
GigaScience

SwiftOrtho: a Fast, Memory-Efficient, Multiple Genome Orthology Classifier
--Manuscript Draft--

Manuscript Number: GIGA-D-19-00043R1

Full Title: SwiftOrtho: a Fast, Memory-Efficient, Multiple Genome Orthology Classifier

Article Type: Technical Note

Funding Information: Directorate for Biological Sciences
(1854685)

Dr. Iddo Friedberg

Abstract: Background: Gene homology type classification is a requisite for many types of
genome analyses, including comparative genomics, phylogenetics, and protein
function annotation. A large variety of tools have been developed to perform homology
classification across genomes of different species. However, when applied to large
genomic datasets, these tools require high memory and CPU usage,typically available
only in computational clusters.

Findings: Here we present a new graph-based orthology analysis tool,SwiftOrtho,
which is optimized for speed and memory usage when applied to large-scale data.
SwiftOrtho uses long k-mers to speed up homology search, while using a reduced
amino acid alphabet and spaced seeds to compensate for the loss of sensitivity due to
long k-mers. In addition, it uses an Affinity Propagation algorithm to reduce the memory
usage when clustering large-scale orthology relationships into orthologous groups. In
our tests, SwiftOrtho is the only tool that completed orthology analysis of proteins from
1,760 bacterial genomes on computer with only 4GB RAM. Using various standard
orthology datasets, we also show that SwiftOrtho has a high accuracy.

Conclusion: SwiftOrtho enables the accurate comparative genomic analyses of
thousands of genomes using low memory
computers.Availability:https://github.com/Rinoahu/SwiftOrtho

Corresponding Author: Iddo Friedberg
Iowa State University
Ames, Iowa UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Iowa State University

Corresponding Author's Secondary
Institution:

First Author: Xiao Hu

First Author Secondary Information:

Order of Authors: Xiao Hu

Iddo Friedberg

Order of Authors Secondary Information:

Response to Reviewers: Dear Dr. Zauner,

Enclosed please find our revised manuscript. We would like to thank the reviewers and
yourself for the large amount of time and effort that were spent reading and
commenting on the manuscript. We are grateful for this effort, and we have addressed
all comments in detail. We would like to stress that SwiftOrtho’s strength lies both in its
modular versatility, and in its low consumption of computational resources, making it
especially suitable for low- and medium budget labs, but is easy and accurate enough
to be used universally.

We have upgraded the software to Python 3, and rewrote the code to conform with
PEP-8. We have also compared with all the other tools requested, and some others,

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

including DIAMOND, Usearch, TOPAZ, LAST and BLAT.

We are happy to include the paper in the Technical Notes section. We have registered
SwiftOrtho in SciCrunch.org, and added the Software Availability section, and the
availability of supporting source code and requirements.

Attached are the reviewers’ requests, and our detailed responses are in italics. We are
looking forward to your feedback.

Sincerely,

Iddo Friedberg

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Hu and Friedberg

SwiftOrtho: a Fast, Memory-Efficient, Multiple
Genome Orthology Classifier
Xiao Hu
and Iddo Friedberg*

*Correspondence:
idoerg@iastate.edu
Department of Veterinary
Microbiology and Preventive
Medicine, College of
Veterinary Medicine, Iowa
State University, 2118 Vet
Med, Ames, IA 50011, USA
Full list of author information
is available at the end of the
article

Abstract

Background: Gene homology type classification is a requisite for many types of
genome analyses, including comparative genomics, phylogenetics, and protein
function annotation. A large variety of tools have been developed to perform
homology classification across genomes of different species. However, when applied
to large genomic datasets, these tools require high memory and CPU usage,
typically available only in computational clusters.

Findings: Here we present a new graph-based orthology analysis tool,
SwiftOrtho, which is optimized for speed and memory usage when applied to
large-scale data. SwiftOrtho uses long k-mers to speed up homology search, while
using a reduced amino acid alphabet and spaced seeds to compensate for the loss
of sensitivity due to long k-mers. In addition, it uses an Affinity Propagation
algorithm to reduce the memory usage when clustering large-scale orthology
relationships into orthologous groups. In our tests, SwiftOrtho is the only tool
that completed orthology analysis of proteins from 1,760 bacterial genomes on a
computer with only 4GB RAM. Using various standard orthology datasets, we
also show that SwiftOrtho has a high accuracy.

Conclusion: SwiftOrtho enables the accurate comparative genomic analyses of
thousands of genomes using low memory computers.

Availability: https://github.com/Rinoahu/SwiftOrtho

Abbreviations: RBH: Reciprocal Best Hit; MCL: Markov Clustering
algorithm; APC: Affinity Propagation Clustering.

Background1

Gene homology type classification consists of identifying paralogs and orthologs2

across species. Orthologs are genes that evolved from a common ancestral gene3

following speciation, while paralogs are genes that are homologous due to dupli-4

cation. Paralogs can be further classified into in-paralogs, which evolved via gene5

duplication before the speciation event, and out-paralogs, which evolved via gene6

duplication after the speciation event [1]. Classifying orthologs and paralogs across7

species is an important problem, as the evolutionary history of genes has implica-8

tions for our understanding of gene function and evolution.9

Manuscript Click here to
access/download;Manuscript;SwiftOrtho_note_2_gigascience_re

Click here to view linked References

mailto:idoerg@iastate.edu
https://github.com/Rinoahu/SwiftOrtho
https://www.editorialmanager.com/giga/download.aspx?id=76885&guid=7842c208-3d99-4e63-b454-c8707ae7090d&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=76885&guid=7842c208-3d99-4e63-b454-c8707ae7090d&scheme=1
https://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=2703&rev=1&fileID=76885&msid=1982f27f-cc8c-42df-ac97-a208dd662932

Hu and Friedberg Page 2 of 25

While the proper inference of homology type involves tracing gene history using10

phylogenetic trees [2], several proxy methods have been developed over the years.11

The most common method to infer orthologs by proxy is Reciprocal Best Hit or12

RBH [3, 4]. Briefly, RBH states the following: when two proteins that are encoded13

by two genes, each in a different genome, find each other as the best scoring match14

among all homologs, they are considered to be orthologs [3, 4].15

Inparanoid extends the RBH orthology relationship to include both orthologs and16

in-paralogs. Specifically, Inparanoid uses RBH to identify orthologs between two17

species. The genes in the two species are classified as in-paralogs if they are more18

similar to the corresponding ortholog than to any gene in the other species [5–7].19

The concept of orthologous pairs between two species can be extended to an or-20

tholog group, whcihc is a set of genes that are hypothesized to have descended from21

a common ancestor [7]. Several methods have been developed to identify ortholog22

groups across multiple species typically classified as either tree-based or graph-23

based methods. Tree-based methods construct a gene tree from an alignment of24

homologous sequences in different species and infer orthology relationships by rec-25

onciling the gene tree with its corresponding species tree [2, 8, 9], and can infer26

a correct orthology relationship if the correct gene tree and species tree are pro-27

vided [10]. The chief limiting factor of tree-based methods is the accuracy of the28

given gene tree and species tree. Erroneous trees lead to incorrect ortholog and29

in-paralog assignments [9–11]. Tree-based methods are also computationally expen-30

sive which limits the ability to apply them to large number of species [10, 12–14].31

Graph-based methods infer orthologs and in-paralogs from homologs and then use32

different strategies to cluster them into orthologous groups [9, 12, 13] (Figure 1).33

The Clusters of Orthologous Groups (COG) database detects triangles of RBHs in34

three different species and merges the triangles with a common side [15]. Orthol-35

ogous Matrix (OMA) clusters RBHs in orthologous groups by finding maximum36

Hu and Friedberg Page 3 of 25

weight cliques from the similarity graph [16, 17]. MultiParanoid is an extension of37

Inparanoid, which uses InParanoid to detect triangle orthologs and in-paralogs in38

three different species as seeds and then merges the seeds into larger groups [18].39

OrthoMCL also uses InParanoid to detect orthologs, co-orthologs, and in-paralogs40

between two species [19, 20] and then uses Markov Clustering (MCL) [21] to cluster41

these relationships into orthologous groups, where the co-orthologs are two or more42

genes in one species that are orthologous to one or more genes in another species43

due to a gene duplication event [1, 22]. In addition, there is a hybrid method that44

combines both graph-based and tree-based methods [12, 23–26]. The hybrid method45

first perform all-vs-all sequence alignment, then constructs gene families by the se-46

quence similarity or conserved gene neighborhood. EnsEMBL first uses RBH to47

find the gene families, then constructs a phylogenetic gene tree for each gene fam-48

ily [24]. Finally, each gene tree is reconciled with the species tree to infer paralogs49

and orthologs.50

In theory, graph-based methods are less accurate than tree-based methods, as the51

former identify orthologs and in-paralogs using proxy methods rather than directly52

inferring homology type from gene and species evolutionary history. In practice,53

graph-based methods are comparably accurate to tree-based methods [10, 11, 27].54

Moreover, a comparison of several methods found that tree-based methods had55

even a worse performance than graph-based methods on large datasets [11]. One56

study compared several common methods, including simple RBH, graph-based, tree-57

based, and hybrid methods, and found that tree-based methods of Inparanoid and58

OrthoMCL exhibit the best balance of sensitivity and specificity [28]. Several studies59

have also shown that graph-based methods find a better trade-off between specificity60

and sensitivity than tree-based methods [11, 28, 29]. For these reasons, graph-based61

methods are generally preferred for analyzing large-scale data sets. OrthoMCL and62

Hu and Friedberg Page 4 of 25

InParanoid have been applied to analyze hundreds of genomes, however, they require63

considerable computational resources that may not be readily available [20, 30].64

Recently, several graph-based tools, such as SonicParanoid, OMA, and Pro-65

teinOrtho [17, 31, 32] have been developed to speed up orthology analysis on large-66

scale data sets. However, these tools require high performance computers to analyze67

large-scale data.68

Here we present SwiftOrtho, a fast method for orthology classification that re-69

quires minimal use of computational resources, especially memory. SwiftOrtho uses70

a seed-and-extension method to speed up homology search, a binary search method71

and RBH rule to infer orthologs and in-paralogs, and the Affinity Propagation al-72

gorithm to reduce memory usage in cluster analysis. We compare SwiftOrtho with73

several existing graph-based tools using the gold standard dataset Orthobench [13],74

and the Quest for Orthologs service [33]. Using both benchmarks, we show that75

SwiftOrtho provides a high accuracy with lower CPU and memory usage than other76

graph-based methods. SwiftOrtho is the only tool that completed an orthology anal-77

ysis of 1,760 bacterial genomes on very a low-memory computer. With the growing78

number of genomes, especially microbial genomes, we see SwiftOrtho to be a tool79

of choice for a fast and accurate ortholog classification, while requiring low compu-80

tational resources, as are found in conventional desktop or laptop computers.81

Methods82

Algorithms83

Here we outline the homology search, orthology inference, and clustering as imple-84

mented in SwiftOrtho.85

Homology Search86

SwiftOrtho employs a seed-and-extension algorithm to find homologous gene87

pairs [34, 35]. At the seed phase, SwiftOrtho finds candidate target sequences that88

share common k-mers with the query sequence. k-mer size is an important fac-89

Hu and Friedberg Page 5 of 25

tor that affects search sensitivity and speed [36, 37]. SwiftOrtho therefore uses long90

(≥ 6) k-mers to accelerate search speed. At the same time, k-mer length is negatively91

correlated with sensitivity [36]. To compensate for the loss of sensitivity caused by92

increasing the k-mer size, SwiftOrtho uses two approaches: non-consecutive k-mers93

and reduced amino-acid alphabets. Non-consecutive k-mer seeds (known as spaced94

seeds), were introduced in PatternHunter [19, 38]. The main difference between con-95

secutive seeds and spaced seeds is that the latter allow mismatches in alignment.96

