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Supplementary Notes

Identification of putative   marker genes and characteristic features for inovirus detection  
Genome  sequences  and  predicted  proteins  from  56  reference  Inoviridae genomes

(Supplementary Table 1) were gathered, and their predicted proteins were grouped into protein
families using (i) all-vs-all blast and InfoMap1 to define protein clusters, and (ii) HHSearch2 to
combine these clusters into larger protein families (see Methods). A bipartite network was then
built using genomes and protein families as nodes, and connecting genomes to protein families
when at least one protein affiliated to this family was encoded in the genome. The topology of
this network was found to correctly recapitulate the known Inoviridae taxonomy, as well as their
known host range (Supplementary Fig. 1). This network was thus used to identify putative core
genes that could be used as marker to search for  inovirus sequences. These core genes would
appear  in  the  network  as  protein  family  nodes  connecting  to  a  maximum  of  genomes
(Supplementary Fig. 1). 

No  protein  family  was  universally  detected  in  all  the  reference  genomes,  and only
morphogenesis proteins (pI) were good candidates for a marker gene: these proteins were split
into 3 families only, except for the pI protein from Acholeplasma virus MV-L1 which was a
singleton.  Two  of  these  protein  families  included  sequences  currently  annotated  as  pI  and
displayed significant hits to the Zot PFAM domain (the only PFAM domain including pI-like
proteins), while the third was identified as a pI-like protein based on its unique presence in all
Vespertilliovirus genomes, its size being consistent with known pI proteins, and a low similarity
to the Zot PFAM domain (hhsearch, score ≥ 15 and E-value ≥ 0.004), while no other proteins in
these genomes displayed any similarity to Zot. Eventually, the complete set of marker included
these 3 protein families, the PFAM Zot domain, as well as the putative pI from Acholeplasma
phage MV-L1. For each family, HMM profiles were generated as follows: sequences were first
clustered at 90% AAI with cd-hit3, then aligned with muscle4, and the hmm profile built with
hmmbuild5.

Canonical Inoviridae major coat proteins could be detected based on their length (30 to 90 aa,
Supplementary Table 1), and the presence of a single transmembrane domain (TMD). A signal
peptide was detected in most of these proteins (21 of 30) and the corresponding sequences had to
be matured in silico (i.e. the signal peptide removed) to recover the expected size and single
TMD. About half  of minor coat proteins (29 of 49) could also be identified using the same
features,  but  the remaining minor  coat  were  either  shorter  (e.g.  NP_039618) or  longer  (e.g.
YP_002925193). Notably, a good major coat candidate, i.e. a protein of 30 to 90 aa and with 1
TMD,  was  detected  in  every  Inoviridae  genome,  even  the  ones  for  which  no  protein  was
annotated as a major coat (Supplementary Table 1).

Design of an automatic classifier to detect   inovirus   sequences  
To automatically detect inovirus genomes, we first searched for inovirus sequences to add to

the 56 genomes  database,  in  order  to  gather  a  positive  dataset  large  enough for  training  an
automatic classifier. To that end, we used the set of pI HMM profiles previously described (see

25

30

35

40

45

50

55

60



above) to search 56,868 bacterial and archaeal genomes publicly available in the IMG database,
which yielded 6,819 hits (hmmsearch5, score ≥ 30 and E-value ≤ 0.001). The genomic context of
these pI-like genes was then examined in a window of 20 genes in 5’ and 3’ by (i) gathering the
PFAM annotation of the genes in these regions from IMG, (ii) affiliating these genes to the
previously generated reference Inoviridae protein families (hmmsearch5, score ≥ 30 and E-value
≤ 0.001), and (iii) predicting putative Inoviridae coat proteins based on protein size, presence of
a  signal  peptide,  and  single  TMD  (see  above).  From  these  annotations,  putative  complete
inovirus genomes were identified by extending the prediction around the initial pI protein in 5’
and 3’ until reaching a protein affiliated to a PFAM domain never encountered in a reference
Inoviridae genome (i.e. “unexpected PFAM affiliation”), and then assessing if the corresponding
prediction either (i) spanned an entire circular contig with an expected inovirus genome size (i.e.
5-20kb), or (ii) included putative canonical attachment (att) site, i.e. direct repeats of 10bp or
longer that could be identified in a tRNA gene or directly outside of an integrase gene6. A total of
795 putative inovirus genomes were detected:  213 as circular  contigs,  and 582 as integrated
prophages. Their predicted pI proteins were added to the references to generate improved HMM
models, and another round of search of the same datasets was conducted, adding an additional 10
putative genomes (3 circular, 7 prophages with canonical att site). The gene content of these
genomes  was  next  manually  inspected  to  verify  that  these  were  consistent  with  known
Inoviridae, and edge cases were excluded.

Next,  the  Inoviridae reference  isolates  and  these  805  manually  curated  sequences  were
gathered as a positive set to train an automatic classifier, in order to be able to automatically
evaluate a putative inovirus genome detected based on the presence of a pI-like gene. A negative
set was generated by taking random fragments  in  genomes where an inovirus sequence was
detected (n=1,000), as well as genome fragments around pI proteins manually identified as false
positives,  i.e.  not inovirus  sequences (n=1,000), with a fragment  length following the length
distribution of the complete inovirus genomes in both cases. This was done to ensure that the
model is trained on negative cases representing both typical genome fragments from inovirus
hosts,  as  well  as  typical  genome context  for  pI-like  proteins  which  are  not  associated  with
inovirus prophages. 

A set of genome features was identified that could be used to identify genuine inoviruses (see
examples in Supplementary Fig. 2). These include (i) fragment length, (ii) number of genes in
the fragment, (iii) number of proteins with a hit to a pI protein family, (iv) number of genes with
a significant hit to inovirus capsid PFAM domains, (v) number of genes predicted as putative
inovirus coat proteins, (vi) number of genes with a significant hit to reference Inoviridae protein
families,  (vii)  number of genes without an unexpected PFAM affiliation,  (viii)  percentage of
genes in the fragment without an unexpected PFAM affiliation, (ix) median gene length in the
fragment, and (x) first decile of gene length in the fragment. “Expected” affiliations were based
on the affiliation of known inovirus proteins to PFAM domains and to their associated keywords
(“DUF”, “HTH”, “DNA”, “repeat”, “toxin”, and “regul”), while “Unexpected” PFAM domains
are the rest of the PFAM database. 
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Based on the training sets, a random forest classifier was found to be the most efficient at
discriminating  inoviruses  from  background  host  genome  (compared  to  random  forest  with
conditional inference and generalized linear model with lasso regularization), and achieved (at
the selected threshold of score ≥ 0.9) 92.5% recall  (percentage of “true” inoviruses correctly
predicted  as  inoviruses),  99.9%  specificity  (percentage  of  “true”  non-inoviruses  sequences
correctly  predicted  as  non-inoviruses),  and 99.8% precision  (percentage  of  “true”  inoviruses
within sequences predicted as inoviruses). This model and threshold combination was chosen
because it provided the maximum recall at the low false discovery rate of 0.2% (Supplementary
Fig. 2). This approach can thus be used in place of the manual curation step to evaluate genome
regions surrounding putative pI proteins, and systematically detect inovirus sequences with high
accuracy.

