

Figure S1. Development of FTO inhibitor FB23 and FB23-2, Related to Figure 1. (A) Structural complexes of FTO bound with different ligands. MA from FTO/MA complex (PDB code 4QKN) is colored in cyan, dm³T from FTO/dm³T complex (PDB code 3LFM) in yellow, and rhein from FTO/rhein complex (PDB code 4IE7) in orange, respectively. The structural superimpositions indicate a strategy to design a more potent inhibitor based on MA scaffold. (B) Synthetic scheme of compound FB23 and FB23-2. (C) Crystal structure of FTO bound with FB23. The overall structural complex of FTO/FB23 was colored in grey, and FB23 was colored in cyan. FTO protein in the structural complex of FTO/dm³T was colored in orange, and dm³T in magenta. The structural superimposition was performed in PyMol. The simulated annealing Fo-Fc density map contoured to 3.0 sigma was showed in blue color to confirm that FB23 is indeed bound. (D) NMR measurement of direct interaction between FB23 and FTO protein. NMR-CPMG spectra were recorded for FB23 at 200 µM (red), and in the presence of FTO at 1.0 μ M (green), 2.0 μ M (blue), and 3.0 μ M (cyan), respectively. (E) ¹H nuclear Overhauser effect spectroscopy (NOESY) for FB23-2. The relative configuration of the benzohydroxamic acid in FB23-2 was interfered from the NOE correlation between H-1 and H-10 in the NOESY spectrum, which reveals a hydrogen-bond between H-9 and the carbonyl. (F) Molecular docking of FB23-2 into the structural complex of FTO/FB23. This was performed in PyMOL according to the absolute configuration of FB23-2 determined by both X-ray (see Figure 1H) and NOESY experiment.

	FTO/FB23 (6AKW)
Data collection	
Space group	Н 3
Cell dimensions	
a, b, c (Å)	141.39, 141.39, 83.61
α, β, γ (°)	90, 90, 120
Resolution (Å)	30.0-2.20 (2.28-2.20) ^b
No. of observations	224472
No. unique	31725 (3187)
<i>R</i> _{sym} ^c	0.067 (0.804)
//σ(/)	27.3 (1.83)
Completeness (%)	100 (99.8)
Redundancy	7.1 (5.8)
Data refinement	
Resolution (Å)	28.74-2.20
No. reflections	27969
Completeness (%)	88.2
Rwork/Rfree	0.212/0.254
No. atoms	
protein	3476
ligand	35
water	153
Wilson B factors (Å ²)	29.2
Rmsd ^d in	
Bond lengths (Å)	0.002
Bond angles (^o)	0.651
Ramachandran Plot	
Favored (%)	98.6
Allowed (%)	1.4

Table S1. Data collection and refinement statistics^a, Related to Figure 1.

^aThe structure was solved using one crystal.

^bHighest resolution shell is shown in parenthesis.

 ${}^{\mathrm{c}}R_{\mathrm{sym}}$ = $\Sigma|(\mathrm{I}-<\mathrm{I}>)|/\Sigma(\mathrm{I}),$ where I is the observed intensity.

^dRoot mean squared deviation.

Figure S2. Selectivity profile of FTO inhibitors, Related to Figure 3. (A) Selectivity of FB23 and FB23-2 towards ALKBH5 demethylase. The ALKBH5 demethylation of m⁶A in