For example, the spaced seed 101101 allows mismatches at positions 2 and 5. The97

total number of matched positions in a spaced seed is known as the weight, so the98

weight of this seed is 4. A consecutive seed can be considered as a special case of99

spaced seed in which its weight equal its length. Spaced seeds often provide a bet-100

ter sensitivity than consecutive seeds [38, 39]. Several tools such as PatternHunter,101

Usearch, LAST, and DIAMOND [19, 38, 40–42] have used spaced seed to increase102

sensitivity. PatternHunter and Usearch allow users to use custom spaced seed. The103

default spaced seed patterns of SwiftOrtho are 1110100010001011, 11010110111104

–two spaced seeds with weight of 8– but the user may define their own spaced seeds.105

Seed patterns were optimized using SpEED [39] and manual inspection. The choice106

of the spaced seeds and default alphabet are elaborated upon in the Methods sec-107

tion and in the Supplementary Materials. At the extension phase, SwiftOrtho uses108

a variation of the Smith-Waterman algorithm [43], the k-banded Smith-Waterman109

or k-SWAT, which only allows for k gaps [44]. k-SWAT fills a band of cells along110

the main diagonal of the similarity score matrix (Figure 2B), and the complexity of111

k-swat is reduced to O(k ·min(n, m)), where k is the maximum allowed number of112

gaps. Reduced alphabets are used to represent protein sequences using an alterna-113

tive alphabet that combines several amino acids into a single representative letter,114

based on common physico-chemical traits [45–47]. Compared with the original al-115

phabet of 20 amino acids, reduced alphabets usually improve sensitivity [48, 49]. At116

Hu and Friedberg Page 6 of 25

the same time, reduced alphabets also introduce less specific seeds than the original117

alphabet, which reduces the search speed.118

Orthology Inference119

The orthology inference step in Figure 1 shows the algorithm to infer orthologs and120

in-paralogs from homologs: gene A1 in genome A and B1 in genome B are considered121

to be orthologs according to the RBH rule; If the bit score between gene A1 and A2122

in genome A is higher than that between A1 and all its orthologs in other genomes,123

A1 and A2 are considered in-paralogs in genome A; If A1 in genome A and B1 in124

genome B are orthologs, in-paralogs of A1 and B1 are co-orthologs. Since orthology125

inference requires many queries it is better to store the data in a way that facilitates126

fast querying. First, SwiftOrtho sorts the data and store it on hard drive. Then,127

it uses binary search to query the sorted data, which significantly reduces memory128

usage when compared with a relational database management system or a hash129

table. With the help of this query system, SwiftOrtho can process data that are130

much larger than the computer memory.131

After inferring orthology, the inferred orthology relationships are treated as the132

edges of a graph. Each edge is assigned a weight for cluster analysis. Appropriate133

edge-weighting metrics can improve the accuracy of cluster analysis. Gibbons [50],134

compared the performance of several BLAST-based edge-weighting metrics and135

found that the bit score has the best performance. Therefore, SwiftOrtho uses the136

normalized bit score as edge-weighting metric. The normalization step takes the137

same approach as OrthoMCL [20]. For orthologs or co-orthologs, the weight of138

(co-)ortholog (Figure 1) A1 in genome A and B1 in genome B is divided by the139

average edge-weight of all the (co-)orthologs between genome A and genome B.140

For in-paralogs, SwiftOrtho identifies a subset S of all in-paralogs in genome A,141

with each in-paralog Ax-Ay in subset S, Ax or Ay having at least one ortholog in142

Hu and Friedberg Page 7 of 25

another genome. The weight of each in-paralog in genome A is divided by the mean143

edge-weight of subset S in genome A [20].144

Clustering Orthology Relationships into Orthologous Groups145

SwiftOrtho provides two methods to cluster orthology relationships into orthologous146

groups. One is the Markov Cluster algorithm (MCL), an unsupervised clustering147

algorithm based on simulation of flow in graphs [21]. MCL is fast and robust on small148

networks and has been used by several graph-based tools [19, 51–53]. However, MCL149

may run out of memory when applied to a large-scale network. To reduce memory150

usage, we cluster each individual connected component instead of the whole network151

because there is no flow among components [21]. For large and dense networks a152

single connected component could still be too large to be loaded into memory.153

For the large networks, SwiftOrtho uses an Affinity Propagation Clustering algo-

rithm (APC) [54]. The APC algorithm finds a set of centers in a network, where the

centers are the actual data points and are called “exemplars”. To find exemplars,

APC needs to maintain two matrices: the responsibility matrix R, and the avail-

ability matrix A. The element Ri,k in R reflects how well-suited node k is to serve

as the exemplar for node i while the element Ai,k in A reflects how appropriate

node i to choose node k as its exemplar [54]. APC uses Equation 1 to update R,

and Equation 2 to update A, where i, k, i′, k′ denote the node number, and Si,k′

denotes the similarity between node i and node k′.

Ri,k = Si,k −maxk′ 6=k{Ai,k′ + Si,k′} (1)

Ai,k =


min{0, Rk,k +

∑
i′ 6∈{i,k}max{0, Ri′,k}, if i 6= k

∑
i′ 6=k max{0, Ri′,k}, if i = k

(2)

Hu and Friedberg Page 8 of 25

The node k that maximizes Ai,k + Ri,k is the exemplar of node i, and each node154

i is assigned to its nearest exemplar. APC can update each element of matrix R155

and A one by one, so, it is unnecessary to keep the whole matrix of R and A in156

memory. Generally, the time complexity of APC is O(N2 · T) where N is number157

of nodes and T is number of iterations [54]. In this case, the time complexity is158

O(E · T), where E stands for edges which is number of orthology relationships and159

T is number of iterations. We implemented APC in Python, using Numba [55] to160

accelerate the numeric-intensive calculation parts.161

Application of SwiftOrtho162

Data Sets163

We applied SwiftOrtho to three data sets to evaluate its predictive quality and164

performance:165

1 The Euk set was used to evaluate the quality of predicted orthologous groups.166

This set contains 420,415 protein sequences from 12 eukaryotic species, in-167

cluding Caenorhabditis elegans, Drosophila melanogaster, Ciona intestinalis,168

Danio rerio, Tetraodon nigroviridis, Gallus gallus, Monodelphis domestica,169

Mus musculus, Rattus norvegicus, Canis familiaris, Pan troglodytes and Homo170

sapiens. The protein sequences for these genes were downloaded from EMBL171

v65 [56].172

2 The QfO 2011 set was used to evaluate the quality of predicted orthology173

relationships. This set was the reference proteome dataset (2011) of The Quest174

for Orthologs[33], which contains 754,149 protein sequences of 66 species.175

3 The large Bac set was used to evaluate performance, including CPU time, real176

time and RAM usage. This set includes 5,950,817 protein sequences from 1,760177

bacterial species. The protein sequences were downloaded from GenBank [57].178

For a full list, see the additional file 1.179

Hu and Friedberg Page 9 of 25

We also compared SwiftOrtho with several existing orthology analysis tools for180

predictive quality and performance. The methods compared were: OrthoMCL(v2.0),181

FastOrtho, OrthAgogue, and OrthoFinder.182

Orthology Analysis Pipeline183

The pipeline for all the tools follows the standard steps of graph-based orthology184

prediction, (1) all-vs-all homology search, (2) orthology inference, and (3) cluster185

analysis.186

Homology Search187

SwiftOrtho used its built-in module to perform all-vs-all homology search. For all188

the three sets, the E-value was set 10−5. The amino acid alphabet was set to the189

regular 20 amino acids for the three sets. The spaced seed parameter was set to190

1011111,11111 for the Euk, 11111111 for the QfO 2011, and 111111 for Bac.191

OrthoMCL, FastOrtho, OrthAgogue, and OrthoFinder use BLASTP (v2.2.27+) [58]192

to perform all-vs-all homology search. The first three tools require the user to do193

this manually. To compare the methods, the -e (e-value), -v (number of database se-194

quences to show one-line descriptions), and -b (number of database sequence to show195

alignments) parameters of BLASTP were set to 10−5, 1,000,000, and, 1,000,000 for196

OrthoMCL, FastOrtho, and OrthAgogue. The OrthoFinder calls BLASTP, and the197

E-value of BLASTP have been set to 10−3.198

Orthology Inference199

SwiftOrtho, OrthoMCL, FastOrtho, OrthAgogue, and OrthoFinder were applied to200

perform orthology inference on the homologs. The first four tools are able to identify201

(co-)orthologs and in-paralogs, and the coverage (fraction of aligned regions) was set202

to 50%, while other parameters were set to their default values, see Supplementary203

Materials for full details. FastOrtho does not report (co-)orthologs and in-paralogs204

directly. However, the relevant information is stored in an intermediate file, from205

Hu and Friedberg Page 10 of 25

which we have extracted that information. Orthofinder does not report orthology206

relationships.207

Cluster Analysis208

All the tools in this study use MCL [21] for clustering. To control the granularity of209

the clustering, MCL performs an inflation operation set by the -I option [21, 59].210

In this study, -I was set to 1.5. To take advantage of multiprocessor capabilities,211

we set the thread number of MCL to 12. SwiftOrtho has an alternative clustering212

algorithm APC, which we have also applied to Euk andBac.213

Evaluation of Prediction Quality214

Evaluation of Predicted Orthologous Group215

The OrthoBench set was used to evaluate the quality of predicted orthologous216

groups in Bac. This set contains 70 manually curated orthologous groups of the 12217

species from Bac and has been used as a high quality gold standard benchmark218

set for orthologous group prediction [13]. In this study, we used OrthoBench v2219

(Supplementary Table S1). Each manually curated group of OrthoBench v2 set220

finds the best match in the predicted orthologous groups, where the best match221

means that the number of genes shared between manually curated and predicted222

orthologs is maximized, and the method to calculate precision and recall is shown223

in Supplementary Figure S1.224

Evaluation of Predicted Orthology Relationships225

The Quest of Orthologs web-based service (QfO) was employed to evaluate the qual-226

ity of the orthology relationships predicted from the QfO 2011 set[33]. QfO service227

evaluates the predictive quality by performing four phylogeny-based tests of Species228

Tree Discordance Benchmark, Generalized Species Tree Discordance Benchmark,229

Agreement with Reference Gene Phylogenies: SwissTree, and Agreement with Refer-230

ence Gene Phylogenies: TreeFam-A, and two function-based tests of Gene Ontology231

Hu and Friedberg Page 11 of 25

conservation test and Enzyme Classification conservation test [33]. We also applied232

two more orthology prediction tools, SonicParanoid[31] and InParanoid (v4.1)[5],233

on the QfO 2011 set and used their results as control because InParanoid has best234

performance among the results from QfO service website and SonicParanoid is a fast235

implementation of InParanoid. The pairwise orthology relationships were extracted236

from the predicted orthologous groups of all the tools, including SonicParanoid and237

InParanoid, and then submitted to the QfO web-service for further evaluation.238

Hardware239

Unless specified otherwise, all tests were run on the Condo cluster of Iowa State240

University with Intel Xeon E5-2640 v3 at 2.60GHz, 128GB RAM, 28TB free disk.241

The Linux command time -v was used to track CPU and peak memory usage.242

Findings243

We compared the orthology analysis performance of SwiftOrtho, OrthoMCL, Fas-244

tOrtho, OrthAgogue, and OrthFinder using Euk, QfO 2011, and Bac. The orthology245

analysis consists of homology search, orthology inference, and cluster analysis.246

Orthology Analysis on Euk247

The results of orthology analysis on Euk are summarized in Table 1, and are elab-248

orated upon below.

SwiftOrtho OrthoMCL FastOrtho OrthAgogue OrthoFinder

Homology
Search

Method SO built-in BLASTP
Hits 162,695,330 947,203,546 654,792,861
Uniq Hits 162,695,330 297,107,872 266,104,611

Orthology
Inference

(Co-)orthologs 1,422,920 8,279,424 3,297,613 1,265,553 N/A
In-paralogs 631,033 2,517,166 2,546,296 759,989 N/A

Clustering
Algorithm MCL APC MCL
Orthologous
Groups

44,551 38,748 36,901 40,943 51,297 19,904

Table 1 Comparative orthology analysis on the Euk set. N/A: not available, SO:
SwiftOrtho, MCL: Markov Clustering, APC: Affinity Propagation Cluster.