Identification of  non-inovirus ATPases among putative pI proteins
When detecting inoviruses using pI-like proteins, the presence of an ATPase domain in these

proteins can lead to false positive detections. Our automatic classifier is able to identify most of
these non-inovirus ATPases based on genome context, as illustrated by the large number of hits
for  which  no  inovirus  genome  was  predicted  (gray  sections  of  the  pie  charts  in  Fig.  1D).
However some false positives may remain, for instance due to another virus or mobile genetic
element  with atypical  genes  and/or  short  genes  encoding a  related  ATPase.  To identify  and
remove these sequences, we explored the protein clusters (PCs) computed from the complete set
of genes from all  inovirus species (both known and newly detected),  and examined the ones
including at least one protein initially identified as pI at the first detection step, i.e. used as a
starting point for the detection of inovirus sequence. Overall, 6,570 non-redundant proteins were
detected across 45 different pI-like protein clusters (PCs), with 16 singletons. These 45 different
PCs gathered  into  10 different  iPFs (“inovirus  Protein  Families”,  Supplementary  Fig.  3,  see
Methods). Two of these iPFs (iPF_00003 and iPF_00013) included a large number of mostly (>
95%) pI-like proteins (4,548 and 1,740 proteins, respectively). The few sequences in these iPFs
that had not been previously identified as pI-like protein were usually genuine partial pI-like
proteins too short to yield a significant hit, and thus unaffiliated. Both of these iPFs also included
pI  proteins  from  Inoviridae isolates,  and  were  thus  annotated  as  genuine  pI  proteins.  The
multiple alignments of the 34 PCs clustered into these 2 iPFs were visually inspected to verify
that (i) the ATPase domain was most closely related to the inovirus Zot domain as opposed to
one of the other known FtsK/HerA ATPase domains in the PFAM  database (PF01580, PF01935,
PF02534,  PF03135,  PF05872,  PF06834,  PF09378,  PF09397,  PF10412,  PF11130,  PF12538,
PF12696,  PF12846,  and PF13491),  and (ii)  the  sequence  included a  TMD to  anchor  the  pI
protein in the host membrane.

The 21 PCs clustered in iPF_00003 corresponded to sequences with a “typical” pI protein
architecture,  i.e.  the  ATPase  domain  is  followed  by  a  C-terminal  extension  with  a  TMD
membrane (Supplementary Fig. 3). These PCs were mostly associated with gram negative hosts
(with the exception of some prophages detected in Clostridia), and included all gram negative
Inoviridae isolates  (e.g.  M13, CTX, etc).  However,  3 PCs were identified  that  could not be

105

110

115

120

125

130

135

140



confirmed as likely inovirus pI protein: PC_00610, PC_01272, and PC_01338 were all  most
similar to the ATPase domain from archaeal turrivirus STIV, and were thus considered as false
positives and removed from the inovirus dataset.

Conversely, the 13 PCs clustered in iPF_00013 displayed an “atypical” pI protein architecture:
their Zot domain was not followed by a C-terminal extension, and the TMD was usually detected
in the N-terminal part of the protein (or in the case of PC_00303 at the C-terminal tip of the
sequence).  These PCs are mostly composed of  sequences  found in gram positive  hosts,  and
include  Inoviridae isolated on  Propionibacterium,  Thermus, and  Spiroplasma (Supplementary
Fig. 3, Supplementary Table 3). The distribution of pI-like proteins in two distinct iPFs thus
seems to be roughly correlated with the fundamental  differences between cell  membranes of
gram negative hosts, associated with typical pI, and cell membranes of gram positive or wall-less
hosts, associated with atypical pI. Among the PCs gathered into iPF_00013, one (PC_01836)
was identified as likely false positive as it was most closely related to archaeal turrivirus STIV,
and the associated sequences were excluded from the inovirus dataset.

Finally, for pI-like proteins outside of iPF_00003 and iPF_00013, genomes were individually
inspected to evaluate whether these could also represent inovirus genomes. All but 1 of these
sequences  were  identified  as  likely  false  positives  based  on  the  similarity  of  their  pI-like
sequence to another FtsK/HerA ATPase domain with higher scores than to the Zot domain. The
only case of a putative genuine inovirus pI protein found outside of iPF_00003 and iPF_00013
was  sequence  1066081_contig_758_11  found  in  iPF_00002.  This  iPF  was  annotated  as  an
assembly protein, and the clustering of this specific sequence seemed to originate from a fusion
of the pI (Morphogenesis) and pIV (Assembly) proteins (Supplementary Fig. 3). Interestingly,
this potential fusion of pI and pIV genes has also been identified in PC_01246, annotated as a pI-
like protein (part of iPF_00003). Notably, no other pI or pIV were identified in the genomes
encoding these putative fusion proteins, and these sequences clearly included both conserved
domains  (Supplementary  Fig.  3).  In  characterized  inoviruses,  the  assembly  domain  (pIV)  is
encoded by a distinct gene and ensures the passage of the virion across the outer membrane in
diderm hosts. Hence, these fused genes could produce a protein which would allow the passage
of the virion across both host membranes, and accordingly these were all detected in diderm
hosts.  Although  very  atypical,  these  sequences  including  fused  pI-pIV  proteins  were  still
included in the final dataset as they are likely functioning extrusion mechanisms, at least based
on sequence  analysis.  Conversely,  5  other  putative  pI-pIV fusion  proteins  were  detected  in
iPF_00002, but displayed a seemingly truncated Zot-like domain and lacked the typical TMD
found in C-terminal of this Zot-like domain. These sequences were not considered as genuine pI-
like proteins.

Eventually,  this  improved annotation of pI proteins was used to refine the final  dataset of
inovirus sequences. This included 4 sequences initially identified as “tandem prophages” which
were reclassified as “regular genomes” since one of the two pI detections was a false positive,
and 28 sequences removed from the dataset because their putative pI protein was found in one of
the false positive PCs.
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Evaluation of the automatic detection approach: challenges and limitations
To  understand  the  challenges  and possible  limitations  of  our  detection  approach,  we first

checked  which  features  were  primarily  used  in  the  Random Forest  classifier  to  identify  an
inovirus genome context  (Supplementary  Fig.  2).  The three main features  identified  as most
important based on their associated average decrease in Gini index were the number of putative
inovirus coat proteins (i.e.  predicted based on sequence length and detected TMD), the total
number of predicted genes in the fragment, and the number of hits to  Inoviridae PFs. On the
other  hand,  the  detection  of  the  PFAM domain  for  the  inovirus  coat  protein  was  the  least
important feature, most likely because the inovirus coat protein sequences are very divergent and
typically don’t display any recognizable level of sequence similarity even when using HMM-
based methods.

Next, we examined the scores obtained from all genome fragments or contigs encoding a pI-
like gene and which were evaluated using the Random Forest classifier (i.e. were not part of the
initial  set  of  manually  curated  inovirus  sequences).  While  putative  inovirus  fragments  (i.e.
displaying a score ≥ 0.9) represented 50% of the candidate fragments derived from microbial
genomes,  they  represented  only  17% of  the  candidate  fragments  derived  from metagenome
assemblies (Supplementary Fig. 2). Notably, most of the discarded fragments were short (<5kb)
contigs,  which may not contain enough information to be reliably evaluated by the Random
Forest classifier. Hence, a portion of the sequences which did not pass our selection criteria may
be partial assemblies of inovirus genomes. Among the fragments selected based on a score ≥ 0.9
in the Random Forest classifier, only 2% (134 sequences) were subsequently identified as false
positives upon manual inspection (see above). Hence, the Random Forest classifier used here
seems to retain high specificity even when applied to sequences not included in the training set.
Finally, we compared the distribution of scores between known and proposed inovirus families
as well as false positives detections to evaluate any pattern linked to the processing of novel data
(Supplementary Fig. 2). As could be expected, members of the Protoinoviridae, which include
the canonical inoviruses such as Enterobacteria phages M13 and fd, are associated with higher
scores than other proposed families (Supplementary Fig. 2). However, the median score for all
groups was ≥ 0.975, much higher than the cutoff used of 0.9, including for proposed families
such as the Photinoviridae which were strongly under-represented in the original training set.
This suggests that, overall, the features used in the Random Forest classifier are broadly shared
across the inovirus diversity. On the other hand, the median score for sequences identified as
false-positives within the candidate inovirus sequences (with score > 0.9) was also > 0.975, and
the  score  distribution  of  these  false-positives  was  comparable  to  the  one  genuine  inovirus
sequences. This confirms that the features used here, while efficient to identify inoviruses, will
tend  to  also  identify  other  viruses  and  mobile  genetic  elements  composed  of  short
uncharacterized genes (see above). 

