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Figure S1. Design of the randomized block experiment. 48 plants were randomly distributed 

into four blocks for each of the six genotypes (represented by different colors). The 12 plants 

per block and genotype were distributed in two rows and two breeding ground bags (pink and 

green). To avoid border effect between neighboring plants belonging to different genotypes, 

only the height most central plants per block (red parallelepiped) were observed, leading to a 

total of 32 replicates per genotype. 
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Figure S2. Vegetative development phases identified for Gariguette using univariate categorical multiple change-point models. (A) Heat map of the series of 

leaf production, the color scale ranging from light orange (low intensity) to red (high intensity). Vegetative development phases are delimited by black lines. 

(B) The optimal 4-phase segmentation is represented as a piecewise constant functions (black lines), the level of each phase corresponding to the mean 

number of weekly emerged leaves in the phase. The weekly mean numbers of emerged leaves are represented by red points connected by lines and the 

associated standard deviations (s.d.) by dashed red lines. 
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Figure S3. Runnering phases identified for Gariguette using univariate categorical multiple change-point models. (A) Heat map of the series of stolon 

production, the color scale ranging from light orange (low intensity) to red (high intensity). Runnering phases are delimitated by a black line. (B) The 

optimal 2-phase segmentation is represented as a piecewise constant functions (black lines), the level of each phase corresponding to the mean number of 

weekly emerged stolons in the phase. The weekly mean numbers of emerged stolons are represented by red points connected by lines and the associated 

standard deviations (s.d.) by dashed red lines. 
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Figure S4. Weekly means with associated confidence intervals computed from the first-order 

differenced series of the numbers of weekly emerged (A) flowers, (B) leaves and (C) stolons 

for all the genotypes except Ciflorette. The arrows indicate fluctuations which are for a large 

part explained by limits between phases for several genotypes. The ‘+’ and ‘−’ indicate 

respectively other positive and negative fluctuations. 
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Table S1. Cumulative number of flowers, leaves, crowns and stolons (mean and standard deviation – s.d. – of the frequency distributions) 

produced per plant during the observation period (i.e. from December 16 2014 to June 24 2015), Spearman rank correlation coefficient between 

the cumulative number of flowers (respectively number of leaves) and the cumulative number of crowns (n.s. for non-significantly different from 

0), chilling requirement (in hours) and flowering earliness (with ordered categories early, median, late) for the six genotypes (http://ciref-

agriculture.fr/varietes-fraises-ciref and http://www.ctifl.fr/besoinsenfroid/pages/fraise/Besoins.aspx). 

Flower Leaf Crown Stolon Correlation Chilling Flowering 

mean s.d. mean s.d. mean s.d. mean s.d. Flower/crown Leaf/crown requirement earliness 

Gariguette 72.7 13.7 41.6   8.4 3.1 0.9   8.4 5.9 0.38 0.56 800 early 

Cléry 51.2 12.7 40.3 12.2 3.6 0.8   5.5 6.3 0.45 0.6 900 median 

Cir107 80.8 23.4 57 11.7 4.5 0.7 11.8 5.9 n.s. 0.46 500 median 

Darselect 52.8 11.1 32.6   8.6 3 0.7   3.8 5.2 n.s. 0.44 1000 late 

Capriss 56.1 13.7 59.6 13.6 5.7 1.1   3 4.1 0.63 0.73 700 median 

Ciflorette 61.3 14.4 46.1   8.6 4 0.8 15 8.3 0.44 0.53 800 early 

http://www.ctifl.fr/besoinsenfroid/pages/fraise/Besoins.aspx
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Table S2. Frequency (Freq.) distributions of the limits between phases computed from the 

segmentation, asynchronous between individuals, of the series of flower production using 

hidden semi-Markov chains. The ‘*’ indicate the limits between phases given by the 

synchronous segmentations of flowering series using multiple change-point models. 

Limit Freq. Limit Freq. Limit Freq. Limit Freq. Limit Freq. 