249

Hu and Friedberg Page 12 of 25

Homology Search250

The homology search results show that BLASTP detected the largest number251

of homologs (947,203,546). SwiftOrtho found 57.5% of the homologs detected by252

BLASTP but was 38.7 times faster than BLASTP. SwiftOrtho used longer k-mers,253

which reduced both specific and non-specific seed extension. The longer k-mers cause254

seed-and-extension methods to ignore sequences with low similarity. According to255

the RBH rule, orthologs should have higher similarity than non-orthologs, so, the256

decrease in homolgs of SwiftOrtho does not significantly affect the next orthology257

inference. We compared RBHs inferred from homologs detected by BLASTP and258

SwiftOrtho, and the numbers of RBHs for BLASTP and SwiftOrtho are 899,473259

and 957,387, respectively. Identical RBHs are 767,884 (85.37% of BLASTP). These260

results shows that although SwiftOrtho found fewer homologs than BLASTP, it261

does not significantly reduce the number of RBHs. The following results in Figure 4262

also show that there is no significant difference between SwiftOrtho and BLASTP263

in orthologous groups prediction. Homology searches against a large number of264

protein sequences are a major bottleneck in bioinformatics pipelines. For that rea-265

son, many tools have been developed to speed up this process including, among266

others, BLAT, Usearch, LAST, DIAMOND, and Topaz [36, 40–42, 60]. All these267

tools use longer k-mers than BLASTP to speed up performance. We also compared268

SwiftOrtho with them in speed and sensitivity, (Supplementary Table S9). Because269

BLASTP is widely considered the gold standard for comparing protein sequences,270

we use its results as the benchmark to evaluate the sensitivity of other homology271

search tools. We found that Usearch and LAST to be the fastest, however, they only272

found 0.88% and 2.97% hits of BLASTP, respectively. Topaz and BLAT used the273

most CPU time, but found only 33.48% and 28.34% hits of BLASTP, respectively.274

SwiftOrtho and DIAMOND (more sensitive mode) have the highest sensitivity and275

found 52.72% and 58.30% hits of BLASTP in a moderate amount of time, respec-276

Hu and Friedberg Page 13 of 25

tively. These results show that SwiftOrtho has a good trade-off between speed and277

sensitivity.278

Orthology Inference279

OrthoMCL and FastOrtho found more orthology relationships than SwiftOrtho and280

OrthAgogue. This is because OrthoMCL and FastOrtho use the negative log ratio281

of the e-value as the edge-weighting metric. The BLASTP program rounds E-value282

< 10−180 to 0. Consequently, for homolgs with an e-value < 10−180, OrthoMCL283

and FastOrtho treat them as the RBHs, overestimating the number of orthologs.284

An example showing the OrthoMCL and FastOrtho overestimation can be found in285

Table S4.286

Use of Computational Resources287

OrthoMCL v2.0 used the most CPU time and real time because of the required288

I/O operations. The RAM usage of OrthoMCL was 3.45GB, while the generated289

intermediate file occupied >19 TB disk space. OrthAgogue was the most efficient290

in real time, because of its ability to exploit a multi-core processor. However, the291

RAM usage of OrthAgogue was more than 100GB which exceeds that of most292

workstations. The orthology inference module of FastOrtho was the most memory-293

efficient among all the tools and was also fast. SwiftOrtho was the most CPU294

time efficient, although its real time was twice as that of OrthAgogue. Because the295

orthology inference module of SwiftOrtho was written in pure Python, we retested296

it by using the PyPy interpreter, an alternate implementation of Python [61]. When297

running with PyPy the real run time of SwiftOrtho was close to that of OrthAgogue298

(Table S5)299

Hu and Friedberg Page 14 of 25

Cluster Analysis300

OrthoFinder identified the smallest number of orthologous groups. Other tools iden-301

tified many more orthologous groups than OrthoFinder, ranging from 36,901 to302

51,297. The APC algorithm found fewer clusters than the MCL algorithm.303

Evaluation of Predicted Orthologous Groups304

The quality of predicted orthologous groups is shown in Figure 3. OrthoFinder305

has the best recall, while SwiftOrtho and OrthAgogue have top precision values306

but lower recall values than other tools. Since SwiftOrtho and OrthAgogue use a307

more stringent standard to perform orthology inference, this strategy often increases308

precision but decreases recall [11, 28, 29].309

Because SwiftOrtho uses its built-in homology search module and its recall is lower310

than BLASTP’s, it may reduce the recall of orthologous groups. To address this311

problem, we made two replacements. We replaced SwiftOrtho’s homology module312

with BLASTP for SwiftOrtho and replaced BLASTP with SwiftOrtho’s homology313

module for OrthoMCL, FastOrtho, OrthAgogue, and OrthoFinder. We then reran314

the orthology analysis on Euk. The results show that for most tools, replacing315

BLASTP with SwiftOrtho’s built-in homology search module does not significantly316

reduce the recall (Figure 4). The difference in recall between using SwiftOrtho’s317

homology search and using BLASTP is less than 4% except for OrthoMCL and318

FastOrtho. The recall for OrthoMCL and FastOrtho decreased by 8% and 7%,319

respectively. The most likely reason is that the E-value of SwiftOrtho’s homology320

search module is more precise than that of BLASTP, which reduces the false RBHs321

as mentioned above. These results show that SwiftOrtho’s homology search module322

is a reliable and fast alternative to BLASTP.323

Since SwiftOrtho uses an APC clustering algorithm, we ran SwiftOrtho with MCL324

and APC on the same data. The results (Figure 5) show that performance of APC325

is very close to that of MCL. APC improves the recall of most tools (Figure 5).326

Hu and Friedberg Page 15 of 25

These results show that APC has the similar performance as the MCL algorithm327

and is a reliable alternative to MCL.328

Orthology Analysis on QfO 2011329

The results of the orthology analysis on QfO 2011 are shown in Table 2 and elab-330

orated below.

SwiftOrtho OrthoMCL FastOrtho OrthAgogue OrthoFinder

Homology
Search

Method SO built-in BLASTP
Hits 183,883,417 642,372,369 935,579,809
Uniq Hits 183,883,417 317,333,885 462,876,579

Orthology
Inference

(Co-)orthologs 2,209,243 3,743,779 2,588,851 2,716,128 N/A
In-paralogs 6,929,058 11,427,118 13,649,582 13,694,208 N/A

Clustering
Algorithm MCL
Orthologous
Groups

60,418 50,970 55,530 50,203 166,217

Table 2 Comparative orthology analysis on the Quest for Orthologs reference
proteome 2011 dataset. SO: SwiftOrtho; MCL: Markov Clustering; APC: Affinity
Propagation Cluster; N/A: not available.

331

Homology Search332

SwiftOrtho found 183,883,417 unique hits while BLASTP found 462,876,579 unique333

hits. However, SwiftOrtho is about 163 times faster than BLASTP.334

Orthology Inference335

OrthoMCL found many more orthologs and co-orthologs than the other tools.336

SwiftOrtho found fewer in-paralogs than other available tools. The CPU time of337

SwiftOrtho is the least of all tools. When using the PyPy interpreter, the real time338

of SwiftOrtho is also close to that of the fastest one, OrthAgogue (Supplementary339

Table S6).340

Cluster Analysis341

Overall, the clustering numbers of SwiftOrtho, OrthoMCL, FastOrtho, and OrthA-342

gogue are similar. However, the number of clusters found by OrthoFinder is three343

times that of other tools, and the next evaluation also shows that OrthoFinder344

performed poorly on QfO 2011.345

Hu and Friedberg Page 16 of 25

Evaluation of Predicted Ortholog Relationships346

The evaluation shows that the performance of SwiftOrtho is close to that of Inpara-347

noid (Figure 6). In some tests (Figure 6, D-E), SwiftOrtho outperformed Inparanoid.348

SwiftOrtho had the best performance in the Generalized Species Tree Discordance349

Benchmark and Agreement with Reference Gene Phylogenies: TreeFam-A tests. In350

the Species Tree Discordance Benchmark, SwiftOrtho had the minimum Robinson-351

Foulds distance. In the Enzyme Classification (EC) conservation test, SwiftOrtho352

had the maximum Schlicker similarity. These two metrics reflect the accuracy of353

the algorithm, and the results show that SwiftOrtho has an overall higher accuracy354

than the other tools. At the same time, the recall of SwiftOrtho was lower in some of355

the QfO tests, the main reason is that SwiftOrtho uses an stringent metric system356

to identify orthology relationships.357

Orthology Analysis On Bac358

The results of orthology analysis on Bac are summarized in Table 3.

SwiftOrtho OrthoMCL FastOrtho OrthAgogue OrthoFinder

Homology
Search

Method SO built-in N/A
Hits 8,478,732,753 N/A
Uniq Hits 8,478,732,753 N/A

Orthology
Inference

(Co-)orthologs 876,766,940 N/A 950,683,849 N/A N/A
In-paralogs 622,292 N/A 663,052 N/A N/A

Clustering
Algorithm MCL APC MCL
Orthologous
Groups

240,162 167,355 N/A 242,816 N/A N/A

Table 3 Comparative orthology analysis on the Bac set. SO: SwiftOrtho; MCL:
Markov Clustering; APC: Affinity Propagation Cluster; N/A: not available.

359

Homology Search360

SwiftOrtho detected 8,966,131,536 homologs in the Bac set within 1,247 CPU hours.361

Because it takes long time to perform all-vs-all BLASTP search on the full Bac, we362

randomly selected 1,000 protein sequences from Bac and searched them against the363

full Bac set. It took BLASTP 5.1 CPU hours to find the homologs of these 1,000364

protein sequences. We infer that the estimated CPU time of BLASTP on the full365

Hu and Friedberg Page 17 of 25

Bac set should be around 30,000 CPU hours. SwiftOrtho was almost 25 times faster366

than BLASTP on Bac.367

Orthology Inference368

SwiftOrtho, OrthoMCL, FastOrtho, and OrthAgogue were used to infer (co-369

)orthologs and in-paralogs from the homologs detected by the homology search370

module of SwiftOrtho in the Bac set. We did not test Orthofinder, because Or-371

thofinder does not accept a single file of homologs as input. For the 1,760 proteomes372

in Bac, OrthoFinder needs to perform 3,097,600 pairwise species-by-species com-373

parisons, which will generate the same number of files. Then, OrthoFinder performs374

the orthology inference on these 3,097,600 files. Even at one minute per file, it will375

take an estimated 6 CPU years to process all the files.376

Due to memory limitations, only SwiftOrtho and FastOrtho finished the orthol-377

ogy inference on Bac. The results are shown in Table 3. The numbers of (co-378

)orthologs and in-paralogs inferred by SwiftOrtho and FastOrtho are similar. The379

number of common orthology relationships between SwiftOrtho and FastOrtho was380

861,619,519 (98.2% of SwiftOrtho and 90.57% of FastOrtho). Compared with Euk,381

SwiftOrtho and FastOrtho have a similar predictive quality on Bac. There are three382

possible explainations for these results. The first is that Euk contains many pro-383

tein isoforms which cause FastOrtho to overestimate the number of orthologs and384

in-paralogs. The second is that the gene duplication rate in Bacteria is lower than385

that in Eukaryotes [62, 63]. For Bac, each gene in one species has only small num-386

ber of homolgs in other species, which makes FastOrtho unlikely to overestimate387

the number of RBHs. The third is that SwiftOrtho uses double-precision floating-388

point to store the E-value, which increases the precision of E-value from 10−180 to389

