrolo[2,3-c]isoquinoline-1-carbonitrile (**8a**), 3-(tert-butyl)-5-phenyl-3H-pyrrolo[2,3-c]isoquinoline-1-carbonitrile (**8b**), and 3-(tert-butyl)-5-(2,4-dichlorophenyl)-3H-pyrrolo[2,3-c]isoquinoline-1-carbonitrile (**8c**).

Figure S3. Structure of pyrrolo[2,3-c]isoquinolines 8a-c

2. Copies of NMR spectra of compounds 6d-h and 8a-c

Figure S4. ¹H, ¹³C{¹H}, and DEPT-135 NMR spectra of (*E*)-5-(benzylideneamino)-1-(*tert*-butyl)-1*H*-pyrrole-3-carbonitrile (**6d**)

methoxybenzylidene)amino)-1*H*-pyrrole-3-carbonitrile (**6e**)

S4

Figure S6. ¹H, ¹³C{¹H}, and DEPT-135 NMR spectra of (*E*)-1-(*tert*-butyl)-5-((4-(diphenylamino)benzylidene)amino)-1*H*-pyrrole-3-carbonitrile (**6f**)

gure S7. ¹H, ¹³C{¹H}, and DEPT-135 of (*E*)-1-(*tert*-butyl)-5-((4-fluorobenzylidene)amino)-1*H*-pyrrole-3-carbonitrile (**6g**)

pyrrole-3-carbonitrile (**6h**)

Figure S9. ¹H, ¹³C{¹H}, and DEPT-135 NMR spectra of 3-(*tert*-butyl)-5-(4-methoxyphenyl)-3*H*-pyrrolo[2,3-*c*]isoquinoline-1-carbonitrile (**8a**)

Figure S10. ¹H, ¹³C{¹H}, and DEPT-135 NMR spectra of 3-(*tert*-butyl)-5-phenyl)-3*H*-pyrrolo[2,3*c*]isoquinoline-1-carbonitrile (**8b**)

Figure S11. ¹H, ¹³C{¹H}, and DEPT-135 NMR spectra of 3-(*tert*-butyl)-5-(2,4-dichlorophenyl)-3*H*-pyrrolo[2,3-*c*]isoquinoline-1-carbonitrile (8c)

3. HRMS analysis data of novel compounds

MS Spectrum Peak List

m/z	z	Abund	Ion
252.1494	1	86475.82	(M+H)+
253.1522	1	14186.59	(M+H)+
254.156	1	1271.74	(M+H)+
255.1593	1	183.87	(M+H)+
274.1311	1	10707.49	(M+Na)+
275.1333	1	2276.07	(M+Na)+
276.1378	1	142.61	(M+Na)+
525.2732	1	12417.32	(2M+Na)+
526.2761	1	4937.32	(2M+Na)+
527.2811	1	924.55	(2M+Na)+

6d + H⁺, C₁₆H₁₈N₃ Exact Mass: 252.1495 Found: 252.1494

Figure 12. HRMS analysis of compound 6d

Counts vs. Mass-to-Charge (m/z)

MS Spectrum Peak List							
m/z	z	Abund	Ion				
419.2226	1	45560.24	(M+H)+				
420.2256	1	13501.32	(M+H)+				
421.2284	1	2193.37	(M+H)+				
422.2323	1	193.97	(M+H)+				
441.2033	1	933.88	(M+Na)+				
442.2095	1	295.85	(M+Na)+				
859.4214	1	462.36	(2M+Na)+				
860.4269	1	285.75	(2M+Na)+				
861.4331	1	52.68	(2M+Na)+				

6f + H⁺, C₂₈H₂₇N₄ Exact Mass: 419.2230 Found: 419.2226

Figure 13. HRMS analysis of compound 6f

MS Spectrum Peak List

m/z	z	Abund	Ion
270.14	1	78803.33	(M+H)+
271.1434	1	13080.34	(M+H)+
272.1472	1	1242.75	(M+H)+
273.1496	1	130.28	(M+H)+
292.1225	1	10352.38	(M+Na)+
293.1265	1	1856.06	(M+Na)+
294.1272	1	168.23	(M+Na)+
561.2553	1	12609.19	(2M+Na)+
562.2584	1	4610.15	(2M+Na)+
563.2615	1	873.04	(2M+Na)+

