www.sciencemag.org/content/362/6416/799/suppl/DC1

Supplementary Materials for

Heterobiaryl synthesis by contractive C–C coupling via P(V) intermediates

Michael C. Hilton, Xuan Zhang, Benjamin T. Boyle, Juan V. Alegre-Requena, Robert S. Paton,* Andrew McNally*

*Corresponding author. Email: robert.paton@chem.ox.ac.uk (R.S.P.); andy.mcnally@colostate.edu (A.M.)

Published 16 November 2018, *Science* **362**, 799 (2018) DOI: 10.1126/science.aas8961

This PDF file includes:

Materials and Methods Figs. S1 to S26 Tables S1 to S22 Captions for movies S1 and S2 NMR Spectra References

Other supplementary material for this manuscript includes:

Movies S1 and S2

Table of Contents

1.	. General Information S					
2.	Optim	ization Studies	S4			
3.	Comp	utational Methods	S6			
4.	Reacti	on Mechanism: Computational Analysis	S9			
	a.	Nomenclature	S9			
	b.	Configurational Energetics: Controlled by Apicophilicity	S11			
	c.	Why Pyridine-Pyridine Coupling is Favored	S12			
	d.	Computed Reaction Mechanism from Int-III	S14			
	e.	Computed Reaction Mechanism from $[Int-III\cdot H]^+$	S17			
	f.	Computed Reaction Mechanism from [Int-III·2H] ²⁺	S19			
	g.	Solvation Model Validation of SMD Using COSMO-RS	S22			
	h.	NBO Analysis	S25			
5.	Potent	tial Energy Surface (PES) Relaxed Scans	S27			
6.	Captio	ons to Movies S1-2	S28			
7.	¹ H NM	IR and ³¹ P NMR Salt Protonation Study	S29			
8.	Aryl (Group Substitution Study: Reaction Kinetics	S31			
9.	Alkox	ide Investigation	S38			
10.	Challe	enges and Limitations	S39			
11.	Additi	ional Examples	S40			
12.	Exper	imental Procedures	S41			
	a.	Preparation of Heteroaryl Precursors	S41			
	b.	Preparation of Heteroaryl Phosphines	S46			
	c.	Preparation of Heteroaryl Phosphonium Salts	S52			
	d.	Ligand-coupling Reactions to Make Heterobiaryls	S79			
13.	Thern	nochemical Data and Absolute Energy Values	S98			
14.	Cartes	sian Coordinates	S107			
15. ¹ H, ¹³ C, ¹⁹ F and ³¹ P Spectra S1						
Re	ference	es				

S2

1. General Information

Proton nuclear magnetic resonance (¹H NMR) spectra were recorded at ambient temperature on a Varian 400 MR spectrometer (400 MHz), an Agilent Inova 400 (400 MHz) spectrometer, an Agilent Inova 500 (500 MHz) spectrometer, or a Bruker AV-111 400 (400 MHz) spectrometer. Chemical shifts (δ) are reported in ppm and quoted to the nearest 0.01 ppm relative to the residual protons in CDCl₃ (7.26 ppm), CD₃OD (3.31 ppm) or (CD₃)₂SO (2.05 ppm) and coupling constants (J) are quoted in Hertz (Hz). Data are reported as follows: Chemical shift (number of protons, multiplicity, coupling constants). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity reported according to the following convention: s =singlet, d = doublet, t = triplet, q = quartet, qn = quintet, sext = sextet, sp = septet, m = multiplet, br = broad. Where coincident coupling constants have been observed, the apparent (app) multiplicity of the proton resonance has been reported. Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded at ambient temperature on a Varian 400 MR spectrometer (100 MHz), an Agilent Inova 400 (100 MHz) spectrometer, an Agilent Inova 500 spectrometer (125 MHz) or a Bruker AV-111 400 (100 MHz) spectrometer. Chemical shift (δ) was measured in ppm and quoted to the nearest 0.01 ppm relative to the residual solvent peaks in CDCl₃ (77.00 ppm), (CD₃)₂SO (39.51 ppm), CD₃OD (49.00 ppm) or CD₃CN (1.32 ppm).