Gariguette 50* 15 64 2 92 6 113 10 169 4 

57 14 71* 27 99* 22 119* 19 175* 17 

64 3 78 3 104 3 126 2 183 11 

113 1 134 1 

Cléry 40 1 64 1 99 1 169 4 

50 7 71 10 104 7 175* 23 

57* 20 78* 18 113* 19 183 5 

64 3 85 2 119 4 

71 1 92 1 126 1 

Cir107 50 10 64 3 99 1 

57* 18 71 14 104 12 

64 4 78* 10 113* 18 

85 5 119 1 

Darselect 50 7 71 4 104 10 

57 6 78* 14 113* 18 

64* 13 85 11 119 4 

71 5 92 2 

78 1 99 1 

Capriss 50 2 71 3 104 10 

57* 19 78* 11 113* 19 

64 11 85 11 119 3 

92 7 

Ciflorette 56* 32 70 4 91 4 

77* 21 98 9 

84 6 105* 18 

91 1 110 1 
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Table S3. Frequency (Freq.) distributions of the limits between phases computed from the 

segmentation, asynchronous between individuals, of the series of leaf production using hidden 

semi-Markov chains. The ‘*’ indicate the limits between phases given by the synchronous 

segmentations of vegetative development series using multiple change-point models. 

Limit Freq. Limit Freq. Limit Freq. Limit Freq. 

Gariguette 40* 26 85 4 148 4 

50 6 92* 21 154* 13 

99 6 162 15 

104 1 

Cléry 30 7 99 7 154* 7 

40* 23 104 23 162 23 

50 2 113* 2 169 2 

Cir107 148 13 

154* 12 

162 7 

Darselect 154 2 

162* 17 

169 10 

175 2 

183 1 
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Table S4. Frequency (Freq.) distributions of the limits between phases computed from the 

segmentation, asynchronous between individuals, of the series of stolon production using 

hidden semi-Markov chains. The ‘*’ indicate the limits between phases given by the 

synchronous segmentations of runnering series using multiple change-point models. 

Limit Freq. Limit Freq. 

Gariguette 154 1 

162* 7 

169 5 

175 13 

183 6 

Cléry 154* 1 169* 1 

162 1 175 2 

169 6 183 4 

175 11 190 24 

183 13 196 1 

Cir107 154 2 175* 4 

162* 7 183 5 

169 8 190 21 

175 13 196 2 

183 2 

Darselect 154 1 

162* 3 

169 5 

175 4 

183 5 

190 14 

Capriss 162 1 

169* 2 

175 10 

183 4 

190 15 

Ciflorette 154 1 

160* 6 

168 10 

175 15 
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Protocol S1. Definition of categorical multiple change-point models 

and associated statistical methods 

For a given genotype, multiple change-point models were used to delimit phases within a 

sample of phenological series of fixed length. Each series corresponds to a plant and may be 

univariate (emergence rate for a given organ) or multivariate (emergence rates for different 

organs such as flower, leaf and stolon in our case). These series are indexed by the successive 

dates of observation (with the convention that the first date of observation is 1 for notational 

convenience). Let 𝜃  denote the parameters of the categorical distributions attached to the 

successive phases (i.e. the probability masses for the possible number of weekly emerged 

organs). Let 𝑓𝐽(𝐬, 𝐱; 𝜃) denote the likelihood of the segmentation s of the observed series 𝐱 =

𝑥1, … , 𝑥𝑇. The estimation of the 𝐽 − 1 change points 𝜏1, … , 𝜏𝐽−1(with the convention 𝜏0 = 1 

and 𝜏𝐽 = 𝑇 + 1 where T is the last date of measurement), which corresponds to the optimal 

segmentation 𝐬∗ into J flowering phases, is obtained using a dynamic programming algorithm

(Auger and Lawrence, 1989) that solves the following optimization problem: 

𝜏̂1, … , 𝜏̂𝐽−1 = arg max
𝐬

log 𝑓𝐽(𝐬, 𝐱; 𝜃),

Regarding the inference of multiple change-point models, one key question is to select the 

number of phases. In a model selection context, the purpose is to estimate J by maximizing a 

penalized version of the log-likelihood defined as follows 

𝐽 = arg max
𝐽

{log 𝑓𝐽(𝐱) − Penalty(𝐽)},

where 

𝑓𝐽(𝐱) = ∑ 𝑓𝐽(𝐬, 𝐱; 𝜃)