10−308. This improvement also reduces the possibility that FastOrtho may report390

false RBHs.391

Hu and Friedberg Page 18 of 25

Computational resource use: Of the porgeams tested, only SwiftOrtho and392

FastOrtho finished the orthology inference step. FastOrtho and OrthAgogue did393

not finish the tests due to insufficient RAM; OrthoMCL aborted after running out394

of disk space, as it needed more than 18TB. The peak RAM usage of SwiftOrtho395

and FastOrtho were 90.6GB and 99.5GB, respectively. When we used the PyPy396

interpreter, the Peak RAM usage of SwiftOrtho was reduced to 72.1GB. FastOrtho397

was about 1.52 times faster than SwiftOrtho which ran the tests in the CPython398

interpreter. When using the PyPy interpreter, SwiftOrtho ran 1.58 times faster than399

FastOrtho. The memory usage and CPU time are shown in Table S7.400

Cluster Analysis401

The clustering numbers of SwiftOrtho and FastOrtho are similar. We compared the402

APC algorithm and the MCL algorithm, and APC found fewer clusters than MCL.403

The APC used much less memory and less CPU time than MCL. However, due to404

the lack of support for multi-threading and a large number of I/O operations, the405

real run time of APC is longer than that of MCL.406

Tests on a Low-memory System407

Because SwiftOrtho is designed to process large-scale data on low-memory comput-408

ers, we used it to analyze Bac on a range of computers with different specifications.409

The results show that the memory usage of SwiftOrtho is flexible and adaptes to the410

size of the computer’s memory. In the tests, SwiftOrtho finished orthology analysis411

of Bac set on a computer with only 4GB RAM in a reasonable time (Table S8).412

Comparison with other Orthology Analysis Pipelines413

SonicParanoid, OMA, and ProteinOrth are also graph-based methods and have414

been optimized for large-scale data sets [17, 31, 32]. We compared SwiftOrtho with415

them in both speed and memory usage. The results are shown in Table S10. OMA416

is very slow because it uses the Smith-Waterman algorithm to perform all-vs-all417

Hu and Friedberg Page 19 of 25

alignment. In our tests, OMA took 0.84 CPU hours to align two species (4,064 and418

4,140 genes) of Bac set. For Bac set, OMA needs to perform 3,097,600 species-by-419

species alignments and the total time will be over two million CPU hours. It is420

impractical to apply OMA to large-scale data set.421

SonicParanoid worked well on Euk andQfO 2011 sets. Compared with SwiftOrtho,422

SonicParanoid ran faster and required less RAM on small data sets. However, it423

exited abnormally when applied to Bac set.424

Proteinortho also worked well on the Euk and QfO 2011 sets. When applied to425

the Bac set, Proteinortho needs to perform 1,547,920 species-by-species proteome426

alignments. It took Proteinortho 186.5 CPU hours (using DIAMOND) to complete427

23,331 (1.5%) alignments, we estimate that Proteinortho will take about 12,355428

CPU hours to finish homology search. Since LAST is much faster than DIAMOND,429

we reran Proteinortho on Bac set, using LAST for homology search. The CPU time430

for LAST on Bac set was 2,368 hours. Although the previous results (Supplemen-431

tary Table S9) show that LAST is about 20 times faster than SwiftOrtho, LAST432

took much more CPU time than SwiftOrtho in all-vs-all homology search step. We433

think it is because the species-by-species alignment approach requires more than434

1.5 million I/O operations, which significantly reduces the speed. The CPU utiliza-435

tion of orthology inference and clustering of Proteinortho was very low (less than436

10%) when applied to Bac set, which led to a very long real time (more than 150437

hours); this is because Proteinortho occupied about 85% of physical memory when438

applied to large-scale data, which resulted in frequent data exchange between RAM439

and swap space and greatly reduced the speed. In sum, these results show that440

SwiftOrtho is a top performer on large-scale data.441

Discussion442

We present SwiftOrtho, a new high performance graph based homology classification443

tool. Unlike most tools that only perform orthology inference, SwiftOrtho integrates444

Hu and Friedberg Page 20 of 25

all the modules necessary for a full orthology analysis, including homology search,445

orthology inference and cluster analysis. SwiftOrtho is designed to analyze large-446

scale genomic data on a normal desktop computer in a reasonable time. In our tests,447

SwiftOrtho’s homology search module was nearly 30 times faster than BLASTP.448

The orthology inference module of SwiftOrtho was nearly 500 times faster than449

OrthoMCL when applied to Euk. When applied to the large-scale dataset, Bac,450

SwiftOrtho was the only one that finished orthology inference test on a workstation451

with 32GB RAM. The cluster module of SwiftOrtho using APC can handle data452

that is much larger than the computer memory. In our test, APC has comparable453

recall and accuracy, but requires much less memory than MCL. APC even improved454

F1-measure score by increasing recall in most cases. With the help of these optimized455

modules, SwiftOrtho has successfully finished an orthology analysis of proteins from456

1,760 bacterial genomes on a machine with only 4GB RAM, which makes SwiftOrho457

usable for large scale analyses for researchers who may not have access to expensive458

computational resources. SwiftOrtho is not only fast but also accurate, as shown in459

the results produced when running on orthobench and QfO[13, 33].460

Conclusion461

In summary, SwiftOrtho is a fast and accurate orthology prediction tool that can462

analyze a large number of sequences with minimal computational resource use. The463

installation and configuration of SwiftOrtho is simple and does not require the user464

to have any experience in database configuration. It is easy to use, as the only input465

required by SwiftOrtho is a FASTA format file of protein sequences with taxonomy466

information in the header line.467

SwiftOrtho can be integrated into various common pipelines where fast orthology468

classification is required such as pan-genome analysis, large-scale phylogenetic tree469

construction, and other multi-genome analyses. It is specifically suited for microbial470

community analyses, where large number of sequences and species are involved.471

Hu and Friedberg Page 21 of 25

Availability of supporting source code and requirements472

The software and related information are listed below:473

Project Name: SwiftOrtho474

Project Home Page: https://github.com/Rinoahu/SwiftOrtho475

Operating System(s): SwiftOrtho was tested on GNU/Linux distribution476

Ubuntu 16.04 64-bit, but we expect SwitOrtho to work on most *nix systems477

Programming Language: Python478

Other Requirements: Python 2.7, Python 3.7, PyPy2.7 v7.0 or higher479

License: GPLv3480

RRID: SCR_017122481

https://github.com/Rinoahu/SwiftOrtho

Hu and Friedberg Page 22 of 25

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
Text for this section . . .

Acknowledgements
Text for this section . . .

References
1. Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. (2005).

doi:10.1146/annurev.genet.39.073003.114725
2. Fitch, W.M.: Distinguishing Homologous from Analogous Proteins. Syst. Zool. 19(2), 99 (1970).

doi:10.2307/2412448
3. Overbeek, R., Fonstein, M., D ’souza, M., Pusch, G.D., Maltsev, N.: The use of gene clusters to

infer functional coupling. Genetics 96, 2896–2901 (1999)
4. Rivera, M.C., Jain, R., Moore, J.E., Lake, J.A.: Genomic evidence for two functionally distinct

gene classes. Genetics 95, 6239–6244 (1998)
5. Remm, M., Storm, C.E.V.V., Sonnhammer, E.L.L.L.: Automatic clustering of orthologs and

in-paralogs from pairwise species comparisons. J. Mol. Biol. 314(5), 1041–1052 (2001).
doi:10.1006/jmbi.2000.5197

6. O’Brien, K.P., Remm, M., Sonnhammer, E.L.L.: Inparanoid: a comprehensive database of
eukaryotic orthologs. Nucleic Acids Res. 33(Database issue), 476–80 (2005).
doi:10.1093/nar/gki107

7. Gabaldón, T., Koonin, E.V.: . Nature Reviews Genetics 14(5), 360–366 (2013).
doi:10.1038/nrg3456

8. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the Gene
Lineage into its Species Lineage, a Parsimony Strategy Illustrated by Cladograms Constructed
from Globin Sequences. Syst. Biol. 28(2), 132–163 (1979). doi:10.1093/sysbio/28.2.132

9. Kristensen, D.M., Wolf, Y.I., Mushegian, A.R., Koonin, E.V.: . Briefings in bioinformatics 12(5),
379–91 (2011). doi:10.1093/bib/bbr030

10. Gabaldón, T.: Large-scale assignment of orthology: back to phylogenetics? Genome Biol. 9(10),
235 (2008). doi:10.1186/gb-2008-9-10-235

11. Hulsen, T., Huynen, M.A., de Vlieg, J., Groenen, P.M.A.: Benchmarking ortholog identification
methods using functional genomics data. Genome Biol. 7(4), 31 (2006).
doi:10.1186/gb-2006-7-4-r31

12. Kuzniar, A., van Ham, R.C.H.J., Pongor, S., Leunissen, J.A.M.: The quest for orthologs: finding
the corresponding gene across genomes (2008). doi:10.1016/j.tig.2008.08.009

13. Trachana, K., Larsson, T.A., Powell, S., Chen, W.-H., Doerks, T., Muller, J., Bork, P.: Orthology
prediction methods: a quality assessment using curated protein families. Bioessays 33(10), 769–80
(2011). doi:10.1002/bies.201100062

14. Ward, N., Moreno-Hagelsieb, G.: Quickly finding orthologs as reciprocal best hits with BLAT,
LAST, and UBLAST: How much do we miss? PLoS One 9(7) (2014).
doi:10.1371/journal.pone.0101850

15. Tatusov, R.L., Galperin, M.Y., Natale, D.A., Koonin, E.V.: The COG database: a tool for
genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28(1), 33–36 (2000).
doi:10.1093/nar/28.1.33

16. Roth, A.C.J., Gonnet, G.H., Dessimoz, C.: Algorithm of OMA for large-scale orthology inference.
BMC Bioinformatics 9(1), 518 (2008). doi:10.1186/1471-2105-9-518

17. Altenhoff, A.M., Glover, N.M., Train, C.M., Kaleb, K., Warwick Vesztrocy, A., Dylus, D., De
Farias, T.M., Zile, K., Stevenson, C., Long, J., Redestig, H., Gonnet, G.H., Dessimoz, C.: The
OMA orthology database in 2018: Retrieving evolutionary relationships among all domains of life
through richer web and programmatic interfaces. Nucleic Acids Res. (2018).
doi:10.1093/nar/gkx1019

18. Alexeyenko, A., Tamas, I., Liu, G., Sonnhammer, E.L.L.: Automatic clustering of orthologs and
inparalogs shared by multiple proteomes. In: Bioinformatics (2006).
doi:10.1093/bioinformatics/btl213

19. Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: highly sensitive and fast homology
search. Genome Inform. 14(03), 164–75 (2003). doi:10.1142/S0219720004000661

20. Fischer, S., Brunk, B.P., Chen, F., Gao, X., Harb, O.S., Iodice, J.B., Shanmugam, D., Roos, D.S.,
Stoeckert, C.J.: Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster
proteomes into new ortholog groups. Curr. Protoc. Bioinforma. (2011).
doi:10.1002/0471250953.bi0612s35

21. van Dongen, S.: Graph clustering by flow simulation. Graph Stimul. by flow Clust. PhD thesis,
(2000). doi:10.1016/j.cosrev.2007.05.001

22. Sonnhammer, E.L.L., Koonin, E.V.: Orthology, paralogy and proposed classification for paralog
subtypes. Trends Genet. 18(12), 619–620 (2002). doi:10.1016/S0168-9525(02)02793-2

23. Cannon, S.B., Young, N.D.: OrthoParaMap: Distinguishing orthologs from paralogs by integrating
comparative genome data and gene phylogenies. BMC Bioinformatics (2003).
doi:10.1186/1471-2105-4-35