Low-resolution mass spectra (LRMS) were measured on an Agilent 6310 Quadrupole Mass Spectrometer. High-resolution mass spectra (HRMS) were measured on an Agilent 6220 TOF LC/MS ("OTOF") interfaced to an Agilent 1200 HPLC with multi-mode (combined ESI and APCI) and Direct Analysis in Real Time (DART) sources. (IR) spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer as either solids or neat films, either through direct application or deposited in CHCl₃, with absorptions reported in wavenumbers (cm⁻¹).

Analytical thin layer chromatography (TLC) was performed using pre-coated Silicycle glass backed silica gel plates (Silicagel 60 F254). Flash column chromatography was undertaken on Silicycle silica gel Siliaflash P60 40-63 um (230-400 mesh) under a positive pressure of air unless otherwise stated. Visualization was achieved using ultraviolet light (254 nm) and chemical staining with ceric ammonium molybdate or basic potassium permanganate solutions as appropriate.

Tetrahydrofuran (THF), toluene, hexane, diethyl ether and dichloromethane were dried and distilled using standard methods (44). 1,2-Dichloroethane (DCE), 1,4-dioxane, chloroform, chlorobenzene and acetone were purchased anhydrous from Sigma Aldrich chemical company. All reagents were purchased at the highest commercial quality and used without further purification. Reactions were carried out under an atmosphere of nitrogen unless otherwise stated. All reactions were monitored by TLC, ¹H NMR spectra taken from reaction samples, and liquid chromatography mass spectrometry (LCMS) using an Agilent 6310 Quadrupole Mass Spectrometer for MS analysis. Melting points (mp) were recorded using a Büchi B-450 melting point apparatus and are reported uncorrected.

Tf₂O (99%) was purchased from Oakwood Chemical and used without further purification but was routinely stored in a -20 °C fridge. DBU was distilled before use. (2,2,2)-Trifluoroethanol (TFE) was purchased from Oakwood Chemicals and used without further purification. 200 proof ethanol was purchased from PHARMCO-AAPER and used without further purification. HCl (4.0 M in dioxanes) and trifluoromethanesulfonic acid (98%) were purchased from Sigma Aldrich chemical company and used without further purification but were routinely stored in a -20 °C fridge.

2. Optimization Studies

 Table S1: Optimization of Ligand Coupling Reaction

Entry	Solvent	Concentration	Equiv. HCl	Additive	% Yield*
1^{\dagger}	MeOH	0.125	-	-	0
2	MeOH	0.2	2	-	76
3	IPA	0.2	2	-	57
4	t-BuOH	0.2	2	-	51
5	TFE	0.2	2	-	59
6	HFIPA	0.2	2	-	68
7	Acetone	0.1	-	H ₂ O(10 equiv)	44
8	EtOAc	0.1	-	H ₂ O(10 equiv)	55
9	MeOH	0.2	0.5	-	48
10	MeOH	0.2	1	-	62
11	EtOH	0.2	2	-	70
12	EtOH	0.4	2	-	80
13^{\dagger}	EtOH	0.4	2	-	78
14^\dagger	EtOH	1.0	2	-	80
15	TFE	0.4	-	-	0
16	HFIPA	0.4	-	-	0
17	NEt ₃	0.2	-	-	0
18	Pyridine	0.4	-	-	0
19	CHCl ₃	0.2	2	<i>n</i> -propylthiol	14

				(10 equiv)	
20	CHCl ₃	0.2	-	<i>n</i> -propylthiol (10 equiv)	0
21	CHCl ₃	0.2	2	phenol (10 equiv)	13
22	CHCl ₃	0.2	-	phenol (10 equiv)	0
23	CHCl ₃	0.4	2	-	ND [‡]
24	THF	0.4	2	-	ND [‡]
25	EtOAc	0.4	2	-	ND [‡]
26	EtOH	0.4	-	-	0