𝐬

is the log-likelihood of all the possible segmentations in J phases of the phenological series x 

of length T. The principle of this kind of penalized likelihood criterion consists in making a 

trade-off between an adequate fitting of the model to the data (expressed by the log-

likelihood) and a reasonable number of parameters to be estimated (controlled by the penalty 

term). The most popular information criteria such as AIC and BIC are not adapted in this 

particular context since they tend to underpenalize the log-likelihood and thus select a too 

large number of phenological phases (Rigaill et al., 2016). We thus applied the slope heuristic 

(SH) given by (Guédon, 2015b) 
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SH𝐽 = 2{log 𝑓𝐽(𝐱) − 2 𝜅̂ penshape(𝐽)},

where 

penshape(𝐽) = log {
𝑇𝐽−1

(𝐽 − 1)!
}, 

and 𝜅̂  is the slope of the linear relationship between log 𝑓𝐽(𝐱)  and  penshape(𝐽)  for

overparameterized models estimated by the data-driven slope estimation method (Baudry et 

al., 2012). The posterior probability of the J-phase model 𝑀𝐽, given by 

𝑃(𝑀𝐽|𝐱) =
exp(1

2
SH𝐽)

∑ exp(1
2

SH𝐾)
𝐽max
𝐾=1

, 

can be used to assess the relative merits of the models considered. 

The posterior probability of the optimal segmentation 𝐬∗ given by

𝑃(𝐬∗|𝐱; 𝐽) = 𝑓𝐽(𝐬∗, 𝐱; 𝜃) ∑ 𝑓𝐽(𝐬, 𝐱; 𝜃)𝐬⁄ ,

can be efficiently computed by the smoothing algorithm proposed by Guédon (2013). The 

assessment of multiple change-point models thus relies on two posterior probabilities: 

 posterior probability of the J-phase model 𝑀𝐽 , 𝑃(𝑀𝐽|𝐱)  deduced from the slope

heuristic computed for a collection of multiple change-point models for 𝐽 = 1, … , 𝐽max,

i.e. weight of the J-phase model among all the possible models between 1 and 𝐽max

phenological phases, 

 posterior probability of the optimal segmentation 𝐬∗ for a fixed number of phases J

𝑃(𝐬∗|𝐱; 𝐽) , i.e. weight of the optimal segmentation among all the possible

segmentations for a fixed number of phases.

It is often of interest to quantify the uncertainty concerning change-point position. To this 

end, we computed the posterior change-point probabilities for each change point j and each 

observation date t using the smoothing algorithm proposed by Guédon (2013). We define the 

interval with credibility 1 − 𝛼 for change point j as the interval such that, 

𝛼 2⁄ < ∑ 𝑃(𝑆𝑡 = 𝑗, 𝑆𝑡−1 = 𝑗 − 1|𝐱; 𝐽)

𝑣

𝑡=𝑢

< 1 − 𝛼 2⁄ , 

with ∑ 𝑃(𝑆𝑡 = 𝑗, 𝑆𝑡−1 = 𝑗 − 1|𝐱; 𝐽)
𝑇−𝐽+𝑗
𝑡=𝑗+1 = 1. 
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Protocol S2. Definition of hidden semi-Markov chains and associated 

statistical methods 

Semi-Markov chains 

Let {𝑆𝑡} be a semi-Markov chain with finite-state space {0, … , 𝐽 − 1}. A J-state semi-Markov 

chain {𝑆𝑡} is defined by the following parameters:

 initial probabilities 𝜋𝑗 = 𝑃(𝑆1 = 𝑗) with ∑  𝜋𝑗𝑗 = 1;

 transition probabilities

- nonabsorbing state i: for each 𝑗 ≠ 𝑖, 𝑝𝑖𝑗 = 𝑃(𝑆𝑡 = 𝑗|𝑆𝑡 ≠ 𝑖, 𝑆𝑡−1 = 𝑖) with ∑  𝑝𝑖𝑗𝑗≠𝑖 = 1

and 𝑝𝑖𝑖 = 0 by convention,

- absorbing state i: 𝑝𝑖𝑖 = 𝑃(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑖) = 1 and for each 𝑗 ≠ 𝑖,  𝑝𝑖𝑗 = 0.