Overall,  while  Random Forest  classifiers  have previously been successfully  used to  detect
bacteriophage sequences from non-similarity-based genome features, e.g. in tools like PhiSpy7 or
MARVEL8, these tools are trained on a broad set of publicly available phage genomes, and as
such will  tend to not be efficient  for groups under-represented in genome databases such as
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inoviruses.  Here,  the  major  difference  in  our  approach  is  the  selection  of  features  such  as
putative inovirus coat proteins or hits to Inoviridae PFs, and the establishment of a large training
set  of  795  inovirus  genomes,  which  enable  the  automatic  detection  of  putative  inoviruses.
Nevertheless, this approach remains challenged by short input sequences and the presence of pI-
like ATPases in other viruses or mobile genetic elements. Pragmatically, the former means that
sub-optimal genome assemblies yielding short contigs (i.e. < 5kb) will lead to a large amount of
false negatives, as these short contigs will not include enough information to identify them as
putative  inoviruses.  Conversely,  the  presence  of  pI-like  ATPases  in  other  viruses  or  mobile
genetic  elements  means  that  a  manual  inspection  step  of  putative  inovirus  candidates  (pI-
containing fragments with a score ≥ 0.9) is required in order to identify these false-positives.

Types of inovirus sequences detected
Among the inovirus sequences detected, 1,709 were identified as putative complete inovirus

genomes as these were either circular contigs (n=1,088), prophages with identified canonical
attachment  (att)  site  in  a  tRNA  (n=311)  or  prophages  with  an  identified  canonical  att  site
adjacent to an integrase-like gene (n=310, see Methods). An additional 1,586 fragments were
putative  complete  prophages  for  which  non-canonical  att  sites  could  be  identified,  i.e.  the
fragment is framed by direct repeats but these repeats are not within a tRNA gene or outside an
integrase-like  gene.  Finally,  the  remaining  fragments  were  either  linear  contigs  likely  from
partial  genomes (n=2,526)  or  prophages  for which no att  site  could be identified  (n=4,474).
Notably, 553 fragments included multiple distinct pI-like proteins with no identifiable genome
ends or attachment  sites,  and as such likely represent tandem prophage insertions,  including
possibly degraded prophages9.

Distribution of inovirus sequences across metagenomes and biomes
The  5,917  inovirus  sequences  detected  in  metagenome  assemblies,  which  included  3,677

species exclusively detected from metagenomes (Supplementary Fig. 4, Supplementary Table 3),
can inform about the distribution of these viruses across ecosystems and geographic locations.
Overall,  individual  species  tend to  be associated  with a  single sample type:  95% of  species
detected in multiple metagenomes are restricted to a single sample type (Supplementary Table
3). Inovirus sequences were detected in environments ranging from mesophilic (e.g. freswhater
lakes)  to  ‘extreme’  (e.g.  thermal  springs  or  deep-ocean  subsurface),  from  pristine  (e.g.
Antarctica) to strongly impacted by human activity (e.g. wastewater), from free-living microbial
communities (e.g. ocean surface) to host-associated (e.g. human gut, rhizosphere), as well as on
every continent and from the equator to the poles. Associated with their broad host range, the
extensive ecological distribution of inovirus sequences suggests they have the potential to impact
most  of  Earth’s  ecosystem,  including  modulating  interactions  between  organisms  within
holobionts, as suggested by some available isolates10.

Prevalence of inoviruses in microbial genomes
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Based on the 2,289 inovirus species associated to a host, we calculated an estimated prevalence
for  inoviruses,  i.e.  the  proportion  of  microbial  genomes  including  an  inovirus  genome.  The
highest median prevalence was observed in Gamma- and Betaproteobacteria,  where qualified
genera  (i.e.  genera  with  ≥  5  genomes)  displayed  on  average  >  10% of  genomes  with  ≥  1
detection(s)  (Supplementary  Fig.  5).  Among  these,  prevalence  in  the  genus  Xylella was
particularly  high  (87%),  although  these  prophages  were  all  associated  with  the  microbial
pathogen Xylella fastidiosa, and thus likely reflect the strong association of inoviruses with this
specific  species.  Beyond these two groups,  inoviruses were detected  in  ~1% of genomes on
average, although this prevalence was > 15% for 5 genera (Acidithiobacillus, Desulfosporosinus,
Eubacterium, Lachnoclotridium, and Spiroplasma), suggesting these might be evolving under an
unusually high inovirus infection rate  (Supplementary Fig. 5).

Curiously,  5  host  genera  composed  of  >  400  genomes  did  not  yield  any  detection:
Mycobacterium and  Streptomyces (Actinobacteria, n=660 and 411, respectively),  Helicobacter
(Campylobacterota,  n=443),  Lactobacillus and  Staphylococcus (Firmicutes,  n=692  and  844
respectively).  Since  filamentous  phages  have  been  detected  in  other  members  of  the  same
families, it is likely that members of these specific genera are very rarely (if ever) infected by
inoviruses.

Co-infection patterns across host groups
Usually, a single inovirus sequence was detected per genome (76% of cases), and multiple

detections  were  mostly  found  within  the  two  host  classes  with  high  inovirus  prevalence
(Gamma- and Beta-proteobacteria, Supplementary Fig. 5). However, Spiroplasma represented an
exception to this rule: beyond a unusually high level of inovirus prophages compared to other
Tenericutes, these genomes also displayed an average of > 15 distinct detections, including 2
genomes with 24 and 25 distinct prophages detected (Supplementary Table 3). Although these
data are only based on 5  Spiroplasma genomes in which prophages were detected, it suggests
that at least some members of this genus may be uniquely able to integrate and maintain dozens
of distinct inovirus genomes at a time, a feature previously hypothesized as driving the extensive
intra-genome recombinations observed in this clade11.

Inovirus  prophages  were  frequently  detected  along  with  Caudovirales prophages:  1,573
bacterial  genomes included signs of both types of viruses, consistent with a trend previously
noted in smaller scale prophage analyses12,13 (Supplementary Fig. 5). Curiously, these combined
prophages insertions sometimes occurred at the same location in the host genome, particularly in
Betaproteobacteria and Campylobacterota such as Neisseria and Campylobacter (Supplementary
Fig.  5).  Such co-localization  could  provide  opportunity  for  horizontal  gene  transfer  through
imprecise excision, and more generally highlights a potential for direct virus-virus interactions,
which have so far remained mostly unexplored13.