* ¹H NMR yields shown using 1,3,5-trimethoxybenzene as an internal standard.
† Reactions were carried out on a 0.25 mmol scale instead of 0.1 mmol
‡ Products were not detected by LCMS

Table S2: Temperature Optimization of Ligand Coupling Reaction: 2,4['] Coupling System

	N PPh ₂	DTf ₂ <u>Te</u> `Ph	emperature	N N Ph	
Entry	Solvent	Concentration	Equiv. HCl	Temperature	% Yield [*]
1	MeOH	0.2	2	40	12
2	MeOH	0.2	2	60	44
3	MeOH	0.2	2	70	60
4	MeOH	0.2	2	80	72
5	MeOH	0.4	2	80	83
6	EtOH	0.4	2	70	66
7	EtOH	0.4	2	80	78
8	EtOH	0.4	2	90	76

^{*}¹H NMR yields shown using 1,3,5-trimethoxybenzene as an internal standard.

N OTf PPh ₂	Tem HCI 4.0N S	perature, 14h / in dioxane (2eq) olv. (0.4M)	N N Ph
3a			4a
Entry	Solvent	Temperature	% Yield*
1	МеОН	40	12
2	MeOH	60	75
3	EtOH	80	89 (88)
4	$EtOH^{\dagger}$	80	93

Table S3: Temperature Optimization of Ligand Coupling Reaction: 4,4 Coupling System

* ¹H NMR yields shown using triphenylmethane as an internal standard.
[†]Reaction ran for 18 hours with 2eq TfOH instead of 2eq HCl 4.0M in dioxane for 14 hours. Isolated yield shown in parentheses.

3. Computational Methods

The range-separated dispersion-corrected ω B97X-D density functional (45, 46) was used with the 6-31+G(d) (47-51) basis set to optimize the geometries of all stationary points. This functional captures weak, non-covalent interactions, such as the attractive London dispersion component of van der Waals interactions, which influences structures and energetics (45, 52). We evaluated the ability of our chosen level of theory in describing the structures of pentacoordinate P(V) species by comparison against alkoxyphosphoranes which have been characterized by X-ray crystallography (**Figure S1**). Considering that we used solvent (SMD = ethanol) in the calculations, which is of different polarity to the bulk crystal, and allowing for the possibility of crystal packing effects in the X-ray structures, the level of agreement between theory and experiment is high: P-C bond distances differ by less than 0.5%, P-O distances by less than 5%, and all angles and dihedrals are also well reproduced. It is worth mentioning that P-O bonds are highly polarized as observed in our NBO calculations (*vide infra*) and, therefore, the solvation of these molecules in the two environments (crystal packing and EtOH) probably has a relevant impact on the lengths of these bonds.

A				Ş	E			
Bond	Bond ler	ngth (Å) @P07X	Variation		Bond	Bond le	ength (Å)	Variation (%)
	Crystal	ω B 9/ A - D	(%)			Crystal	ωB97X-D	
P-O	1.819	1.909	4.9		P-O	1.855	1.931	4.1
P-C _{ax}	1.921	1.912	-0.4		P-C _{ax}	1.910	1.906	-0.2
P-C _{eq1}	1.845	1.847	0.1		P-Ceq1	1.837	1.843	0.3
P-C _{eq2}	1.828	1.829	< 0.1		P-C _{eq2}	1.819	1.829	0.5
P-C _{eq3}	1.840	1.841	< 0.1		P-C _{eq3}	1.833	1.841	0.4
Figuro S1	Ton: Or	vorlay of V	7 ross straig	urog	of $1' 5 6$	trimathul 1	1 1 triphony	11U opiro[21]

Figure S1. Top: Overlay of X-ray structures of 1',5,6-trimethyl-1,1,1-triphenyl-1H-spiro[2,1benzoxaphosphole-3,3'-indol]-2'(1'H)-one (CCDC identifier: COSZOB) (53) (A) and 1,1,1,3tetraphenyl-3-(trifluoromethyl)-1,3-dihydro-2,1-benzoxaphosphole (CCDC identifier: COTGUP) (53) (B), represented in dark red, with ω B97X-D/6-31+G(d)(SMD) optimized geometries, represented with standard colors. Bottom: Tabulation of P-C/P-O bond lengths determined experimentally and computationally.