RNA in the absence and presence of inhibitors was detected by HPLC. ALKBH5 is active on m⁶A RNA substrate, which is observed to be inhibited by rhein at 50 μ M, but not FB23 or FB23-2. (B) Representative DARTS results for ALKBH5 abundance by western blot. 50 μ M, 200 μ M and 500 μ M FB23-2 were incubated with AML cell lysates for 1 hr at room temperature before pronase digestion. The results are derived from two biological replicates. (C) Effects of FB23-2 on ALKBH5 expression in NB4 and MONOMAC6 AML cells analyzed by RT-qPCR. The cells were treated by DMSO or 5 μ M FB23-2 for 72 hr. (D) Effects of FB23-2 on ALKBH5 abundance in NB4 AML cells detected by western blot. The cells were treated by DMSO or FB23-2 at indicated concentration for 48 hr. The results are derived from two biological replicates. (E) Effects of FB23-2 on enzymatic activity of TET1 by 5hmC dot blot. (F) Effects of FB23-2 on the abundance of global 5mC and 5hmC on DNA in NB4 and MONOMAC6 AML cells via dot blot assay. The AML cells were treated by DMSO or FB23-2 for 48 hr. MB (Methylene Blue) represents loading control of RNA samples. (G) Effects of FB23-2 on the abundance of histone methylation in NB4 AML cells by western blot. The NB4 AML cells were treated by DMSO or inhibitors as indicated for 48 hr. Representative results are derived from two biological replicates. (H) Selectivity of FB23-2 towards human kinases. The percentage inhibition of 405 human kinases by 10 μ M FB23-2 was mapped onto the kinome phylogenetic tree. All the screened kinases have the names in green. Kinases inhibited more than 40% have red circles, which were further assayed for the IC₅₀ calculation. Illustration reproduced courtesy of Cell Signaling Technology, Inc (www. cellsignal.com). (I) Selectivity of FB23 and FB23-2 towards COX-1 and COX-2. MA significantly inhibits COX-1 and COX-2 at 2.5 μ M, while FB23 or FB23-2 minimally inhibits COX-1 and COX-2 even at 50 μ M. SC-500 and DuP-697 are assayed as positive controls. These experiments were performed in duplicate.

5

	Inhibition @ 10 µM (%)		Control	IC of control	
Epigenetic targets	FB23	FB23-2	Control		
HDAC1	4	13	SAHA	8.2 nM	
HDAC9	2	5	TMP269	49 nM	
SIRT2	11	17	Suramin	8.6 μM	
BRD4(1,2)	12	38 (IC ₅₀ > 100 μM)	(+)-JQ-1	41 nM	
DOT1L	15	11	SAH	0.84 μM	
JAR1D1A	2	2	2,4-PDCA	0.45 μM	
JMJD2A	-1	13	2,4-PDCA	88 nM	
JMJD3	5	13	GSK-J1	0.14 μM	
LSD1	14	14	RN-1	29 nM	
FBXL11	-6	1	Daminozide	0.21 μM	

Table S2. Inhibitions of epigenetic targets by FB23 or FB23-2, Related to Figure 3.

Table S3. Enzymatic inhibition of proteases by FB23-2, Related to Figure 3.

Protease	Inhibition @ 10 µM (%)	Control	IC ₅₀ of control
Caspase 2	-2	Z-VDVAD-FMK	2.42 μM
Caspase 8	1	Ac-IETD-CHO	6.87 nM
Caspase 9	6	Z-LEHD-FMK	0.14 μM
Cathepsin D	0	Pepstatin A	1.26 nM
Cathepsin F	11	E-64	0.031 μM
Cathepsin H	0	E-64	0.96 µM
Cathepsin L	-2	Leupeptin	4.22 nM
Cathepsin S	11	E-64	1.75 nM
Cathepsin Z	12	Leupeptin	0.38 μM
MMP-8	5	GM-6001	0.69 nM
MMP-14	-4	GM-6001	11.7 nM
TACE	6	GM-6001	0.036 μM

Figure S3. Transcriptome-wide analysis of RNA-seq assays with *FTO* KD and inhibition in NB4 cells, Related to Figure 5. (A and B) Hierarchical clustering (A) and PCA (B) on FB23, FB23-2, and DMSO treated groups. The NB4 cells were exposed to DMSO or 5 μ M inhibitor for 48 hr. (C and D) Hierarchical clustering (C) and PCA (D) on shFTO and shNS treated groups. shNS is the control shRNA. (E) Venn diagram of the changed signaling pathways by *FTO* KD and FTO inhibitors induced FTO inhibition. (F and G) Detailed information for the 30 co-increased pathways (F) and 5 co-decreased pathways (G) enriched in shFTO vs shNS, FB23 vs DMSO, and FB23-2 vs DMSO groups. Normalized enrichment score (NES) indicated the analysis results across gene sets. (H) Venn diagram of the genes in deregulated signaling pathways shared by *FTO* KD and FB23-2 mediated FTO inhibition. (I) GSEA analysis of increased and decreased cell proliferation, cell cycle, and cell apoptosis related pathways between (shFTO + FB23 + FB23-2) vs (shFTO + DMSO). ES represents enrichment score. False discovery rate (FDR) presented if a set was significantly enriched.