6g + H⁺, C₁₆H₁₇FN₃ Exact Mass: 270.1401 Found: 270.1400

S13

MS Spectrum Peak List

m/z	z	Abund	Ion
330.0599	1	40491.25	(M+H)+
331.0599	1	8915.53	(M+H)+
332.0581	1	39515.48	(M+H)+
333.061	1	6732.12	(M+H)+
352.042	1	8595.27	(M+Na)+
354.0402	1	7679.05	(M+Na)+
681.0944	1	8329.81	(2M+Na)+
683.0927	1	16862.34	(2M+Na)+
684.0953	1	6161.99	(2M+Na)+
685.0911	1	8664.13	(2M+Na)+

6h + H⁺, C₁₆H₁₇BrN₃ Exact Mass: 330.0600 Found: 330.0599

Figure 15. HRMS analysis of compound 6h

S14

MS Spectrum Peak List							
m/z	z	Abund	Ion				
356.1759	1	106107.77	(M+H)+				
357.1788	1	25264.63	(M+H)+				
358.1827	1	3512	(M+H)+				
359.1859	1	345.56	(M+H)+				
378.1569	1	1903.15	(M+Na)+				
379.1589	1	513.67	(M+Na)+				
733.325	1	8028.62	(2M+Na)+				
734.3282	1	4017.23	(2M+Na)+				
735.333	1	1011.23	(2M+Na)+				
736.3332	1	167.19	(2M+Na)+				

8a + H⁺, C₂₃H₂₂N₃O Exact Mass: 356.1757 Found: 356.1759

Figure 16. HRMS analysis of compound 8a

S15

MS Spectrum Peak List

m/z	z	Abund	Ion
326.1656	1	101611.7	(M+H)+
327.1685	1	23636.46	(M+H)+
328.1708	1	2793.57	(M+H)+
329.1729	1	329.5	(M+H)+
348.1482	1	2584.96	(M+Na)+
349.1541	1	524.32	(M+Na)+
673.3051	1	7429.84	(2M+Na)+
674.3085	1	3754.03	(2M+Na)+
675.3104	1	1029.76	(2M+Na)+
676.3115	1	125.03	(2M+Na)+

8b + H⁺, C₂₂H₂₀N₃ Exact Mass: 326.1652 Found: 326.1656

Figure 17. HRMS analysis of compound 8b

MS S	pectru	m Peak	List
------	--------	--------	------

m/z	z	Abund	Ion
394.0869	1	48728.49	(M+H)+
395.0902	1	12029.53	(M+H)+
396.0844	1	32304.44	(M+H)+
397.0873	1	7652.69	(M+H)+
398.0824	1	5307.71	(M+H)+
416.0693	1	2085.37	(M+Na)+
809.1481	1	2794.52	(2M+Na)+
811.1465	1	3879.95	(2M+Na)+
812.1485	1	1723.34	(2M+Na)+
813.1452	1	2198.54	(2M+Na)+

8c + H⁺, C₂₂H₁₈Cl₂N₃ Exact Mass: 394.0872 Found: 394.0869

Figure 18. HRMS analysis of compound 8c

Figure S19. Oak Ridge Thermal Ellipsoid Plots (ORTEP) of the crystal structures showing anisotropic displacement ellipsoids at the 30% probability level. CCDC 1817750 (**6e**), 1817752 (**6f**), 1899534 (**6g**), 1817752 (**8b**), and 1899534 (**8c**), contain the supplementary crystallographic data for this paper.