An explicit occupancy distribution is attached to each nonabsorbing state: 

𝑑𝑗(𝑢) = 𝑃(𝑆𝑡+𝑢+1 ≠ 𝑗, 𝑆𝑡+𝑢−𝑣 = 𝑗, 𝑣 = 0, … , 𝑢 − 2|𝑆𝑡+1 = 𝑗, 𝑆𝑡 ≠ 𝑗), 𝑢 = 1,2, …

Since 𝑡 = 1 is assumed to correspond to a state entering, the following relation is verified: 

𝑃(𝑆𝑡 ≠ 𝑗, 𝑆𝑡−𝑣 = 𝑗, 𝑣 = 1, … , 𝑡) = 𝑑𝑗(𝑡)𝜋𝑗 .

We define as possible parametric state occupancy distributions binomial distributions, Poisson 

distributions and negative binomial distributions with an additional shift parameter d (d ≥ 1) 

which defines the minimum sojourn time in a given state. 

The binomial distribution with parameters d, n and p (𝑞 = 1 − 𝑝), B(d, n, p) where 0 ≤ 𝑝 ≤ 1, 

is defined by 

𝑑𝑗(𝑢) = (
𝑛 − 𝑑

𝑢 − 𝑑
) 𝑝𝑢−𝑑𝑞𝑛−𝑢, 𝑢 = 𝑑, 𝑑 + 1, … , 𝑛.

The Poisson distribution with parameters d and λ, P(d, λ), where λ is a real number (𝜆 > 0), is 

defined by: 

𝑑𝑗(𝑢) =
𝑒−𝜆𝜆𝑢−𝑑

(𝑢 − 𝑑)!
, 𝑢 = 𝑑, 𝑑 + 1, … 

The negative binomial distribution with parameters d, r and p, NB(d, r, p), where r is a real 

number (r > 0) and 0 < 𝑝 ≤ 1, is defined by: 

𝑑𝑗(𝑢) = (
𝑢 − 𝑑 + 𝑟 − 1

𝑟 − 1
) 𝑝𝑟𝑞𝑢−𝑑, 𝑢 = 𝑑, 𝑑 + 1, … 
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Hidden semi-Markov chain 

A hidden semi-Markov chain can be viewed as a pair of stochastic processes {𝑆𝑡, 𝑋𝑡} where 

the “output” process {𝑋𝑡} is related to the “state” process {𝑆𝑡}, which is a finite-state semi-

Markov chain, by a probabilistic function or mapping denoted by f (hence 𝑋𝑡 = 𝑓(𝑆𝑡)). Since 

the mapping f is such that a given output may be observed in different states, the state process 

{𝑆𝑡} is not observable directly but only indirectly through the output process {𝑋𝑡}. This output 

process {𝑋𝑡}  is related to the semi-Markov chain {𝑆𝑡}  by the observation (or emission) 

probabilities 𝑏𝑗(𝑦) = 𝑃(𝑋𝑡 = 𝑦|𝑆𝑡 = 𝑗) . The definition of the categorical observation 

distributions expresses the assumption that the output process at time t depends only on the 

underlying semi-Markov chain at time t. 

 

The maximum likelihood estimation of the parameters of a hidden semi-Markov chain 

requires an iterative optimization technique, which is an application of the EM algorithm. 

Once a hidden semi-Markov chain has been estimated, the most probable state series can be 

computed for each observed series using the so-called Viterbi algorithm; see Guédon (2003, 

2005, 2007) for the statistical methods for hidden semi-Markov chains. In our application 

context, the most probable state series can be interpreted as the optimal segmentation of the 

corresponding observed series into successive phenological phases. 
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