In steps **Int-III**, **[Int-III·H]**⁺ and **[Int-III·2H]**²⁺, a manual conformational search was performed. In this process, P substituents were placed in different axial and equatorial positions, and the different aromatic groups along with the methoxy group were rotated systematically and incrementally. During the conformational search, we found 7, 11 and 9 different structures for **Int-III**, **[Int-III·H]**⁺ and **[Int-III·2H]**²⁺, respectively, from all the conformations studied (see section *Absolute Energy Values* for more information). For each isomer we obtained the subsequent reaction coordinate (**TS-I**, **Int-IV**, etc).

Vibrational frequency calculations were carried out to confirm that stationary points were either minima or first-order saddle points on the potential energy surface, and to obtain thermal corrections to Gibbs free energies at 353.15 K (80 $^{\circ}$ C). Additionally, intrinsic reaction coordinate (IRC) calculations (54) were performed to verify that the intermediates (Int) of the different

pathways connected to their corresponding transition structure (**TS**). Quasi-harmonic (QHA) corrections were applied to the computed vibrational entropies using a frequency cut-off value of 100.0 cm⁻¹, adopting the model proposed by Grimme (55). This was automated by the *GoodVibes* program (56).

Solvent effects were considered in all calculations (i.e. optimizations and single-point energy calculations) using the integral equation formalism variant of the polarizable continuum model (IEF-PCM) (57-62) with the SMD solvation model (solvent=ethanol) (62). Density functional theory (DFT) calculations were carried out in *Gaussian 16* (63), with an "ultrafine" pruned (99,590) grid for numerical integration of the exchange-correlation functional and its derivatives. Atomic charges and Wiberg bond orders (64) were computed using natural population analysis (NPA) with *NBO 6.0* (65), interfaced to Gaussian 16. Molecular graphics were generated using *PyMol* (66); Our display settings have been made openly accessible (67). Energy scatter plots were created using *GraphPad Prism* (68). Electron localization function (ELF) analysis (69) of [**TS-I-2H**]²⁺-**PyH⁺**,**OMe,ax-a** (see the *Animation of Reaction Coordinate: Movie S1*) was carried out using *Multiwfn* (70) for points along the intrinsic reaction coordinate.

Electronic energies were refined by single point energy calculations on the optimized geometries. We used both DFT and correlated wavefunction theory: ω B97X-D/def2-QZVPP (71, 72) and DLPNO-CCSD(T) (73-77) /cc-pV(DT)Z (78-82) calculations, both with the inclusion of SMD solvation. Quasi-harmonic thermal corrections obtained at ω B97X-D/6-31+G(d) level of theory were applied to these single point energies.

Domain-based local pair-natural orbital coupled cluster with perturbative triple excitations (DLPNO-CCSD(T)) calculations were performed with *ORCA 4.0.* (*81, 82*) Using a normal truncation threshold ("normalPNO") DLPNO-CCSD(T) energies achieve an accuracy of 1 kcal mol⁻¹ or better compared to CCSD(T) (*83*), which is widely regarded as a "gold standard" in computational chemistry (*84*). Extrapolation to the basis set limit was performed using cc-pVDZ and cc-pVTZ energies, treating the convergence of SCF and correlation energies separately:

(a) The convergence of the HF energy to the basis set limit is calculated as:

$$E_{SCF}^{(X)} = E_{SCF}^{(\infty)} + Ae^{(-\alpha\sqrt{X})}$$
(1)

where E_{SCF}^X is the SCF energy calculated with the basis set having highest angular momentum X, E_{SCF}^∞ is the basis set limit SCF energy, $\alpha = 4.42$ (empirically optimized for cc-pV(DT)Z), and A is a parameter to be determined.