5. Tables and figures of crystallographic details

	6e	6f	6g	8b	8c
Crystal data					
Chemical formula	C17H19N3O	$C_{28}H_{26}N_4$	$C_{16}H_{16}FN_3$	$\underline{C_{22}H_{19}N_3}$	$\underline{C_{22}H_{17}Cl_2N_3}$
$M_{ m r}$	281.35	418.53	269.32	<u>325.40</u>	<u>394.28</u>
Crystal system, space group	Triclinic, <i>PI</i>	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Orthorhombic, Pna21	Triclinic, <i>PI</i>
a, b, c (Å)	6.5117(9), 10.8618(15), 12.3586(14)	9.813(2), 25.305(4), 9.7316(11)	8.8167(10), 17.559(2), 9.4619(9)	<u>8.8186(12).</u> <u>10.9933(15).</u> <u>18.078(2)</u>	<u>8.4643(7),</u> <u>9.8411(8),</u> <u>12.2281(6)</u>
$\alpha,\beta,\gamma(^\circ)$	107.350(11), 96.512(11), 106.366(13)	90.0, 101.981(14), 90.0	90.0, 90.43(1), 90.0	<u>90.0, 90.0, 90.0</u>	<u>97.028(6),</u> <u>98.958(6), 96.320(7)</u>
$V(Å^3)$	781.70(19)	2363.9(7)	1464.8(3)	1752.6(4)	<u>989.90(13)</u>
Ζ	2	4	4	<u>4</u>	<u>2</u>
μ (mm ⁻¹)	0.08	0.07	0.08	<u>0.07</u>	<u>0.34</u>
Crystal size (mm)	0.31×0.25×0.19	0.23×0.17×0.14	0.21×0.15×0.15	0.21×0.16×0.15	0.25×0.20×0.19
Data collection					
T_{\min}, T_{\max}	0.804, 1.000	0.849, 1.000	0.801, 1.000	<u>0.575, 1.000</u>	<u>0.681, 1.000</u>
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	14240, 4319, 3102	24848, 4822, 3145	28818, 2876, 2356	<u>19049, 3840, 3180</u>	<u>43695, 4372, 3475</u>
$R_{ m int}$	0.031	0.071	0.067	<u>0.052</u>	<u>0.071</u>
$(\sin\theta/\lambda)_{max}$ (Å ⁻¹)	0.720	0.626	0.617	0.641	0.641
Refinement					
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.058, 0.175, 1.10	0.059, 0.177, 1.07	0.057, 0.160, 1.07	0.055, 0.160, 1.11	0.055, 0.156, 1.10
No. of reflections	4319	4822	2876	<u>3840</u>	<u>4372</u>
No. of parameters	195	293	185	<u>230</u>	<u>248</u>
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ \AA^{-3})$	0.21, -0.16	0.19, -0.16	0.19, -0.20	<u>0.17, -0.16</u>	<u>0.24, -0.56</u>

Table S1. Crystallographic data for (*E*)-arylideneaminopyrroles **6e–g** and pyrrolo[2,3-*c*]isoquinolines **8b–**c

6e									
	N	Symop	R	Eele	Epol	E dis	Erep	Etot	
	2	x, y, z	6.51	0.1	-3.4	-56.9	24.7	-36.6	ut.
	2	x, y, z	10.98	1.4	-0.8	-12.5	6.4	-5.9	apply the
	1	-x, -y, -z	13.25	-6.4	-1.0	-17.6	10.2	-16.5	No 3. Hu
	1	-x, -y, -z	8.14	-5.9	-1.4	-24.4	14.7	-19.5	
	1	-x, -y, -z	8.88	-5.3	-1.6	-21.1	7.1	-20.8	the second
	1	-x, -y, -z	6.77	-2.8	-0.4	-22.8	9.0	-17.5	yer ye
	1	-x, -y, -z	6.69	-20.6	-6.3	-28.8	22.0	-37.9	Frank [100]
	1	-x, -y, -z	9.07	-19.3	-7.5	-15.2	11.5	-32.1	× []
6f									
	2	-x, y+1/2, -z+1/2	13.71	-1.2	-0.8	-12.7	3.9	-10.6	1 1
	1	-x, -y, -z	8.62	-3.4	-0.9	-30.3	11.9	-23.3	the state of the state
	1	-x, -y, -z	5.39	-9.8	-1.5	-80.4	39.2	-57.3	A THE AND
	2	x, -y+1/2, z+1/2	13.84	0.1	-0.2	-12.5	2.6	-9.4	* FEEL
	2	x, y, z	9.73	-2.5	-1.0	-39.9	23.7	-23.5	
	2	-x, y+1/2, -z+1/2	14.24	-5.7	-3.3	-7.4	5.9	-11.3	
	2	x, -y+1/2, z+1/2	13.27	-14.0	-5.1	-18.8	14.6	-26.0	JACTA DEL
	1	-x, -y, -z	10.43	-1.8	-0.2	-9.8	2.2	-9.3	A THE REAL
	1	-x, -y, -z	4.89	-11.3	-2.7	-89.5	41.4	-66.3	[100]
	2	-x, y+1/2, -z+1/2	14.58	-5.8	-3.2	-7.4	7.8	-10.1	• • • []
6g									
	2	x, y, z	12.88	-6.1	-1.0	-9.0	4.8	-12.1	
	2	x, -y+1/2, z+1/2	10.91	-0.6	-0.3	-10.7	3.6	-7.9	新兴
	2	x, y, z	8.82	0.8	-0.7	-16.7	9.3	-8.5	the state
	2	x, -y+1/2, z+1/2	6.48	-2.9	-1.7	-34.9	17.6	-23.8	To the H
	2	x, y, z	9.46	-2.4	-3.2	-15.0	4.6	-15.1	SA 3
	1	-x, -y, -z	5.53	-1.9	-2.3	-54.7	26.0	-35.2	
	1	-x, -y, -z	8.72	-31.0	-9.1	-19.1	23.4	-41.7	N A F
	1	-x, -y, -z	8.04	0.0	-0.2	-5.8	1.2	-4.4	A A A
	1	-XVZ	10.44	-16.7	-5.5	-16.4	13.3	-27.8	[001] 🦰 🦟 🎢