24. Cutts, T., Down, T., Dyer, S.C., Fitzgerald, S., Fernandez-Banet, J., Graf, S., Haider, S.,
Hammond, M., Herrero, J., Holland, R., Hubbard, T.J.P., Howe, K., Johnson, N., Kahari, A.,

http://dx.doi.org/10.1146/annurev.genet.39.073003.114725
http://dx.doi.org/10.2307/2412448
http://dx.doi.org/10.1006/jmbi.2000.5197
http://dx.doi.org/10.1093/nar/gki107
http://dx.doi.org/10.1038/nrg3456
http://dx.doi.org/10.1093/sysbio/28.2.132
http://dx.doi.org/10.1093/bib/bbr030
http://dx.doi.org/10.1186/gb-2008-9-10-235
http://dx.doi.org/10.1186/gb-2006-7-4-r31
http://dx.doi.org/10.1016/j.tig.2008.08.009
http://dx.doi.org/10.1002/bies.201100062
http://dx.doi.org/10.1371/journal.pone.0101850
http://dx.doi.org/10.1093/nar/28.1.33
http://dx.doi.org/10.1186/1471-2105-9-518
http://dx.doi.org/10.1093/nar/gkx1019
http://dx.doi.org/10.1093/bioinformatics/btl213
http://dx.doi.org/10.1142/S0219720004000661
http://dx.doi.org/10.1002/0471250953.bi0612s35
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/S0168-9525(02)02793-2
http://dx.doi.org/10.1186/1471-2105-4-35

Hu and Friedberg Page 23 of 25

Keefe, D., Kokocinski, F., Kulesha, E., Lawson, D., Longden, I., Melsopp, C., Aken, B.L., Megy,
K., Meidl, P., Ouverdin, B., Parker, A., Prlic, A., Rice, S., Rios, D., Schuster, M., Sealy, I.,
Severin, J., Beal, K., Slater, G., Smedley, D., Spudich, G., Trevanion, S., Vilella, A., Vogel, J.,
White, S., Wood, M., Cox, T., Curwen, V., Ballester, B., Durbin, R., Fernandez-Suarez, X.M.,
Flicek, P., Kasprzyk, A., Proctor, G., Searle, S., Smith, J., Ureta-Vidal, A., Birney, E., Caccamo,
M., Chen, Y., Clarke, L., Coates, G., Cunningham, F.: Ensembl 2007. Nucl. Acids Res. (2007).
doi:10.1093/nar/gkl996

25. Ruan, J., Li, H., Chen, Z., Coghlan, A., Coin, L.J.M., Guo, Y., Hériché, J.K., Hu, Y., Kristiansen,
K., Li, R., Liu, T., Moses, A., Qin, J., Vang, S., Vilella, A.J., Ureta-Vidal, A., Bolund, L., Wang,
J., Durbin, R.: TreeFam: 2008 Update. Nucleic Acids Res. (2008). doi:10.1093/nar/gkm1005

26. Goodstadt, L., Ponting, C.P.: Phylogenetic reconstruction of orthology, paralogy, and conserved
synteny for dog and human. PLoS Comput. Biol. (2006). doi:10.1371/journal.pcbi.0020133

27. Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: EnsemblCompara
GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome research 19(2),
327–35 (2009). doi:10.1101/gr.073585.107

28. Chen, F., Mackey, A.J., Vermunt, J.K., Roos, D.S.: Assessing performance of orthology detection
strategies applied to eukaryotic genomes. PLoS One 2(4), 383 (2007).
doi:10.1371/journal.pone.0000383

29. Altenhoff, A.M., Dessimoz, C.: Phylogenetic and functional assessment of orthologs inference
projects and methods. PLoS Comput. Biol. 5(1), 1000262 (2009). doi:10.1371/journal.pcbi.1000262

30. Sonnhammer, E.L.L., Östlund, G.: InParanoid 8: orthology analysis between 273 proteomes,
mostly eukaryotic. Nucleic acids research 43(Database issue), 234–9 (2015).
doi:10.1093/nar/gku1203

31. Cosentino, S., Iwasaki, W.: SonicParanoid: Fast, accurate and easy orthology inference.
Bioinformatics (2019). doi:10.1093/bioinformatics/bty631

32. Lechner, M., Findeiß, S., Steiner, L., Marz, M., Stadler, P.F., Prohaska, S.J.: Proteinortho:
Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics (2011).
doi:10.1186/1471-2105-12-124

33. Altenhoff, A.M., Boeckmann, B., Capella-Gutierrez, S., Dalquen, D.A., DeLuca, T., Forslund, K.,
Huerta-Cepas, J., Linard, B., Pereira, C., Pryszcz, L.P., Schreiber, F., Da Silva, A.S., Szklarczyk,
D., Train, C.M., Bork, P., Lecompte, O., Von Mering, C., Xenarios, I., Sjölander, K., Jensen, L.J.,
Martin, M.J., Muffato, M., Gabaldón, T., Lewis, S.E., Thomas, P.D., Sonnhammer, E., Dessimoz,
C.: Standardized benchmarking in the quest for orthologs. Nat. Methods (2016).
doi:10.1038/nmeth.3830

34. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proc. Natl.
Acad. Sci. 85(8), 2444–2448 (1988). doi:10.1073/pnas.85.8.2444

35. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool.
J. Mol. Biol. 215(3), 403–410 (1990). doi:10.1016/S0022-2836(05)80360-2. arXiv:1611.08307v1

36. Kent, W.J.: BLAT — The BLAST -Like Alignment Tool. Genome Research 12, 656–664 (2002).
doi:10.1101/gr.229202.

37. Shiryev, S.A., Papadopoulos, J.S., Schäffer, A.A., Agarwala, R., Schaffer, A.A., Agarwala, R.:
Improved BLAST searches using longer words for protein seeding. Bioinformatics 23(21),
2949–2951 (2007). doi:10.1093/bioinformatics/btm479

38. Ma, B., Tromp, J., Li, M.: PatternHunter: faster and more sensitive homology search.
Bioinformatics 18(3), 440–445 (2002). doi:10.1093/bioinformatics/18.3.440

39. Ilie, L., Ilie, S., Khoshraftar, S., Bigvand, A.M.: Seeds for effective oligonucleotide design. BMC
Genomics 12(1), 280 (2011). doi:10.1186/1471-2164-12-280

40. Edgar, R.C.: Search and clustering orders of magnitude faster than BLAST. Bioinformatics
26(19), 2460–2461 (2010). doi:10.1093/bioinformatics/btq461. Edgar, Robert C., 2010, Search

41. Kiełbasa, S.M., Wan, R., Sato, K., Horton, P., Frith, M.C.: Adaptive seeds tame genomic sequence
comparison. Genome Res. 21(3), 487–493 (2011). doi:10.1101/gr.113985.110

42. Buchfink, B., Xie, C., Huson, D.H.: Fast and sensitive protein alignment using DIAMOND (2014).
doi:10.1038/nmeth.3176

43. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol.
147(1), 195–197 (1981). doi:10.1016/0022-2836(81)90087-5

44. Chao, K.M., Pearson, W.R., Miller, W.: Aligning two sequences within a specified diagonal band.
Bioinformatics 8(5), 481–487 (1992). doi:10.1093/bioinformatics/8.5.481

45. Landès, C., Risler, J.L.: Fast databank searching with a reduced amino-acid alphabet. Computer
applications in the biosciences : CABIOS 10(4), 453–454 (1994)

46. Murphy, L.R., Wallqvist, A., Levy, R.M.: Simplified amino acid alphabets for protein fold
recognition and implications for folding. Protein Eng. Des. Sel. 13(3), 149–152 (2000).
doi:10.1093/protein/13.3.149

47. Peterson, E.L., Kondev, J., Theriot, J.A., Phillips, R.: Reduced amino acid alphabets exhibit an
improved sensitivity and selectivity in fold assignment. Bioinformatics (Oxford, England) 25(11),
1356–1362 (2009). doi:10.1093/bioinformatics/btp164

48. Edgar, R.C.: Local homology recognition and distance measures in linear time using compressed
amino acid alphabets. Nucleic acids research 32(1), 380–5 (2004). doi:10.1093/nar/gkh180

49. Ye, Y., Choi, J.-H., Tang, H.: RAPSearch: a fast protein similarity search tool for short reads.
BMC Bioinformatics 12(1), 159 (2011). doi:10.1186/1471-2105-12-159

50. Gibbons, T.R., Mount, S.M., Cooper, E.D., Delwiche, C.F.: Evaluation of BLAST-based
edge-weighting metrics used for homology inference with the Markov Clustering algorithm. BMC

http://dx.doi.org/10.1093/nar/gkl996
http://dx.doi.org/10.1093/nar/gkm1005
http://dx.doi.org/10.1371/journal.pcbi.0020133
http://dx.doi.org/10.1101/gr.073585.107
http://dx.doi.org/10.1371/journal.pone.0000383
http://dx.doi.org/10.1371/journal.pcbi.1000262
http://dx.doi.org/10.1093/nar/gku1203
http://dx.doi.org/10.1093/bioinformatics/bty631
http://dx.doi.org/10.1186/1471-2105-12-124
http://dx.doi.org/10.1038/nmeth.3830
http://dx.doi.org/10.1073/pnas.85.8.2444
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://arxiv.org/abs/arXiv:1611.08307v1
http://dx.doi.org/10.1101/gr.229202.
http://dx.doi.org/10.1093/bioinformatics/btm479
http://dx.doi.org/10.1093/bioinformatics/18.3.440
http://dx.doi.org/10.1186/1471-2164-12-280
http://dx.doi.org/10.1093/bioinformatics/btq461
http://arxiv.org/abs/Edgar, Robert C., 2010, Search
http://dx.doi.org/10.1101/gr.113985.110
http://dx.doi.org/10.1038/nmeth.3176
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1093/bioinformatics/8.5.481
http://dx.doi.org/10.1093/protein/13.3.149
http://dx.doi.org/10.1093/bioinformatics/btp164
http://dx.doi.org/10.1093/nar/gkh180
http://dx.doi.org/10.1186/1471-2105-12-159

Hu and Friedberg Page 24 of 25

Bioinformatics 16(1) (2015). doi:10.1186/s12859-015-0625-x
51. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of

protein families. Nucleic Acids Res. 30(7), 1575–1584 (2002). doi:10.1093/nar/30.7.1575.
journal.pone.0035671

52. Emms, D.M., Kelly, S.: OrthoFinder: solving fundamental biases in whole genome comparisons
dramatically improves orthogroup inference accuracy. Genome Biology 16(1), 157 (2015).
doi:10.1186/s13059-015-0721-2

53. Davis, J.J., Gerdes, S., Olsen, G.J., Olson, R., Pusch, G.D., Shukla, M., Vonstein, V., Wattam,
A.R., Yoo, H.: PATtyFams: Protein families for the microbial genomes in the PATRIC database.
Front. Microbiol. 7(FEB), 118 (2016). doi:10.3389/fmicb.2016.00118

54. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814),
972–6 (2007). doi:10.1126/science.1136800. 1401.2548

55. Lam, S.K., Pitrou, A., Seibert, S.: Numba: A LLVM-based python JIT compiler. Proc. Second
Work. LLVM Compil. Infrastruct. HPC - LLVM ’15, 1–6 (2015). doi:10.1145/2833157.2833162

56. Curwen, V., Eyras, E., Andrews, T.D., Clarke, L., Mongin, E., Searle, S.M.J., Clamp, M.: The
Ensembl automatic gene annotation system. Genome Res. 14(5), 942–950 (2004).
doi:10.1101/gr.1858004

57. Benson, D.A.: GenBank. Nucleic Acids Res. 28(1), 15–18 (2000). doi:10.1093/nar/28.1.15
58. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L.:

BLAST+: architecture and applications. BMC Bioinformatics (2009).
doi:10.1186/1471-2105-10-421

59. Brohée, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction
networks. BMC Bioinformatics (2006). doi:10.1186/1471-2105-7-488

60. Medlar, A., Holm, L.: TOPAZ: Asymmetric suffix array neighbourhood search for massive protein
databases. BMC Bioinformatics (2018). doi:10.1186/s12859-018-2290-3

61. Rigo, A., Pedroni, S.: PyPy ’ s Approach to Virtual Machine Construction. Companion to 21st
ACM SIGPLAN Symp., 944–953 (2006). doi:10.1145/1176617.1176753

62. Bratlie, M.S., Johansen, J., Sherman, B.T., Huang, D.W., Lempicki, R.A., Drabløs, F.: Gene
duplications in prokaryotes can be associated with environmental adaptation. BMC Genomics
(2010). doi:10.1186/1471-2164-11-588