Evaluation of the taxonomic rank represented by network-derived genome (sub)groups
 ICTV guidelines are only available  for genera (75% AAI) and species (95% ANI) in the

Inoviridae family,  such that we had to use other viral  groups as reference to estimate which
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taxonomic  rank  the  groups  and  sub-groups  defined  based  on  gene  content  comparison
represented. To this end, we compared the Amino Acid Identity percentage (AAI) of marker
genes (i.e. pI-like proteins) from this extended set of inovirus genomes with other established
viral groups at different ranks. For the order rank, we opted to use  Caudovirales as references
even though these are dsDNA viruses and tend to have larger genomes, since no classification at
the order rank is available for small ssDNA viruses. For family and genus, we used established
ssDNA  taxonomy  from  the  Microviridae and  Circoviridae families,  more  comparable  to
inoviruses in terms of genome size and complexity. 

This comparison to known viral taxonomic groups suggested that the 6 main groups observed
on the inovirus sequence network are comparable to currently established viral families, while
levels  of  similarity  observed  when  comparing  sequences  between  the  6  main  groups  were
consistent with an order rank (Supplementary Fig.  7).  Hence we propose that the  Inoviridae
family should be considered as a viral order instead, which we would propose to name Inovirales
in accordance with standards in viral taxonomy nomenclature. This order would be tentatively
divided into 6 candidate  families,  corresponding to the 6 mains  groups established from the
genome-PC  network.  Still  based  on  AAI,  the  212  sub-groups  would  be  consistent  with
subfamilies, as these are more divergent than the established threshold used to define genera in
the current Inoviridae family (75% AAI14) and more divergent than currently established ssDNA
virus genera (Supplementary Fig. 7). As would be expected, all members of each current genus
were found in a single proposed subfamily (Supplementary Table 3).

Genome network topology and connector PCs
Overall,  only  20  PCs  (out  of  892  displayed  on  the  network)  connected  genomes  across

proposed families (Fig. 5). All but 3 of these (i.e. 85%) were functionally affiliated, including 4
pI-like,  3  structural,  and 7  replication-associated  proteins,  suggesting  these  “connector”  PCs
(sensu 15) likely represent some of the most conserved genes across inovirus genomes. None of
these  PCs  however  connected  substantially  (>50%  proposed  subfamilies)  to  more  than  1
proposed family, suggesting that these most likely reflect events of horizontal gene transfer or
convergent  evolution  involving  these  conserved  genes.  This  further  illustrates  the  complex
evolutionary history of these genomes for which no single gene seems to be both conserved and
exclusively (or near-exclusively) vertically inherited (Supplementary Fig. 7).

Characteristics and proposed names for proposed families
The two largest proposed families (in dark blue and teal in Fig. 5) comprise 3,576 and 1,020

genomes,  respectively,  and include  all  isolates  officially  classified  into  the  seven  Inoviridae
genera  currently  recognized  by  the  ICTV  (Supplementary  Table  3).  The  first  of  these  two
proposed  families  (in  teal  in  Fig.  5)  includes  members  of  genera  Fibrovirus,  Habenivirus,
Inovirus,  Lineavirus and  Saetivirus,  and  so  gather  the  prototypical  and  most  characterized
isolated  Inoviridae. The  second  one  (dark  blue)  comprises  members  of  the  genus
Vespertilinovirus and the single member of the Plectrovirus genus. Hereinafter, we refer to these
two  putative  families  as  “Protoinoviridae”  (for  the  inovirus  prototypical  members)  and
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“Vespertilinoviridae” (inspired by the main genus of this proposed family), respectively.  The
proposed  “Protoinoviridae”  family  comprises  genomes  nearly  exclusively  associated  with
Gamma-  and  Beta-proteobacteria,  while  the  “Vespertilinoviridae” include  mostly  genomes
associated  with  Clostridia  and  Tenericutes  (Fig.  5,  Supplementary  Fig.  7).  A  third  putative
family includes the remaining isolates unassigned to a genus yet.  These genomes tend to be
smaller than those of other inoviruses (median size of 6.1kb), thus, we propose to name this
candidate  family  “Paulinoviridae”  (from  ‘paulus’,  latin  for  little/small).  “Paulinoviridae”
genomes are primarily  detected in hosts affiliated to Actinobacteria,  CPR, and Deinococcus-
Thermus clades (Supplementary Fig. 7). 

The remaining three proposed families do not include any viral isolate, but two of these exhibit
specific genome features (Supplementary Fig. 7). The first putative family is composed of large
genomes (median  9.4kb);  hence  we  proposed  to  name  this  group  “Amplinoviridae” (from
“amplus”, latin for large). The second one is composed of genomes with high coding density (i.e.
more genes for comparable genome size, median number of genes=16) and we propose to name
this assemblage   “Densinoviridae” (Supplementary Fig.  7).  Members of the “Amplinoviridae”
are  largely  associated  with  hosts  from  Deltaproteobacteria  and  Campylobacterota,  whereas
“Densinoviridae” are predominantly found in Bacilli and Chloroflexi (Supplementary Fig. 7).
Notably,  two sequences  in  the  “Densinoviridae”  have  been previously  described  as  “cryptic
plasmids” in Bacilli16. Similarities between small plasmids and filamentous phages have long
been noted, and the boundary between the two types of mobile genetic elements seems tenuous
at best17. However, filamentous particles have been induced from similar bacteria18, and we have
identified  putative  capsid  proteins,  a  hallmark  of  viruses,  encoded  by  members  of  the
“Densinoviridae” (see main results and Supplementary Fig. 8). Hence, given that inoviruses have
been frequently confused with plasmids (e.g. NC_002473 and NC_010429), these sequences are
likely to correspond to genuine inovirus genomes. The last proposed family includes the only
inoviruses  associated  with  photosynthetic  Cyanobacteria,  hence  we  propose  to  name  this
candidate family “Photinoviridae”.

Although the proposed families  were defined exclusively  from gene content  analysis,  they
exhibited  specific  genome  features  and  host  ranges  which  suggested  they  indeed  represent
coherent groups. First, proposed families differ in terms of genome size and number of genes
predicted.  Notably,  the  median  genome  size  within  candidate  families  varied  from  6kb
(“Paulinoviridae”) to 9.5kb (“Amplinoviridae”), and although most groups encoded a median of
11 to 13 genes per genome, one (“Densinoviridae”) displayed a median number of genes of 16
(Supplementary Fig. 7). In addition, each of the proposed family is associated with a specific
host range, with very little overlap (Supplementary Fig. 7): of the 70 host families with at least 2
inovirus sequences detected, 61 were associated with a single proposed inovirus family, 6 are
associated with 2 proposed inovirus families, and only 3 are associated with 3 proposed inovirus
families  (Peptococcaceae,  Paenibacillaceae,  and  Bacillaceae,  all  in  the  Firmicutes  phylum,
Supplementary Table 3). 

Contrasting with their host range, the proposed inovirus families were not structured by biome
or ecosystem type (Supplementary Fig. 7). All six candidate  families seem to be detected in
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virtually every type of environment, and the cases of non-detection are associated with under-
sampled  groups  (i.e.  proposed  families  with  <  400 species).  These  data  can  however  point
toward which specific biome to sample in priority when targeting individual candidate families:
“Vespertilinoviridae” and “Amplinoviridae” seem to be enriched in human-associated samples,
“Densinoviridae” in “extreme” aquatic environments such as deep sub-surface, thermal spring,
and  hypersaline  lakes,  while  both  “Paulinoviridae” and  “Photinoviridae” are  preferentially
detected in soil samples.