Figure S4. Analysis of m⁶A-seq assays with FTO KD and FB23-2 inhibition in MONOMAC6 cells, Related to Figure 6. (A) GSEA analysis of the genes with increased m⁶A abundance upon *FTO* KD identified by m⁶A-seq in MONOMAC6 cells. The

MONOMAC6 cells were treated with DMSO or 5 μ M FB23-2 for 72 hr. (B) Venn diagram of the co-increased and co-decreased signaling pathways by *FTO* KD and FB23-2 induced FTO inhibition. Among them, p53 and apoptosis pathways are also enriched. (C and D) The signal densities diagram of the distributions and heights of the m⁶A peaks in *RARA* (C) and *ASB2* (D) identified by m⁶A-seq in MONOMAC6 cells upon DMSO and 5 μ M FB23-2 treatment for 72 hr. ***, p < 0.001.

Figure S5. FB23-2 inhibition of leukemogenesis on mice, Related to Figure 7. (A) The weight of body and organs of male BALB/c mice at day 15. The mice (n = 5) were treated with vehicle or FB23-2 at a dose of 20 mg/kg daily for 14 days. (B) Histological

morphology of H&E-stained tissue sections of representative mice after treatment of 14 days with vehicle or FB23-2 at a dose of 20 mg/kg daily. Bar, 100 μ m. (C) Abundance of leukemic cells into NSGS mice. The abundance of human leukemic MONOMAC6 cell into PB of recipient NSGS mice was assessed via staining human CD33. The x-axis represents hCD33-PE, and y-axis represents SSC.

Test (unit)	Vehicle (우)	20 mg/kg (우)	Vehicle (👌)	20 mg/kg (👌)
iest (unit)	(Mean ± SD)	(Mean ± SD)	(Mean ± SD)	(Mean ± SD)
WBC (x10 ⁹ cells/L)	2.30 ± 0.63	3.74 ± 1.26	5.52 ± 1.44	5.94 ± 1.75
NEUT (x10 ⁹ cells/L)	0.79 ± 0.13	1.83 ± 0.66	2.40 ± 1.02	3.52 ± 1.26
LYM (x10 ⁹ cells/L)	1.39 ± 0.56	1.59 ± 0.73	2.87 ± 0.91	2.12 ± 0.52
MONO (x10 ⁹ cells/L)	0.05 ± 0.01	0.09 ± 0.05	0.09 ± 0.03	0.14 ± 0.08
EOS (x10 ⁹ cells/L)	0.07 ± 0.01	0.20 ± 0.24	0.07 ± 0.07	0.07 ± 0.08
BASO (x10 ⁸ cells/L)	0.05 ± 0.03	0.06 ± 0.03	0.15 ± 0.06	0.14 ± 0.07
RBC (x10 ¹² cells/L)	9.69 ± 0.27	8.94 ± 0.79	9.92 ± 0.80	8.45 ± 0.92
PLT (x10 ⁹ cells/L)	1201.50 ± 44.59	1288.60 ± 78.68	1461.60 ± 683.40	1449.00 ± 205.7
RET (x10 ⁹ cells/L)	487.35 ± 39.17	618.62 ± 299.82	484.44 ± 221.34	549.63 ± 134.79
MCH (pg)	15.20 ± 0.14	14.96 ± 0.25	15.04 ± 0.43	15.20 ± 0.22
MCV (fL)	48.25 ± 1.06	47.60 ± 0.82	47.50 ± 0.68	48.63 ± 1.31
MCHC (g/L)	313.50 ± 4.20	314.20 ± 4.09	316.00 ± 7.68	313.00 ± 11.6
HGB (g/L)	147.25 ± 4.11	133.60 ± 11.97	149.20 ± 15.79	129.00 ± 15.64
HCT (%)	46.95 ± 0.60	42.52 ± 3.83	47.16 ± 4.22	41.05 ± 3.5
RDW (%)	13.50 ± 0.80	14.20 ± 1.22	14.10 ± 0.80	13.95 ± 0.45

Table S5. The complete blood content analysis of BALB/c mice (n = 5) treated with FB23-2 for 14 days, Related to Figure 7.