63. Katju, V., Bergthorsson, U.: Copy-number changes in evolution: Rates, fitness effects and adaptive
significance (2013). doi:10.3389/fgene.2013.00273

http://dx.doi.org/10.1186/s12859-015-0625-x
http://dx.doi.org/10.1093/nar/30.7.1575
http://arxiv.org/abs/journal.pone.0035671
http://dx.doi.org/10.1186/s13059-015-0721-2
http://dx.doi.org/10.3389/fmicb.2016.00118
http://dx.doi.org/10.1126/science.1136800
http://arxiv.org/abs/1401.2548
http://dx.doi.org/10.1145/2833157.2833162
http://dx.doi.org/10.1101/gr.1858004
http://dx.doi.org/10.1093/nar/28.1.15
http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1186/1471-2105-7-488
http://dx.doi.org/10.1186/s12859-018-2290-3
http://dx.doi.org/10.1145/1176617.1176753
http://dx.doi.org/10.1186/1471-2164-11-588
http://dx.doi.org/10.3389/fgene.2013.00273

Hu and Friedberg Page 25 of 25

Figures

Figure 1 The flow cart of SwiftOrtho. SwiftOrtho is a graph-based method which
consist of three major steps: All-vs-All Homology Search: A seed-and-extension method is
used to perform homology search; Orthology Inference: Nodes are gene names, edges are
similarity score of pairwise genes. 1. A1-B1 are putative orthologs identified by RBH. 2.
A1-A2 and B1-B2 are putative in-paralogs as the bit scores of these pairs greater than A1-B1;
3. A2-B1 and A2-B2 are putative co-orthologs as these pairs are not orthologs but A1-B1 are
orthologs and A1-A2, B1-B2 are in-paralogs; Cluster Analysis: Markov clustering or
Affinity Propagation Algorithm is used to cluster orthology relationships.

Figure 2 Comparing Standard Smith-Waterman with Banded Smith-Waterman.
A. Similarity score matrix for Standard Smith-Waterman. Standard Smith-Waterman
algorithm need to calculate all the entries. B. Similarity score matrix for Banded
Smith-Waterman. Banded Smith-Waterman algorithm only need to calculate the entries on
and near the diagonal.

Figure 3 Evaluation of predicted orthologous groups. Evaluation of different tools on
OrthoBench database. SO+MCL: SwiftOrtho with MCL; SO+APC: SwiftOrtho with
Affinity Propagation Clustering; OM: OrthoMCL v2; FO: FastOrtho; OA: OrthAgogue;
OF: OrthoFinder.

Figure 4 Comparing BLASTP and SwiftOrtho’s homology search module on the
quality of orthologous groups prediction. BLASTP and SwiftOrtho’s search module
perform an all-vs-all search on the Euk set, respectively. Then, all the orthology prediction
tools were employed for orthology inference. Finally, the predicted orthology relationships
were clustered into orthologous groups by MCL algorithm.

Figure 5 Markov Clustering versus Affinity Propagation Clustering. Both
algorithms were applied to cluster the orthology relationships of the Euck set inferred by
different orthology prediction tools, into orthologous groups. As OrthoFinder does not report
orthology relationships, the Affinity Propagation can not be applied to its results. MCL:
Markov Clustering algorithm; APC: Affinity Propagation Clustering.

Figure 6 The Benchmarking in Quest for Orthologs. A: Species Tree Discordance
Benchmark. Inparanoid has minimum average Robinson-Foulds distance. SwiftOrtho’s
average RF distance is close to that of Inparanoid. The prediction inferred by OrthoFinder is
not aviable for this test; B: Generalized Species Tree Discordance Benchmark. InParanoid
has minimum average Robinson-Foulds distance. The prediction inferred by OrthoFinder is
not aviable for this test; C: Agreement with the Reference Gene Phylogenies of SwissTree.
SwiftOrtho has the highest positive prediction value rate(Recall). InParanoid has the highest
true positive rate (precision); D: Agreement with Reference Gene Phylogenies of TreeFam-A.
SonicParanoid has the highest positive prediction value rate (recall), however, its true positive
rate (precision) is close to zero. SwiftOrtho has the second highest recall and precision; E:
Gene Ontology conservation test. OrthoMCL has the highest average Schlicker similarity; F:
Enzyme Classification conservation test. SwiftOrtho has the highest average Schlicker
similarity. OrthoMCL detected the most orthology relationships and has the highest recall.

Tables
Additional Files
Additional file 1 —
Metadata for the genome assemblies of the Bac set (tab-delimited text file).
https://figshare.com/s/19a006d6fea9c2494ab8

https://figshare.com/s/19a006d6fea9c2494ab8

Figure 1 Click here to access/download;Figure;F1_swo_flow.eps

https://www.editorialmanager.com/giga/download.aspx?id=76887&guid=76c19cc1-983f-4b63-ac9d-28d8745c5b51&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=76887&guid=76c19cc1-983f-4b63-ac9d-28d8745c5b51&scheme=1

Figure 2 Click here to access/download;Figure;F2_bandSW.eps

https://www.editorialmanager.com/giga/download.aspx?id=76888&guid=5d7d0a35-12a9-4422-acd3-c9ce9144eb97&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=76888&guid=5d7d0a35-12a9-4422-acd3-c9ce9144eb97&scheme=1

Figure 3 Click here to access/download;Figure;F3_recall_acc.eps

https://www.editorialmanager.com/giga/download.aspx?id=76889&guid=08a9cf43-bdd0-427b-8e1a-52229fdd7e70&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=76889&guid=08a9cf43-bdd0-427b-8e1a-52229fdd7e70&scheme=1

Figure 4 Click here to access/download;Figure;F4_blastp_vs_so.eps

https://www.editorialmanager.com/giga/download.aspx?id=76890&guid=f51034fc-9c0b-4c6c-a16f-44fcde3decd4&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=76890&guid=f51034fc-9c0b-4c6c-a16f-44fcde3decd4&scheme=1

Figure 5 Click here to access/download;Figure;F5_comp_mcl_apc.eps

https://www.editorialmanager.com/giga/download.aspx?id=76891&guid=587b2358-c0f2-4a8b-88f8-11a28b03c07c&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=76891&guid=587b2358-c0f2-4a8b-88f8-11a28b03c07c&scheme=1

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0 2000 4000 6000 8000 10000

better

A
v
g
 R

o
b
in

s
o
n
-F

o
u
ld

s
 d

is
ta

n
c
e

number of completed tree samplings (of 50k trials)

0.200

0.250

0.300

0.350

0 500 1000 1500 2000 2500 3000 3500 4000

better

A
v
g
 R

o
b
in

s
o
n
-F

o
u
ld

s
 d

is
ta

n
c
e

number of completed tree samplings (of 50k trials)

0.300

0.400

0.500

0.600

0.700

0.800

0.900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

better

P
o
s
it
iv

e
 p

re
d
ic

ti
v
e

v
a
lu

e
ra

te

True positive rate

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

better

P
o
s
it
iv

e
 p

re
d
ic

ti
v
e

v
a
lu

e
ra

te

True positive rate

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0.550

0.600

0 20000 40000 60000 80000 100000 120000 140000

better

A
v
g

S
c
h
lic

k
e
r
S

im
ila

ri
ty

number of ortholog relations

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

0.960

0.980

0 20000 40000 60000 80000 100000 120000

better

A
v
g

S
c
h
lic

k
e
r
S

im
ila

ri
ty

number of ortholog relations

FastOrtho
OrthoMCL

OrthAgogue
OrthoFinder

SwiftOrthoSonicParanoid
InParanoid

A B

C D

E F

Figure 6 Click here to access/download;Figure;F6_s_qfo.eps

https://www.editorialmanager.com/giga/download.aspx?id=76892&guid=eb373d84-19e5-46c0-8ad6-8c6ce10122d2&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=76892&guid=eb373d84-19e5-46c0-8ad6-8c6ce10122d2&scheme=1

Figure S1 Click here to access/download;Figure;S1_evaluate_OGs.eps

https://www.editorialmanager.com/giga/download.aspx?id=76893&guid=4b2faa07-996b-4cf9-8e7f-63eb4fd6377b&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=76893&guid=4b2faa07-996b-4cf9-8e7f-63eb4fd6377b&scheme=1

Supplementary Material

Click here to access/download
Supplementary Material

Supp_SwiftOrtho_note_2_gigascience_revised.pdf

https://www.editorialmanager.com/giga/download.aspx?id=76894&guid=e54d0947-6f5a-4684-bdd0-a07419db55d3&scheme=1

Hans Zauner, PhD
Editor, GigaScience
Oxford University Press

Iddo Friedberg, PhD
Associate Professor
College of Veterinary Medicine
Iowa State University
Ames, IA 50011
T: +1 515 294 5959
E: idoerg@iastate.edu

June 6, 2019
Dear Dr. Zauner,

Enclosed please find our revised manuscript. We would like to thank the reviewers and yourself
for the large amount of time and effort that were spent reading and commenting on the
manuscript. We are grateful for this effort, and we have addressed all comments in detail. We
would like to stress that SwiftOrtho’s strength lies both in its modular versatility, and in its low
consumption of computational resources, making it especially suitable for low- and medium
budget labs, but is easy and accurate enough to be used universally.

We have upgraded the software to Python 3, and rewrote the code to conform with PEP-8. We
have also compared with all the other tools requested, and some others, including DIAMOND,
Usearch, TOPAZ, LAST and BLAT.

We are happy to include the paper in the Technical Notes section. We have registered
SwiftOrtho in SciCrunch.org, and added the Software Availability section, and the availability of
supporting source code and requirements.

Below are the reviewers’ requests, and our detailed responses are in italics. We are looking
forward to your feedback.

Sincerely,

Iddo Friedberg

Personal Cover Click here to access/download;Personal Cover;SwiftOrtho
Rebuttal Letter.pdf

https://www.editorialmanager.com/giga/download.aspx?id=76896&guid=fcabb8b9-e4bf-4e8c-9e7f-bf1cbc71d84e&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=76896&guid=fcabb8b9-e4bf-4e8c-9e7f-bf1cbc71d84e&scheme=1

(Reviewer 1)

The paper of Hu and Friedberg presents an interesting new method for large-scale
identification of orthologous groups without the need for large-scale compute servers.
The use of spaced seeds and reduced amino alphabets are innovative and interesting,
and the method has a high precision across benchmarks, compared to its competitors.
While the method is interesting and has added value, I think there are a number of
ways in which the paper and the tool could be improved. I have ordered my
recommendations in a few different categories.

Scientific:
* The key point of the paper seems to be that SwiftOrtho requires less memory
and CPU compared to other tools, yet there is no figure or table that compares these
characteristics across tools for datasets of different sizes. I would strongly recommend
adding this to actually show the difference with each of the other tools.
 Orthology analysis has three steps: 1) homology search, 2) orthology inference,
3) clustering orthology relationships into orthologous groups. We have compared
SwiftOrtho with other tools in each of these steps, and the results are already in the
Supplementary Table S5, ,S6, S7, and S8:

1. In Supplementary Table S5, ,S6 and S7, we have compared CPU time usage of
SwiftOrtho with BLASTP in homology search on different sized data sets. The
results show that SwiftOrtho is about 30-60 times faster than BLASTP.

2. In Supplementary Table S5, ,S6 and S7, we have compared the memory and
CPU time usage of orthology inference of SwiftOrtho with other software on
different data sets. The results show SwiftOrtho is fast and requires less memory
than other tools. For example, in Table S7, only SwiftOrtho and FastOrtho
finished orthology inference on the Bac set (1,760 genomes).

3. In Table S7, we compared two clustering algorithm of MCL and APC. The results
show APC requires less memory than MCL.

4. To further show the performance of SwiftOrtho, we also used it to analyze Bac
on several hardware configurations. Supplementary Table S8 shows that
SwiftOrtho with APC algorithm finished orthology analysis of Bac on a virtual
machine with 4GB RAM. None of orthology inference or MCL algorithm can run
on the this virtual machine.