Identification and annotation of putative archaea-associated inoviruses
The four putative proviruses were identified in the genome sequences of three isolates, two

affiliated to  Methanolobus and one to Methanosarcina, all in the Methanosarcinacea family of
the phylum Euryarchaeota, as well as one metagenome-assembled genome (MAG) affiliated to
the Aenigmarchaeota candidate phylum. The contigs composing this MAG were inspected to
confirm  that  they  represented  a  single  and  cohesive  population  genome,  and  no  sign  of
contamination,  i.e.  presence of  a  contig  affiliated  to  a  different  microbial  genome,  could  be
identified.  The gene content of these different inoviruses was consistent with their respective
host: the 3 Methanosarniacea-associated viruses displayed little to no sequence similarity to the
sequence detected in the Aenigmarchaeota MAG (Fig. 4A). 

The two sequences detected in Methanolobus included the full repertoire of genes expected in
a genuine inovirus, including a morphogenesis (pI) protein with an N-terminal TMD typical of
inoviruses  infecting  monoderm hosts,  an  integrase  gene,  genes  predicted  to  encode  putative
structural proteins based on sequence length and presence of a single TMD, as well as a gene
encoding a rolling-circle replication initiation protein19. This gene complement strongly suggests
that these two sequences represent fully functional inoviruses, since they include the full suite of
genes required for genome integration, replication, encapsidation, and extrusion (Fig. 4A). The
detection  of  genes  predicted  as  structural,  i.e.  short  genes  with  a  single  TMD, is  especially
noticeable given that only 0.69% of all genes in Euryarchaeota display features characteristic of
structural proteins of inoviruses (30-90 aa,  1 TMD). The predicted proviruses are thus more
likely to be inoviruses than any other type of mobile genetic element.

The  putative  proviruses  identified  in  Methanosarcina displayed  genes  for  integration,
morphogenesis, and  putative structural proteins, but no recognizable gene involved in genome
replication.  Similarly,  the sequence identified in the Aenigmarchaeota MAG only included a
morphogenesis gene and a putative structural protein. Hence, these two latter sequences could be
partial genomes, possibly remnants from a decaying provirus, or could be complete genomes of
active viruses for which replication-associated gene(s) cannot yet be identified, as is common
amoung archaeal viruses20. Regardless of the completeness of these genomes, both include an
inovirus-like morphogenesis protein suggesting these are most likely inoviruses. In addition, we
found a perfect  match between the Aenigmarchaeota  provirus  and a CRISPR spacer  from a
different  contig  in  the  same  MAG,  which  is  also  consistent  with  it  being  a  provirus
(Supplementary Table 6). 
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PCR validation of excision for an inovirus integrated in   Methanolobus profundi   MobM  
Attempts  at  observing  inovirus  capsids  through  TEM  were  unsuccessful  because

Methanolobus MobM flagella are similar in structure, length, and width to filamentous virions21.
Thus, we used instead PCR to detect the presence of a circularized form of the provirus, which
would correspond to the complete genome being excised and replicated or encapsidated (Fig.
4B). We first verified that the genome sequencing and assembly was correct by amplifying a
product internal to the predicted provirus and a product spanning the predicted insertion site (Fig.
4B). In both cases, we obtained a successful amplification with products of the expected size,
confirming that the predicted provirus is present and likely integrated in most cells in the culture.
Notably, we obtained positive amplification for the product spanning the insertion site from the
fraction < 0.22 µm, which suggests that some MobM cells can pass through the 0.22 µm filter
typically used to separate viruses from their bacterial or archaeal hosts. 

Next,  we designed a  PCR primer  pair  specific  to  the predicted  excised  form of  the  virus
genome by combining a forward primer from the 3’ end of the provirus to a reverse primer in the
5’ end of the provirus (Fig. 4B). We obtained a product of the expected size, and sequencing of
the  product  confirmed  that  it  spanned  both  ends  of  the  predicted  provirus  in  the  predicted
orientation and at the expected coordinates. This latter  PCR reaction initially generated more
nonspecific  products  than the internal  or integration  site  primers,  and the reaction  annealing
temperature had to be increased (> 56°C) to obtain a single band at the expected size. This higher
level of nonspecific amplification combined with the fact that the product obtained yielded a
relatively faint band (Fig. 4B) suggests that the template for this reaction, i.e. the excised form of
the virus genome, is found in a much smaller fraction of cells than the integrated form. It is thus
very likely that under laboratory conditions, even after treatment with mitomycin C, the provirus
is repressed in most cells resulting in an overall low concentration of circular virus genomes.

Additional host associations from CRISPR spacer matches to metagenome-assembled inoviruses
Matches between CRISPR spacers and inovirus sequences included both predicted prophages/

proviruses for which host information could be confirmed (n=711) and metagenome assemblies
for which additional host information could be obtained (n=439, Supplementary Table 6). Near-
exact matches (i.e. 0 or 1 mismatch) between CRISPR spacers and metagenome-derived viral
contigs have been shown to reliably associate uncultivated viral genomes to putative host(s)22.
Here, the reliability of near-exact CRISPR matches (i.e. allowing at most 1 mismatch over the
entire  spacer  length)  was confirmed  by the  CRISPR-based host  links  assessed  for  prophage
predictions:  in  99.5% of  the cases,  host  affiliations  were consistent  (708 of 711).  The three
outliers might be resulting from false positive spacer matches, horizontal virus transfer, or a very
broad host  range  for  certain  inoviruses.  It  is  of  note  that  introduction  of  the  genome of  an
inovirus infecting  Clostridium, a gram-positive bacterium, into the gram-negative  Escherichia
coli resulted in production of filamentous virus-like particles23,  suggesting that host switches
might not be strictly prohibited among inoviruses. Nevertheless, the overall agreement between
spacer matches and host affiliation of prophages suggest that spacer matches to metagenome-
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derived inovirus sequences can be used confidently, expanding the number of host-associated
sequences to 439 additional putative inovirus species.

Most of the host pairings derived from these metagenome CRISPR spacer matches were found
in hosts groups for which prophages had already been detected, and only 4 additional orders
were  identified.  First,  2  inovirus  sequences  were  associated  to  Roseiflexus genomes  in  the
Chloroflexales order. Other sequences from the same phylum (Chloroflexi) had been linked to
inovirus sequences, and all these Chloroflexi-associated sequences were consistently affiliated to
the proposed “Densinoviridae” candidate family. In addition, these metagenome-derived inovirus
sequences were detected in a hot spring metagenome, consistent with the preferential habitat of
Roseiflexus.

Another 2 species were associated with an Aphanizomenon genome (genus of photosynthetic
Cyanobacteria).  These  2  putative  viral  sequences  were  consistently  affiliated  to  the
“Photinoviridae” proposed family, which gathers all inoviruses associated with photosynthetic
Cyanobacteria,  and consistently  originated  from two freshwater  lake  metagenomes  (sampled
from Lake Mendota).

One inovirus species was associated with a genome assembled from a Nasutitermes corniger
(a species of termite) metagenome and currently affiliated as an “Unclassified Fibrobacteria”. No
prophage had been detected associated with this specific host phylum so far. Consistently, the
inovirus species was also assembled from a termite gut metagenome.

Another inovirus species was associated with a genome affiliated to the Nitrospinae phylum-
level  group.  This  inovirus  species  is  classified  in  the  “Amplinoviridae” Subfamily  4,  which
includes  Deltaproteobacteria-associated  inoviruses.  This  is  consistent  with  Nitrospinae  and
Deltaproteobacteria being related groups of bacteria. The inovirus genome was assembled from a
groundwater metagenome as was the bacterial genome.