To at (unit)	Vehicle (우)	20 mg/kg (우)	Vehicle (👌)	20 mg/kg (👌)
lest (unit)	(Mean ± SD)	D) (Mean ± SD) (Mea		(Mean ± SD)
TBIL (µmol/L)	0.64 ± 0.77	1.50 ± 1.57	0.64 ± 0.77	0.68 ± 0.78
TP (g/L)	47.60 ± 2.20	43.3 ± 2.96	47.60 ± 2.20	50.36 ± 5.98
ALB (g/L)	26.52 ± 1.00	24.15 ± 1.59	26.52 ± 1.00	30.64 ± 5.47
GLB (g/L)	21.08 ± 1.47	19.15 ± 1.38	21.08 ± 1.47	19.72 ± 2.39
A/G	2.52 ± 0.18	2.60 ± 0.00	2.52 ± 0.18	3.12 ± 0.72
ALT (U/L)	40.80 ± 16.89	36.67 ± 11.55	40.80 ± 16.89	56.40 ± 36.56
AST (U/L)	137.2 ± 32.3	113.33 ± 30.09	137.2 ± 32.3	176.00 ± 72.94
AST/ALT	7.46 ± 2.69	5.33 ± 2.19	7.46 ± 2.69	7.29 ± 3.03
ALP (U/L)	41.20 ± 20.47	23.5 ± 25.16	41.20 ± 20.47	58.00 ± 22.72
UREA (mmol/L)	7.05 ±1.61	8.67 ± 0.85	7.05 ±1.61	10.49 ± 1.68
CR (µmol/L)	2.00 ± 0.00	2.00 ± 0.00	2.00 ± 0.00	2.00 ± 0.00
GLU (mmol/L)	2.94 ± 1.14	3.48 ± 2.36	2.94 ± 1.14	4.48 ± 1.77
TC (mmol/L)	2.63 ± 0.25	2.11 ± 0.42	2.63 ± 0.25	3.02 ± 0.69
TG (mmol/L)	1.84 ± 0.44	1.01 ± 0.27	1.84 ± 0.44	1.63 ± 0.40
CK (U/L)	615.20 ± 195.61	842.00 ± 658.18	615.20 ± 195.61	743.60 ± 330.79
K (mmol/L)	7.04 ± 0.80	29.3 ± 27.13	7.04 ± 0.80	8.14 ± 2.17
Na (mmol/L)	233.20 ± 4.15	230.00 ± 5.89	233.20 ± 4.15	236.80 ± 1.79
CL (mmol/L)	192.60 ± 5.73	183.5 ± 10.38	192.60 ± 5.73	190.60 ± 1.67
Ca (mmol/L)	2.16 ± 0.13	1.12 ± 1.10	2.16 ± 0.13	1.90 ± 0.98
P (mmol/L)	3.09 ± 0.60	2.73 ± 0.21	3.09 ± 0.60	3.24 ± 0.45

Table S6. The plasma biochemistry analysis of BALB/c mice (n = 5) treated with FB23-2 for 14 days, Related to Figure 7.

Table S7. The pharmacokinetics of rat after i.p. administration of 3 mg/kg FB23-2,Related to Figure 7.

Analyst	T _{max} (hr)	C _{max} (ng/ml)	AUC₀₋t (hr × ng/ml)	AUC₀.∞ (hr × ng/ml)	MRT (hr)	t _{1/2} (hr)
FB23-2	0.08	2421.3 ± 90.9	2184 ± 152	2261 ± 145	4.0 ± 0.7	6.7 ± 1.3
FB23	0.4 ± 0.1	142.5 ± 26.1	2262 ± 483	3310 ± 721	N/A	N/A

Figure S6. Effects of FB23-2 treatment on primary AML cells, Related to Figure 8. Effects of FB23-2 on cell apoptosis (A) and ATRA-induced myeloid differentiation (B) in patient AML cells analyzed by FACS. Cells for apoptosis analysis (A) were treated by DMSO or FB23-2 at indicated concentration for 48 hr, while cells for ATRA-induced myeloid analysis (B) were treated for 96 hr.