* Line 227: SwiftOrtho is compared to BlastP, but not to other fast equivalents
such as Diamond or Usearch. I think this comparison should be added, to show the
added value of the method compared to the current state of the art.

Thank you for this comment. It should be noted that the orthology prediction
tools we compared with using BLASTP as the default sequence alignment tool. That’s
why we only used BLASTP. However, we also added a comparison of SwiftOrtho with

BLASTP, LAST, Topaz, Diamond, BLAT, and Usearch. The new benchmark results can
be found in Table S9. The results show that SwfitOrtho has a good trade-off between
speed and recall.

General writing:
* The introduction does not read fluently. It is a bit 'staccato', without clear
connections and transitions between the parts. I think this can use some editing to
more clearly describe the field, its relevance (which is only explained in vague terms at
the moment), the state of the art, the challenge and the contribution by the authors.

We have now improved the Introduction based on this comment, and added the
points requested by the reviewer.

* It is surprising that the methodology for orthology classification (which is what
makes it fast and memory-efficient) is not mentioned in the abstract.

We added more details in the abstract: “SwiftOrtho uses the long k-mers to
speed up homology search, utilizes a reduced amino acid alphabet and spaced seeds to
compensate for the loss of sensitivity due to long k-mers. SwiftOrtho uses Affinity
Propagation algorithm to cluster large-scale data sets.” The part has been highlighted
in red.

* Line 14: Inparanoid is mentioned without introducing it.
We have now introduced InParanoid, and added a few details. See lines: 17-20 “

...Inparanoid uses RBH method to identify orthologs between two species, the genes in
the two species will be identified as the in-paralogs if they are more similar to the
corresponding ortholog than to any gene in the other species...”

* The figures could use a make-over, e.g. by removing horizontal/vertical skewing,
changing fonts and applying a more pleasing color scheme.

We changed fonts and color scheme in Figure 2 and 3, and removed the
skewing.

* It would be very helpful to have a flowchart-like figure that outlines the different
steps taken by the SwiftOrtho algorithm.

We have now added an explanatory flowchart to Figure 1.

* Some of the figures (e.g., Fig 3a) are unnecessary, as they explain things that
can safely be assumed to be textbook knowledge.

It is difficult to know what is textbook knowledge for different groups of readers
in a general-audience journal such as GigaScience. We would therefore rather err on
the side of being inclusive. We believe it is better to have some readers read things
they already know and consider textbook, rather than omit too much and lose readers.
That being said, we have removed Fig 3a and placed it as Figure S1.

* The use of horizontal scales in Figure 6 is puzzling, e.g. the -0.200 lower end for

Fig. 6D. Also, this makes OrthoFinder looks unrealistically bad in panel F.
The value on x-axis for orthofinder is nearly zero. This is the performance we

observed in Swiftortho.

Grammar/spelling:
A thorough round of copy-editing would be highly recommended, as there are several
spelling/grammar/style issues throughout. Some examples are:
* Line 25: limitation -> limiting factor
* Line 51: data set -> data sets (also in line 46)
* Line 401: the sentence is broken.
* Figure legend of Figure 5: OrthFinder -> OrthoFinder, 'can not apply' -> 'cannot
be applied'

Thank you for these comments. We have now fixed these errors, and proofread the
manuscript carefully.

Code/software:
* In my honest opinion, the code needs some serious refactoring; it has many
global variables (code outside functions/classes), has several commented out sections,
largely lacks proper documentation (with docstrings etc.; see https://www.python.org/
dev/peps/pep-0008/) and has many functions that are far too long (and need to be
broken up into smaller ones). Additionally, implementing tests would ensure that the
code functions as intended.

We reformatted the code to PEP-8 style. The Global Variables we used are the
score matrices or char to int tables. If we put these variables in a function, each time
the function is called, it would need to regenerate these matrices or tables, which adds
unnecessary computational overhead. We have also implemented user testing.

* The readme should detail which versions are needed of the packages that are
required.

We added version requirements. We also added an installation script which will
find the packages of correct versions.

* SwiftOrtho is written and distributed in Python 2.7, which is going to be retired
very soon (see https://pythonclock.org/). Updating to Python3 is highly recommended
for durability of the software. This is not difficult to do.

We rewrote the code in Python3.

(Reviewer 2)
Hu and Friedberg present an orthology prediction tool named SwiftOrtho. It is geared
towards low memory and CPU usage in order to enable large-scale analyses including
orthology inference and clustering, which is a desirable goal in the field. The tool is
written in Python and accessible on GitHub where it is also well documented. Overall,
two new concepts are introduced to orthology prediction. First, an alternative algorithm
for homology search which replaces the classical BLAST algorithm. Second, the
application of the "Affinity Propagation Clustering algorithm" (APC) which replaces the
well established but rather memory-intense MCL algorithm.

While the authors exemplify good prediction and recall characteristics compared to
some other approaches, the principal argument of SwiftOrtho being a faster and more
memory efficient tool than currently available is not convincingly demonstrated. There
are already published orthology tools geared in the same direction. The few numbers
presented on runtime and memory usage do not sound like a major improvement from
my experience. Comparative benchmarks are missing in this respect. Similarly, the
presentation of the current state of the field appears rather limited and the choice of
alternative tools or example data sets is outdated. Overall, the provided data did not
convince me.

Major issues:
1. Runtime and memory usage should be benchmarked not only versus OrthoMCL but
also against more recent tools that cover homology search and clustering. I namely
suggest SonicParanoid (cited but not benchmarked), Proteinortho6, and the standalone
tool provided for OMA. Ideally, the two steps (homology search and clustering) could be
evaluated separately.

Thank you for this comment. To clarify, we compared SwiftOrtho not only with
OrthoMCL, but also with FastOrtho, Orthagogue, and Orthofinder. These results are
shown in Tables 1-3 and Figures 3-6. As requested, We added the benchmark results
of SonicParanoid, OMA, and ProteinOrtho6 on the same datasets used in this study. The
results are found in Table S10. Currently, only SwiftOrtho can analyze the large Bac
set.

2. BLAST is the golden standard in the field regarding sensitivity and specificity but not
with respect to runtime or memory requirements. While I like the major concept, there
are plenty of options besides the presented "built-in module" for homology search. It
needs to be put into perspective. Ward, et al. (cited) for instance suggests BLAT, LAST,
and UBLAST. Other promising BLAST-drop-ins are e.g. topaz and diamond. Besides, a
loss of 24% of all RBHs when using the built-in BLAST alternative (line 238) is way
more than what I would have expected from most of these other alternatives.

We used BLASTP as the orthology prediction tools we compared with specify

BLASTP as the default sequence alignment software. We require a homology search
tool to: (1) not create a database on disk, which saves space; (2) be able to adapt to
various application scenarios and flexibly switch between speed and sensitivity because
it will be applied to our other projects; (3) be able to generate all the information we
need so that it can be deeply integrated with our pipelines. Unfortunately, no software
meets all these requirements, that’s why we developed the "built-in module". We
added the benchmark results of some fast BLAST-drop-ins, such as BLAT, LAST,
UBLAST, Diamond, Topaz. The results are shown in Table S9.

3. Please use more recent tools and data sets. For instance, BLASTP v2.2.26 was
published in 2012, which does not represent the current level of optimizations. The
current version is 2.8.1 (2018). OrthoMCL is available at version 5 since 2011 (version
2 was used). Similarly, the QfO 2011 data set is deprecated since 2017.

1. We have compared v2.2.27 and v2.8.1, they generate almost the same results
in almost the same time. However, v2.8.1 was not stable
 on our computers, especially after turning on multi-threading, it often aborted.
So, we still use v2.2.27 to test the software.

2. The Version 5 is the OrthoMCL DataBase not the standalone.The latest version of
standalone is still at 2.0. (URL
https://orthomcl.org/common/downloads/software/v2.0/)

3. The number of protein sequences in QfO 2018 dataset is twice the number of
protein sequences in QfO 2011. In theory, the former will take nearly 4 more
time and memory usage than the latter. In our tests, all-vs-all blastp search on
QfO 2011 data set takes 7,000 cpu hours. If using QfO 2018, it will take
~28,000 CPU hours. In the interest of saving time, we chose QfO 2011 data set
as a benchmark.

4. For orthology inference, the data is stored somewhere in a sorted manner such that
one "can process data that are much larger than the computer". Where is it stored?
Temporary files on the hard drive? This is mentioned for the MCL clustering. How does
your APC-implementation behave in this respect?

1. The temporary files are stored on the hard drive. We have added this
clarification in lines 128-129.

2. The matrices used in APC algorithm are also stored on hard drive. During
updating cells, APC loads a submatrice into memory, which avoids loading all the
data into memory and saves large amounts of memory. This is indicated in the
manuscript in lines 156-158.

5. The concepts of genomes, DNA sequences and amino acid sequences of proteins
need to be sorted throughout the manuscript including the title. E.g. You did not
analyze 1760 bacterial genomes but proteomes. Figure 2 shows nucleic acid alignments
while the discussed context is about amino acids.

1. We changed “genome” to “proteome” or some other indcation that proteins are
analyzed, rather than genes. This is indicated in lines 175, 373, 428, 459, and

https://orthomcl.org/common/downloads/software/v2.0/

caption of Table 2.
2. Figure 2 shows the difference between standard Smith-Waterman and k-banded

Smith-Waterman algorithm used in SwiftOrtho. The Smith-Waterman algorithm
can be applied to protein sequences or nucleic acid sequences. To simplify the
presentation, we used nucleic acid sequences to demonstrate the difference
between two algorithms.

6. The concepts of (co-)orthology and (in-)paralogy should be explained in some more
detail. E.g. the likelihood to maintain the same biological function is much higher for
orthologs than for paralogs. The term "in-paralog" should be explained with its first use
and also put in context to out-paralogs.

1. The term orthologs and paralogs are used to describe evolutionary relationships,
not functional ones. The secondary use of orthologs and paralogs as proxies for
understanding protein function is a derivative, and there are many documented
cases where functional maintenance is more prevalent in paralogs than in
orthologs (e.g. Nehrt et.al, PLoS-CB, 2011). Since we are dealing with the
evolutionary classification, we limit ourselves to the evolutionary use of the
terms.

2. We add more details about co-orthology and in/out-paralogs in background
section.

7. I did not quite get the spaced seed concept. Why would the user need/want to define
at which position of a k-mer mismatches are allowed? This needs to be elaborated in
more detail. I also find the respective binary vector given as parameter (-s) somewhat
strange for a tool that is otherwise designed with easy use in mind (which I really
appreciate). How much does it actually affect the results?

1. The spaced seed used to improve the sensitivity of homology search. Usually,
fast homology search tools are based on seed-and-extension method. Increasing
seed length (k-mer size) increases search speed by reducing non-specific
extension. However, long seed also reduces specific extension and results in low
sensitivity. Spaced seed is one of the methods to increase the sensitivity, and
has been used in many homology search tools, including PatternHunter, LAST,
Diamond, usearch… In these software, PatternHunter and Usearch allows the
users to set the pattern of spaced seed, LAST and Diamond don’t allow users to
change the spaced seeds. We have added wording to better describe this
“Several tools such as PatternHunter, Usearch, LAST, and DIAMOND [19, 38,
40–42] have used spaced seed to increase sensitivity. PatternHunter and
Usearch allow users to use custom spaced seed” in lines: 102-104.

2. SwiftOrtho has a default value for spaced seeds and the users do not need to
change it, However, we still keep this option for experts.

3. The fast and sensitive mode of DIAMOND uses different combination spaced
seeds, and the results from different mode are very different. More benchmark
results can be found in references[29, 30].

8. How is the e-value calculated for the "built-in module" (homology search)?
E = D * m * n * 2^-S’, where D is the size of database, m and n are the length

of query and reference sequences, S’ is the bit score. This is described in the
manuscript in Supplementary Material Section 2.2.