Finally, one species was associated for the first time to Caldicellulosiruptor obsidiansis, a host
in  the  Thermoanaerobacterales order,  part  of  the  Clostridia class  for  which  other  putative
inovirus sequences had been detected. This sequence was consistently affiliated to the proposed
subfamily  Sf_1 of  the  “Vespertilinoviridae” candidate family,  the  main  group of  Clostridia-
infecting inovirus sequences identified in this study, and detected in a hot spring metagenome,
which is consistent with the known preferential habitat of Caldicellulosiruptor obsidiansis.

Evaluation of hypothetical proteins from self-targeted inoviruses in a   Pseudomonas aeruginosa  
model

Hypothetical proteins from two self-targeted  Pseudomonas inovirus prophages for which no
Acr  locus  could  be  identified  elsewhere  in  the  genomes  were  synthesized  and  cloned  in  a
pHERD30T vector for expression in Pseudomonas aeruginosa (Supplementary Fig. 10). Two of
these candidate genes (2687473922 and 2687473921) were toxic when expressed in the host, and
their  putative Acr or superinfection exclusion activity could not be assessed. However,  these
genes may be components of uncharacterized toxin-antitoxin systems.

Two candidate genes demonstrated superinfection exclusion activity, which was manifested by
the absence of plaques at dilutions for which plaques were formed for the same phage in the
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same host transformed with the empty vector (Supplementary Fig. 10). Neither of the 2 genes
provided universal superinfection exclusion: gene 2687473927 prevented or limited infection of
host strain PAO1 by 3 of the 6 phages tested, but no effect could be observed in the PA14 strain.
By  contrast,  2687473923  did  not  provide  any  superinfection  exclusion  in  host  PAO1,  but
prevented infection of 1 of the 3 phages efficiently infecting PA14 (Supplementary Fig. 10). This
suggests  that  inovirus-derived superinfection  exclusion  activity  varies  depending on the host
strain and the co-infecting virus. Specifically, gene 2687473927 seems to have a relatively broad
spectrum and could provide a general fitness advantage to host PAO1 by limiting infection in
this specific host strain for both temperate Mu-like siphoviruses (DMS3m and JBD30) and lytic
T7-like  podoviruses  (KMV).  Conversely,  the  effect  of  2687473923 seems to  be much more
restricted, and points toward more specific virus-virus interactions or incompatibility between
the inovirus and phage JBD30.

Although  both  proteins  are  uncharacterized,  they  are  relatively  widely  distributed  in
inoviruses, forming two corresponding protein families: iPF_00048 for gene 2687473923 and
iPF_00082 for gene 2687473927. Members of the iPF_00048 protein family, responsible for the
“narrow” superinfection exclusion, were found in 424 distinct inovirus species. These inoviruses
were affiliated across 9 proposed subfamilies within the “Protoinoviridae”, and associated with
both Beta- and Gammaproteobacteria hosts. Since some members of this protein family contain
an HTH domain, we posit that these genes may be coding for transcriptional regulators that could
provoke incompatibility with some individual phages, but their primary function might not be
superinfection exclusion.

Members of the iPF_00082 protein family (“broad” superinfection exclusion) were detected in
163 distinct inovirus species, all affiliated to the “Protoinoviridae” and nearly all (98%) to the
“Protoinoviridae:Sf_2” proposed subfamily. All identified hosts for these species were affiliated
to the  Pseudomonas genus. This narrow distribution in terms of inovirus family/subfamily and
host range suggests that members of this protein family have evolved in Pseudomonas-specific
inoviruses  to  mediate  broad-spectrum superinfection  exclusion. Strikingly,  nearly  half  of  the
inovirus prophages identified in  Pseudomonas genomes (44%, 158 of 359) encoded this gene.
This  could  be  due  to  positive  selection  of  this  gene  in  inovirus  prophages  because  of  its
superinfection  exclusion  properties,  although  we  cannot  exclude  a  potential  bias  in  the
Pseudomonas genome dataset whereby many strains of  Pseudomonas aeruginosa with distinct
but closely related inovirus prophages would have been sequenced. Finally, all members of the
iPF_00082 protein family are 29-30 aa-long and carry predicted α-helical membrane-spanning
domain, suggesting that superinfection exclusion may occur at the host cell  surface, possibly
during the attachment  and/or entry of a superinfecting phage.  Notably,  several  Pseudomonas
dsDNA  prophages  have  already  been  shown  to  provide  superinfection  exclusion  through
alteration of the host T4 pilus24,  which could be the case as well  for these inovirus-encoded
proteins.
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Supplementary Figures

Supplementary Figure  1. Genome-gene bipartite network of publicly available  Inoviridae
isolate  genomes. Genomes  are  represented  as  circles  colored  according  to  their  genus
classification,  and protein families (PFs) are  displayed as  squares colored by their  predicted
function. ICTV-proposed genera are indicated by coloring of the genome nodes. Morphogenesis
(pI-like) proteins are highlighted in shades of red, and although these proteins were represented
by 3 distinct protein families, local similarities could still be detected between the corresponding
HMM profiles  (HHSearch  probability  ≥  90%).  The  two  types  of  pI-like  proteins,  with  the
transmembrane domain (TMD) either in C- or N-terminal are indicated in dark and light red
respectively (see Supplementary Fig. 3). 
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Supplementary Figure 2. Features used and characteristics of the Random Forest classifier
used to detect inoviruses.  A. Example of genome features evaluated on isolate inoviruses and
manually-curated inovirus prophages (in blue) and other fragments from microbial genomes used
in the negative training set (in red). Boxplot lower and upper hinges correspond to the first and
third  quartiles,  whiskers  extend  no  further  than  ±1.5*Inter-quartile  range.  The  number  of
sequences in each set is indicated below each boxplot. B. ROC curve of the automatic classifier
distinguishing inovirus  genomes  from other  viral  or  microbial  genome fragments.  A subplot
displays a zoom on the area < 2% false positive rate and > 85% true positive rate. The three types
of classifier tested are plotted in different colors, and the true positive and false positive rates
associated with the chosen threshold of 0.9 for the random forest classifier are indicated with a
black circle and dotted line on the subplot.  RF: Random Forest,  ciRF: conditional inference
Random Forest, GLM: Generalized Linear Model. C. Importance of the different features in the
Random Forest classifier, measured through the average decrease of Gini index. D. Origin and
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validation of inovirus sequences identified through the Random Forest classifier (i.e. not in the
initial set of 805 manually curated genomes used for training). The left bar indicates whether the
sequence  comes  from a  microbial  genome (ImgI)  or  a  metagenome assembly  (ImgM).  The
middle  bar  shows  the  result  of  the  Random  Forest  classifier  using  a  cutoff  of  0.9  on  the
confidence score, and separating for the sequences with a score < 0.9 between short (<5kb) and
long (≥ 5kb) contigs. Finally, the right bar indicates, for sequences with a score ≥ 0.9, whether
the  sequence  was  identified  as  a  false  positive  during  the  manual  inspection  step  (see
Supplementary  Text).  E.  Score  obtained  for  sequences  identified  from  the  Random  Forest
classifier  (i.e.  not  in  the initial  set  of  805 manually curated genomes)  grouped by proposed
family or identified as non-inovirus sequences in the manual inspection step. Boxplot lower and
upper  hinges  correspond  to  the  first  and  third  quartiles,  whiskers  extend  no  further  than
±1.5*Inter-quartile range. The number of sequences in each set is indicated below each boxplot.
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Supplementary Figure 3. Identification of genuine inovirus pI proteins. A. Characteristics of