Table S2. CE-B3LYP interaction energies (kJ mol⁻¹) for **6e**, **6f** and **6g**^a

^{*a*} N is the number of molecules with an R molecular centroid-to-centroid distance (Å). Electron density was calculated using B3LYP/6-31G(d,p) model energies. Symop is the symmetry operation. Note: (*) scale factors used to determine E_{tot} : $E_{ele} = 1.057$; $E_{pol} = 0.740$; $E_{dis} = 0.871$; $E_{rep} = 0.618$.

8b R N Symop E_{ele} Epol Edis Erep E_{tot} 2 x+1/2, -y+1/2, z 5.72 -12.8 -5.0 -75.1 -60.9 35.3 2 x+1/2, -y+1/2, z 8.57 -5.5 -1.0 -34.8 23.5 -22.4 10.99 -5.0 -1.6 -7.7 -12.0 2 x, y, z 1.9 2 -x+1/2, y+1/2, z+1/2 10.87 -2.9 -2.3 -12.5 6.6 -11.5 2 -x, -y, z+1/2 9.43 -5.8 -1.4 -30.3 17.5 -22.7 2 x, y, z 8.82 1.5 -0.1 0.1 -2.4 -4.5 [010] 2 -x+1/2, y+1/2, z+1/2 10.87 -0.4 -0.4 -10.6 6.0 -6.3 8c 1 -x, -y, -z 7.65 -8.7 -1.9 -50.4 25.4 -38.9 1 -x, -y, -z 13.05 -21.7 -6.5 -13.5 13.8 -31.0 12.25 -1.9 -0.5 -11.8 -8.8 2 x, y, z 6.4 1 -x, -y, -z 11.92 -0.4 -0.2 -3.3 0.1 -3.3 8.46 -2.7 -2.1 -36.4 23.9 -21.3 2 x, y, z 1 -x, -y, -z 10.88 -1.0 -0.1 -6.0 0.8 -5.8 9.84 -0.7 -0.1 -6.3 2.2 -5.0 2 x, y, z 1 -x, -y, -z 7.39 -19.9 -6.7 -72.0 41.7 -62.9 [010] 1 -x, -y, -z 11.75 -4.3 -0.4 -14.9 14.6 -8.8 1 -x, -y, -z 7.95 -6.3 -1.6 -46.7 26.9 -31.8 -27.9 -x, -y, -z 8.52 -8.8 -1.3 -42.1 30.6

Table S3. CE-B3LYP interaction energies (kJ mol⁻¹) for **8b** and $8c^{a}$

^o N is the number of molecules with an R molecular centroid-to-centroid distance (Å). Electron density was calculated using B3LYP/6-31G(d,p) model energies. Symop is the symmetry operation. Note: (*) scale factors used to determine Etot: Eele = 1.057; Epol = 0.740; Edis = 0.871; Erep = 0.618.

Figure S20. Hirshfeld surfaces mapped over d_{norm} , full 2D fingerprint plots and relative contributions (%) to the Hirshfeld surface area for the various close intermolecular contacts in (a) **6e**, (b) **6f** and (c) **6g**. On the top right-hand corner: the electrostatic potentials with positive and negative potential indicated in blue and red, respectively.

Figure S21. Hirshfeld surfaces mapped over d_{norm}, full 2D fingerprint plots and relative contributions (%) to the Hirshfeld surface area for the various close intermolecular contacts in (a) **8b** and (b) **8c**. On the top right-hand corner: the electrostatic potentials with positive and negative potential indicated in blue and red, respectively.