Genetic	Genetic				
Alterations -	Alterations - AA	Pt 2016_7	Pt 2017_14	Pt 2017_63	Pt 2014_59
Gene	Alteration				
DNMT3A	R882L				Х
FLT3	L576_Q577ins17				Х
KRAS	G13D		Х		
MLL	MLLT3 (AF9) fusion	Х			
	MLL-MVB12B		v		
MILL	fusion		X		
	MLL-MLLT10		v		
IVILL	(AF10) fusion		X		
A ANIX1	t(7;12)(q36;p13)			X	
IVIIVX1	MNX1/ETV6 fusion			~	
NPM1	W288fs*10+				Х
PTPN11	p.D61V c.182A>T			х	
PTPN11	D61Y				Х
14/71	A382fs*11,				~
VV 1 1	A382fs*4				Χ
VUS Gene	VUS Alteration	Pt 2016_7	Pt 2017_14	Pt 2017_63	Pt 2014_59
ASMTL	A417E	х			
ARID1A	N2220S		Х		
ASXL	missense			х	
BRCA1	F486L		Х		
BRCA1	N550H		Х		
BRCA1	Y179C		х		
CIC	E83G	Х			
DNM2	V748_S764>G	х			
EPHB1	V562I	х			
FBXO11	S747G		Х		
FGFR1	R477K		х		
FLT4	V1355M		Х		
GATA2	P161A		Х		
HIST1H1E	A47V	Х			
MAP3K1	P257L		Х		
MAP3K14	G368R	Х			
MET	R143Q				Х
МКІ67	E2658G	Х			
МКІ67	R116C				Х
MLL	R3470H		Х		

Table S8. Mutation profiles of the four primary patients. X stands for genetic alteration, Related to Figure 8.

MLL3	P1863A, P1946L			Х
MSH2	N596S		х	
МҮС	Т73Н			Х
NOTCH1	E1148K	Х		
PIK3CG	R359H	Х		
RAD21	R54L			Х
STAT5B	G721S		Х	
TCF3	A203T		х	
TLL2	G629A	Х		
TNFRSF11A	D427N	Х		
TNFRSF17	K160Q	Х		
YY1AP1	G79V		x	

Table S9. Primers for RT-qPCR, Related to STAR Method.

ID	Sequence	Source
<i>FTO</i> -Fwd	5'-AGAATGTCTGTGACGATGTGG-3'	Generay, China
<i>FTO</i> -Rev	5'-GCACTTTCTGTATCGATTGCC-3'	Generay, China
ASB2-Fwd	5'-CGTGGTGCAGTTCTGTGAGT-3'	Generay, China
ASB2-Rev	5'-GTGAGCCAGAGGTCTTGGAG-3'	Generay, China
RARA-Fwd	5'-CCAGCTCCAACAGAAGCAG-3'	Generay, China
RARA-Rev	5'-AGGCCTCTGTCCAAGGAGTC-3'	Generay, China
GAPDH-Fwd	5'-GCCGCATCTTCTTTGCGTC-3'	Generay, China
GAPDH-Rev	5'-TGAAGGGGTCATTGATGGCA-3'	Generay, China
ALKBH5-Fwd	5'-CGGCGAAGGCTACACTTACG-3'	Generay, China
ALKBH5-Rev	5'-CCACCAGCTTTTGGATCACCA-3'	Generay, China
<i>MYC</i> -Fwd	5'-GTCAAGAGGCGAACACACAAC-3'	Generay, China
MYC-Rev	5'-TTGGACGGACAGGATGTATGC-3'	Generay, China
CEBPA-Fwd	5'-AAGAAGTCGGTGGACAAGAACAG-3'	Generay, China
CEBPA-Rev	5'-GCGGTCATTGTCACTGGTCA-3'	Generay, China