protein clusters (PCs) including pI-like (“Morphogenesis”) proteins, i.e. proteins with a best hit
to a pI-like model, and used as seed to identify inovirus sequences. Each PC is associated with a
protein family (iPF), the number of proteins in the cluster, their initial affiliation, their origin
(genome or metagenome), and host information for the ones identified in microbial genomes. B.
Schematic  representations of the different types of pI proteins identified:  typical  with an N-
terminal  Zot-like domain followed by a transmembrane domain (TMD), atypical  with an N-
terminal TMD followed by a Zot-like domain, and potential pI – Assembly fusions including an
N-terminal Zot-like domain followed by a TMD and a secretion system-like domain.
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Supplementary Figure 4. Accumulation curves of inovirus species. The number of different
species is indicated as a function of the total number of complete and partial genomes, first for
detections in draft and complete genomes from bacteria and archaea, and then in metagenome
assemblies. A set of 10 subsample replicates were calculated and are plotted in colors, while the
resulting average number of species is plotted in black.
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Supplementary Figure 5.  Inovirus prevalence and co-infection patterns. A.  Prevalence of
inoviruses estimated through the proportion of genomes within a genus with 1 or more inovirus
detection(s). Beta- and Gammaproteobacteria are highlighted in red. Groups with unusually high
inovirus  prevalence,  >  75% within  beta-  or  gamma-proteobacteria  or  >  15% otherwise,  are
labeled on the plot. B. Distribution of the number of distinct detection(s) by genome, grouped by
host phylum or class.  Host groups are colored as in panel A.  C. Distribution of the number of
large terminase subunits (TerL) as a proxy for the number of Caudovirales prophages identified
by genome for each genus where ≥ 10 genomes had an inovirus detection and ≥ 10 genomes had
no inovirus detection. The genus for which the distribution of prophage number was statistically
different between the two categories (Bacillus) is highlighted with a star (ANOVA p-value =
1.65e-07 & Cohen’s effect size = 0.76, degree of freedom=1). D. Distribution of the distance
between an inovirus prophage and the closest  Caudovirales  prophage for cases where the two
sequences  are  less  than  50kb apart.  Distribution  was plotted  for  genera  where ≥ 3 cases  of
neighboring prophages were identified. Boxplot lower and upper hinges correspond to the first
and third quartiles, whiskers extend no further than ±1.5*Inter-quartile range. Boxes are colored
by host class. For panels A, B, C, and D, prevalence and co-infection frequencies were calculated
after  clustering  near-clonal  host  genomes  based  on  pairwise  ANI  (cutoffs:  95%  nucleotide
identity on 95% alignment fraction). For all boxplots, lower and upper hinges correspond to the
first and third quartiles, whiskers extend no further than ±1.5*Inter-quartile range. E. Examples
of (near-)contiguous inovirus and Caudovirales prophages. Three genome regions encoding both
the inovirus and the Caudovirales prophages are displayed, with genes colored according to their
affiliation. Prophages are highlighted with a solid black line (Caudovirales) or dashed black line
(inovirus). For all boxplots, the number of observations for each group is indicated next to the
group name, except for D where the number of observations is displayed as a bar chart (right
panel).
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Supplementary Figure 6.  Experimental validation of predicted provirus in  Methanolobus
profundi MobM. A. Amplification result for the three primer pairs tested. P primers amplify
across  the  predicted  5’ insertion  site  (left),  B  primers  amplify  within  the  predicted  provirus
(center), and C primers amplify across the junction of the predicted excised circular genome
(right). P and B primers amplifications were repeated twice, and the C primers amplifications
were repeated three times, with an identical result obtained for each replicated (Supplementary
Fig. 11). NC: no template control. B. Amplification products obtained with the C primer (i.e.
spanning the junction of the predicted excised genome) aligned against the genome sequence of
Methanolobus profundi MobM. Top track represents the 3’ region of the provirus, bottom track
the 5’ region of the provirus, and the middle track is the sequenced amplicon. The direct repeat
predicted as the end of the provirus is framed in red. Since the amplicon aligned across this direct
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repeat and from the 3’ to the 5’ end of the provirus, it is most likely derived from a circular
excised version of the virus genome.
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Supplementary Figure 7.  Characteristics  of the genome-based inovirus classification.  A.
Examples of inovirus genomes with partial gene content sharing. Three comparisons of predicted
inovirus genomes highlighting the fact that some of these viruses can display nearly-identical
genes  but  show  no  similarity  between  morphogenesis  (pI-like)  proteins.  Genes  are  colored
according to their functional affiliation, based on the iPF clustering (Supplementary Table 5). B.
Distribution of pairwise marker gene Amino Acid Identity (AAI) for different viral groups and
taxonomic ranks. Marker genes used included pI (Morphogenesis) for inoviruses, TerL (large
terminase subunuit) for  Caudovirales, Rep (replication initiation protein) for  Circoviridae, and
VP1 (major capsid protein) for Microviridae. Boxplots are colored according to the taxonomic
ranks  of  the  sequences  compared.  A dashed  horizontal  line  indicates  the  threshold  recently
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proposed  to  delineate  Inoviridae genera  (50%  AAI).  Circov.: Circoviridae,  Microv.:
Microviridae.  Boxplot  lower  and  upper  hinges  correspond  to  the  first  and  third  quartiles,
whiskers extend no further than ±1.5* Inter-quartile range. C. Characteristic genome features of
proposed families. Boxplots show the distribution of genome size (left) and number of predicted
genes  (right)  for  each  proposed  family,  colored  as  in  Fig.  5.  Genome  size  and  number  of
predicted genes were only calculated on inovirus genomes reliably predicted as complete, i.e.
isolates, circular contigs, or proviruses with a confident insertion site either in a tRNA or next to
an integrase gene. Boxplot lower and upper hinges correspond to the first and third quartiles,
whiskers extend no further than ±1.5*Inter-quartile range. D. Host and biome range of proposed
inovirus families. For each candidate family, the percentage of species associated with a specific
host group (left) or ecosystem type (right) is indicated. Only host groups and biomes associated
with > 10% of the species of at least 1 candidate family are indicated separately, the remaining
are gathered in the “Other” category. Type of membrane for host cells are derived from ref.25.
DT:  Deinococcus-Thermus.  For  boxplots  (panels  b  and  c),  the  number  of  observations  is
indicated between brackes.
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Supplementary Figure 8.  Distribution of structural proteins and toxin/antitoxin proteins
across  inovirus  species.  Diversity  of  structural  proteins  across  inovirus  sequences.  The  top
heatmap displays the relative abundance of each (putative) structural protein family (iPF) in each
proposed  family.  Color  scale  represents  the  percentage  of  members  of  the  proposed  family
encoding each iPF. A zoomed heatmap displaying only iPFs found in ≥ 5% of members of ≥ 1
proposed family is displayed in the bottom left corner. Secondary structure predictions obtained
from Phyre226 are displayed on the right side for the most abundant iPFs predicted as major coat
proteins for each candidate family. 
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Supplementary Figure 9. Comparison of predicted toxin and antitoxin proteins similarities.
Sequences predicted as toxins and antitoxins were compared using Sequence Demarcation Tool
(SDT)27,  and  the  resulting  AAI  matrix  was  used  to  cluster  sequences  (UPGMA  clustering).
Predicted toxin-antitoxin (TA) pairs are highlighted with colors. The corresponding genome of
the system is indicated at the bottom in the same order as the antitoxin gene.
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Supplementary Figure 10. Evaluation of self-targeting lethality, trans-acting anti-CRISPR
activity  from  co-infecting  prophages,  and  anti-CRISPR/superinfection  activity  of
uncharacterized genes  predicted  on  inovirus  prophages  in  Pseudomonas  aeruginosa.  A.
Transformation  assay  to  evaluate  viability  of  cells  including  a  self-targeted  inovirus  in  the