9. When comparing different algorithms, be fair and make sure to use the same or
equivalent parameters (as far as this is possible). The OrthoFinder e-value threshold
was 1e-3 while the other tools were used with 1e-5.

We didn’t set the e-value threshold for OrthoFinder. In fact, OrthoFinder has no
option to change the e-value threshold. We checked the source code of OrthoFinder
and found its e-value threshold is hardcoded to to 1x10^-3.

10. One of the two major selling points is the APC algorithm. It seems, however, not to
be set as the default algorithm. The user can choose between this and MCL. Manuscript
and tool description could use some information on this topic (when to use what). Is
there any parameter for APC similar to the inflation parameter for MCL? Until multi-
threading is implemented for APC, it looks more like a low-memory backup while it
appears to be a fully fletched clustering alternative. What about simply running the
clustering of several connected groups in parallel? In times with plenty of CPU-cores, it
is the overall runtime that counts rather the bare CPU time.

1. Currently, most of the orthology prediction tools prefer MCL as a clustering
algorithm, which is why we also recommend that users try the MCL algorithm
first. However, since the MCL algorithm is an in-memory algorithm which loads
all the data into memory, it cannot cluster data which size is larger than the
system memory. The APC algorithm processes data line by line and doesn’t have
the memory issue. So,in cases of low memory constraints, the users can use
APC algorithm for clustering.

2. As far as we know, APC has no similar parameter to the inflation parameter for
MCL.

3. The bottleneck of our APC implementation is the I/O performance. Even when
multi-threading, the APC still uses much real time. Due to its complexity, we do
not support multithreading for APC now.

4. Running clustering of connected components may be a good method to
parallelize APC algorithm. However, the size of connected components is highly
diverse, for example, the largest connected component of the Bac set covers
90% of the edges, which makes parallelization meaningless, single thread must
process 90% of data.

11. How is the RBH implemented in SwiftOrtho? Usually, not only the single best hit is
used but also very close ones. This might be an alternative reason for the lower number
of orthology relationships (line 243).

We have described in detail how to implement the RBH method in Figures 1 and
lines 126-130. SwiftOrtho uses a stringent RBH method to detect orthologs. For a gene
X in genome A, SwiftOrtho only picks up top 1 hit of gene X in genome B. SwiftOrtho

may pick up multiple hits if and only if the top N hits has the same similarity or score.

12. The underlying data sets, as well as the results from which precision and recall
scores were calculated, should be made available online. It is not trivial to reproduce
e.g. the initial RBH graph from 1760 species which is necessary to evaluate the
clustering algorithm. How was the data chosen?

The species was chosen if they have complete sequenced genomes. In order to
reduce redundancy, we only randomly selected one strain from each species. Since
this data set is not a standard benchmark data set for assessing precision and recall,
we cannot directly calculate precision and recall. We can only evaluate whether the
results are reasonable through indirect methods. In this study, we compared the results

of SwiftOrtho and FastOrtho, and found that ~90% orthology relationships were shared

by these tools (lines: 380-382).

13. I could hardly follow the APC formulas. Important details are missing, e.g. that
matrices are initialized with 0. What is the difference between a well-suited node and
an appropriate node (lines below line 131)? A calculation example would be useful. In
general, a reference or proof is required for the algorithm and the assumptions made
(e.g. line 132). APC requires less memory, what are other advantage and disadvantage
in general?

1. A well-suited node has higher “responsibility value” than an appropriate node,
where “responsibility value” represents how "appropriate" it would be for point i
to pick point k as its exemplar, taking into account other points' preference for
poin k as an exemplar. For more details, please refer to reference[42].

2. Reference[42] has more details about APC algorithm.
3. (1). Advantage: APC requires much less memory and is fast. (2).

Disadvantage: Vlasblom et al.(2009) compared MCL and APC on protein-protein
interaction network and the results show that MCL is more tolerant to noise and
behaves more robustly than the APC; In our practice, the APC is more sensitive
to the metric methods (similarity matrix), the clustering result of normalized
similarity matrix is very different from raw one.

Minor issues:
- Why is there a need to perform large-scale orthology predictions with only 4 GB of
memory? Even consumer PCs have at least 8 GB installed.

1. SwiftOrtho was designed to run on the computers with various hardware
specifications, including old computers. Researchers in low and middle-income
countries may still benefit from such a system. However, a low-overhead system
is generally beneficial to all. The 4GB example is in-extremis, but it illustrates
that SwiftOrtho is a low-resource package.

2. If SwiftOrtho can perform large-scale orthology predictions on low-memory
computer, it can analyze more data on a computer with more RAM.

- Line 37: If I'm not mistaken, OrthoMCL does not use the Inparanoid algorithm even
though its implementation behaves similarly when used with only two genomes.

The authors of OrthoMCL (Li Li et.al, 2003) mentioned that: “...This approach is
similar to INPARANOID, but differs primarily in the requirement that recent paralogs
must be more similar to each other than to any sequence from other species…”.
OrthoMCL uses the same algorithm as Inparanoid to detect orthologs, but uses a higher
threshold to detect recent paralogs (in-paralogs).

- Line 345: It might be advisable to remove different protein isoforms from the data set
beforehand. Usually, these are indicated. If in doubt, only the longest variant can be
used.

We tried to remove isoforms. However, the gene identifiers of the sequences
don’t contains related information. It takes too much time and effort to use self-
alignment method to remove isoforms. So, we just keep all sequences.

- As the BLAST+ implementation is used, its paper should be cited as well: Camacho C.,
Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., & Madden T.L. (2008)
"BLAST+: architecture and applications." BMC Bioinformatics 10:421.

We have now cited this paper, reference [57].

Notes:
- Users typically download a single fasta file for each species of interest from
databases. For use with SwiftOrtho they are required to merge them to a single file and
adding a taxon code. While this might be trivial for experienced users, it is an
unnecessary obstacle for less versed users. Moreover, this strategy of an all-vs-all
BLAST increases memory requirements over a species-by-species implementation. The
many output files (discussed in the manuscript) could be merged.

SwiftOrtho’s homology search module is different from other tools. It builds in-
memory database after loading the fasta file. If we use species-by-species strategy,
SwiftOrtho must build the database for each species several times, which make it much
slower. We added a simple script to merge the fasta at github of SwiftOrtho project.
- line 33: "and and"
- line 102: ". if"
- line 401: sentence was not finished
- citation 11 contains an unnecessary long link

Thank you for these comments. We have now fixed these errors, and proofread
the manuscript carefully.

- author contribution and acknowledgments are missing
Those have been added.

(Reviewer 3)

The authors present SwiftOrtho, a lightweight and modular homology detection and
classification tool. They correctly state that the current tools available for homology
searching often involve all-against-all pairwise comparisons, meaning the compute and
RAM requirements can be large, and these analyses can take hours or days depending
on the number of species and genes. The authors carry out a number of comparative
analyses to demonstrate the efficacy of SwiftOrtho. They present evidence that their
tool is comparable to others in terms of accuracy via various metrics, but accuracy is
sacrificed to achieve very low RAM use to allow the tool to be run on low power
computers. This is the key novelty of this application - being able to access these kinds
of tools on a broader range of compute options is useful. The modularity of SwiftOrtho
is beneficial to allow various homology analyses to be used in place of SwiftOrtho's
homology module, which can help with longevity of the tool.

For the most part, the paper is well-written, has few grammatical and typography
errors, and is structured so that the authors' processes are easily followed. The code
and data used in the manuscript are freely available.

Specific comments:

The tool is written in Python 2.7. This version is due to be unsupported in January
2020. The tool should be updated within the next year to support Python 3.

We upgraded the source code to Python3

Whilst there are two main methods of ortholog identification (tree and graph), these are
not mutually exclusive and some approaches use both (Ensembl Compara /
GeneSeqToFamily for example). This should be stated in the manuscript.

We added a review of the hybrid method (lines: 44-50).

The authors do not present the rationale for using SonicParanoid and InParanoid only
on the QfO 2011 dataset rather than all datasets, apart from using it as a control. This
should be stated.

F.Chen et al (2007) compared several orthology prediction methods and found
InParanoid and OrthoMCL outperformed other tools. InParanoid has the best
performance from the QfO website. So, why we chose InParanoid as control.
SonicParanoid is an faster but less sensitive C-implementation of InParanoid, we also
added it as control. We added this rationale in lines: 234-238.

In the abstract, the authors use the word "costly" to describe computational clusters
capable of carrying out these types of analysis. Whilst bigger HPC/HTC clusters do
indeed make the job quicker, these do not necessarily have to be costly. Indeed, the

cost is never explored in the paper. I suggest removing the subjectivity by omitting
"costly" in the abstract.

We removed the word “cost”.

The authors also state that upwards of 100GB RAM for OrthoAgogue to run "exceeds
most workstations and servers". This isn't true for the current (March 2019) situation.
Building a server 128GB RAM is fairly trivial these days, and can easily cost less than a
2019 MacBook. Similarly, renting a memory-optimised ~128GB server (e.g. r4.4xlarge
VM instance type) from Amazon Web Services is easy. This sentence should be
reworded to reflect that whilst laptops and desktops do not have this RAM availability, it
is certainly not uncommon in "most servers".

We removed the wording that includes “most servers”(line 295).

General grammatical fixes(line numbers shown):

30: "and and"
31: "or COG" -> "(COG)"
46: "on large dataset" -> "on large datasets"
51: "large data set" -> "large datasets"
71: When describing the two sensitivity compensation mechanisms (line 71) it is
inferred that the authors will describe both. Consider removing the "Another method"
sentence, and merging it with the next, e.g. "Reduced amino acid alphabets are also
used to mitigate the loss of sensitivity be representing...." etc.
114: "as edge-weighting" -> "as the edge-weighting"
115: "step take" -> "step takes"
115: remove colon and replace with full stop
126, 129: Both lines start with "However". Consider removing the repetition to make
the comparison clearer (probably the second "however" isn't needed)
After 131: the paragraph "For the large networks" contains "node i" and "node k" that
aren't italicised.

Thank you for these comments. We have now fixed these errors, and proofread
the manuscript carefully.
401: Incomplete sentence: "be used to ..."

We removed this sentence.
Code repository and tests:

The software installs and runs as intended.

The author should update the readme file with the following corrections:
- Example commands are showing missing input file (we used ref.fsa from the example)
- Example command for find_hit.py is missing the "-p" parameter
- Installation instructions are missing "pip install cffi" command in readme file

Thanks for the report. We add an installation step and the installation script will
find and install all the packages.

The author should add available options for any of the command line parameters (i.e. -
p in find_hit.py) in the help message when running the tool.

Users can find a help message for each tool by typing “python foo.py”, foo.py is
one of find_hit.py, find_orth.py, and find_cluster.py.

Most of the times SwiftOrtho tool is unable to recognise paralogs when orthologs are
detected. SwiftOrtho only recognises in-paralogs if the bit score between two paralogs
is higher than orthologs. This might be covered by the use of the term "in-paralogs",
but it's not explicitly clear from the manuscript. This should be addressed.

SwiftOrtho can detected orthologs and in-paralogs. We changed “paralogs”to “in-
paralogs”in the manuscript.

We were not able to run SwiftOrtho successfully when supplying data for the gene
BRAT1 from (chimp, human, pig, dog, and rat) containing within-species paralogs from
chimp. In this case, find_orth.py script fails with the following error:
Traceback (most recent call last):
 File "../SwiftOrtho/bin/find_orth.py", line 551, in <module>
 st, ed, pairs = binary_search(Sqco, [qip, sip], lambda x: x.split('\t', 3)[:2])
 File "../SwiftOrtho/bin/find_orth.py", line 403, in binary_search
 left = m - 1
UnboundLocalError: local variable 'm' referenced before assignment

We are happy to raise an issue in Github for this issue if required.
Thank you for reporting this issue. Recently, We found a bug that if there is no

orthologs found, SwiftOrtho reports the same error. We fixed it but we are not sure
whether it works for your data set. You can clone the latest SwiftOrtho to test it again.
If the problem persists, please file a github issue and send us your test file to help us
solve the problem.