675



presence and absence of a co-infecting acr-encoding prophage. Percent transformation efficiency
of  crispr  RNA (crRNA)-expressing  plasmids  were calculated  relative to  an empty  vector,  in
Pseudomonas aeruginosa strains PA14 naturally lysogenized with inovirus Pf1 (PA14 [Pf1]) or
dual  lysogenized  with  Pf1  and  acr-expressing  siphovirus  DMS3macrIF1 (PA14  [Pf1  ,
DMS3macrIF1]). NT = non-targeting crRNA, Pf1-1 and Pf1-2 crRNAs target the coat protein gene
in inovirus Pf1. For each condition, bars represent the average value of biological triplicates, and
error bars represent the standard deviation across triplicates. B. Phage plaque assay to assess
anti-CRISPR activity of candidate genes, using 3 host strains (left, middle, and right panel) each
expressing  a  different  type  of  CRISPR-Cas  system,  and  the  corresponding  targeted  phages
(indicated on top of each panel). Host strains 4386 and PA14 encode a naturally active Type I-E
and Type I-F CRISPR-Cas system (respectively), while strain PAO1 encodes Type I-C Cas genes
integrated under the control of an IPTG inducible promoter, in presence of IPTG. Ten-fold serial
dilutions of the targeted phages were titered on lawns of Pseudomonas aeruginosa expressing the
empty vector (top row), a candidate gene (rows 2 to 11), or with CRISPR immunity suppressed
(bottom  row,  condition  -CRISPR-Cas). C.  Phage  plaque  assays  illustrating  superinfection
exclusion properties of genes 2687473927 (middle panel) and 2687473923 (right panel), relative
to vector control (left panel). Serial dilutions (from left to right) of a set of phages (rows 1 to 7 in
each picture) were spotted onto lawn cultures of strain PAO1 with the I-C Cas genes integrated
under the control of an IPTG inducible promoter in the absence of IPTG (top), or of strain PA14
(bottom).  Interpretation  of  infection  outcome  is  indicated  to  the  right  of  each  lane,  with
successful infection represented by a phage symbol, and superinfection exclusion represented by
a phage symbol barred by a red cross. To confirm that the inhibitory phenotype of 2687473923
on phage JBD30 and host PA14 is CRISPR-independent, the assay was repeated in a strain of
PA14 lacking an active Type I-F system (PA14 ∆CRISPR, bottom right). The full antiCRISPR
experiment was conducted once, while all superinfection experiments were conducted twice and
produced similar results.
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Supplementary Figure 11. Full size gels from Fig. 4 (panel b) and Supplementary Fig. 6. P
primers: PCR Primers amplifying across the predicted provirus integration site. B primers: PCR
primers internal to the predicted provirus, amplifying both the integrated and circularized form.
C primers: PCR primers spanning across the predicted attachment site and amplifying only the
circularized form. Tm: melting temperature. NC: No template control. The sections cropped and
displayed in Fig. 4 and Supplementary Fig. 6 are highlighted in blue and red, respectively.
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Supplementary Figure 12. Full  size gels from Fig.  6b and Supplementary Fig.  10.   The
sections cropped and displayed in Fig. 6 and Supplementary Fig. 10 are highlighted in red and
blue, respectively.



Supplementary Tables

Supplementary Table 1. List and characteristics of reference inovirus genomes used in this
study. For each genome, genome features (size and type), ICTV classification, and known or
predicted major coat proteins are indicated. Proteins that were not annotated as major coat but
only predicted based on protein size and the presence of a single transmembrane domain (TMD)
are highlighted in yellow. The tab “Structural protein detections” includes the detection of all
putative structural proteins (i.e. major and minor coat proteins) in the same reference genomes.
TMD: transmembrane domain.

Supplementary Table 2. List of genomes and metagenomes mined. Genomes are associated
with  their  IMG  identifiers  and  taxonomic  affiliation,  with  amendment  to  this  affiliation
specifically for the inovirus-encoding contigs added in the “Notes” column. Metagenomes are
associated  with  their  GOLD  biome  classifications,  as  well  as  the  summarized  ecosystem
categories and subcategories used for Fig. 2. For genomes and metagenomes in which inoviruses
were detected,  the associated project name, dataset name, PI, and publication information (if
available) are indicated in the tab “Inovirus distribution across datasets”, based on information
available in the GOLD database.

Supplementary Table 3. Classification of inovirus sequences into species, proposed families,
and proposed subfamilies. Putative tandem detections, i.e. neighboring inovirus prophages for
which clear boundaries could not be identified, are shown in a separate tab (“Tandems”) and
were not included in the network from which the family/subfamily classification was derived.
Each  sequence  is  associated  with  its  host  genome  affiliation  or  the  sample  ecosystem
classification of the metagenome it was assembled from.

Supplementary Table  4.  Additional  indication of  inovirus infection for 20 phylum-level
putative host groups. Since inovirus sequences have only been detected in a (draft) genome for
these  groups,  they  could  potentially  originate  from  genome  contamination,  either  physical
sample  contamination  or  in  silico contamination  for  metagenome-assembled  genomes.  Two
indicators were used to confirm the host linkage and alleviate this potential contamination: the
presence  of  an  integrated  inovirus  in  a  large  host  contig  with  confident  affiliation,  and  the
presence of  match(es)  between CRISPR spacer(s)  and predicted  inovirus  sequence(s).  These
examples are listed here for each group highlighted in bold in Fig. 3.

Supplementary Table 5. Functional annotation of protein families (iPFs). Protein sequences
were affiliated against the PFAM database and reference protein clusters derived from isolate
inoviruses (affiliations starting with “PC_”). In the absence of significant hits to PFAM or the
reference inovirus protein clusters, protein sequences predicted as putative structural  proteins
based  on  sequence  characteristics  were  affiliated  as  “Predicted_structural”,
“Predicted_structural_SP”, or “Putative_structural” depending on the prediction confidence (see
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Supplementary Table 1, tab “Structural proteins detections”). iPFs were then organized in a two
levels functional classification (columns 3 and 4). Identification of motifs  for replication and
integration  iPFs  as  well  as  toxin-antitoxin  pair  iPFs  are  shown in  separate  tabs.  Conserved
domains were identified in iPFs affiliated as replication initiation and integration proteins, except
for cases where too few sequences were available to reliably identify motifs (identified with “-”).
Putative toxin-antitoxin are identified as pairs of co-occurring iPFs systematically located next to
each other in inovirus genomes and for which at least one member of the pair was affiliated as
either a putative toxin or antitoxin.

Supplementary Table 6. List of matches between inovirus sequences and IMG CRISPR
spacer  database.  Only  cases  with  0  or  1  mismatch  between  the  spacer  and  putative  viral
sequences are included. Characteristics of host genomes with inovirus self-target, i.e. CRISPR
spacer maching an integrated inovirus prophage in the same genome, are indicated in a separate
tab. For each match, the prophage and spacer ID is indicated, along with the list of putative anti-
CRISPR proteins,  the  detection  of  non-inovirus  prophages  in  the  same  genomes  (VirSorter
predictions and identification of large terminase subunit),  and the number of uncharacterized
proteins  with  an  HTH  domain  identified  in  the  inovirus  genome  (using  the  representative
genome from the inovirus species).
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