(b) The correlation energy is assumed to converge as:

$$E_{corr}^{(\infty)} = \frac{X^{\beta} E_{corr}^{(X)} - Y^{\beta} E_{corr}^{(Y)}}{X^{\beta} - Y^{\beta}}$$
(2)

where $E_{corr}^{(\infty)}$ is the correlation energy calculated with the basis sets having successive highest angular momentums X and Y (in our case 3 and 2), and $\beta = 2.46$ (empirically optimized for cc-pV(DT)Z) (85).

4. Reaction Mechanism: Computational Analysis

4a. Nomenclature

We carried out configurational/conformational analysis for all minima and saddle points, systematically generating trigonal bipyramidal structures with substituents in different axial and equatorial positions (**Figure S2**). To enumerate these different structures, we refer to the two substituents in axial positions. For example, pentacoordinate P(V) species with one PyH^+ and one OMe group in axial positions, are referred to (**PyH**⁺,**OMe**,**ax**). For each configuration we also obtained multiple conformations with respect to rotation about the methoxy group, catalogued by different letters at the end of each name (*i.e.* a, b, c, etc). Discussion in the main text and energy profiles in the supporting information refer to the most stable rotameric conformation found for each P(V) configuration.

Figure S2. Descriptors used in the enumeration of compounds based on the configuration at phosphorus and the rotameric conformation of the methoxy group.

Furthermore, structures were differentiated based on protonation state (Figure S3).

b) reaction coordinate (starting from [Int-III·2H]²⁺-PyH⁺,OMe,ax):

Figure S3. Nomenclature based on the number of H⁺ equivalents added and reaction step.

Additionally, the phosphine and biaryl products formed in the ligand coupling step are referred to using the following scheme (**Figure S4**).

Figure S4. List of final phosphines and products.

4b. Configurational Energetics are Controlled by Apicophilicity

More electronegative substituents prefer to occupy axial (apical) positions in trigonal bipyramidal species in the absence of steric constraints (86). This preference known as apicophilicity dictates the relative stabilities of the stereoisomers for each of the pentacoordinate P(V) species. As shown in **Figure S5**, the axial preference follows the expected order in line with electron-withdrawing ability OMe > PyH⁺ > Py > Ph. The relative stabilities are consistent across DFT and WFT calculations.

Figure S5. Relative stability of the different isomers of **Int-III**, **[Int-III·H]**⁺ and **[Int-III·2H]**²⁺. Blue = ω B97X-D/def2-QZVPP; red = DLPNO-CCSD(T)/cc-pV(DT)Z.

4c. Why Pyridine-Pyridine Coupling is Favored

The simplest example of ligand coupling from pentavalent phosphorus is that of PH₅. Orbital symmetry dictates that the coupling of equatorial and apical substituents is forbidden: the hydrogenic 1s orbitals of these substituents are of different phase in the highest occupied molecular orbital (HOMO) in PH₅ (**Figure S6**). There is no reaction coordinate for which a continuous evolution of orbitals leads to a ground-state configuration of both PH₃ and H₂. In contrast, a similar analysis of orbital phase suggests that coupling of two equatorial substituents is symmetry-allowed. Indeed, this transformation is possible and has an activation barrier of >35 kcal/mol (ω B97X-D). Axial-axial coupling is symmetry-allowed, although does not occur in a single step. After a Berry-pseudorotation the formerly-axial substituents are then equatorial and able to undergo equatorial-equatorial coupling.

Figure S6. Ligand coupling in PH₅ is symmetry-controlled. Computed HOMOs in the reactant and TS show equatorial-equatorial coupling is symmetry-allowed, whereas equatorial-apical coupling is symmetry-forbidden.

Computed ligand coupling transition states from phosphorane **Int-III** establish that this transformation proceeds via apical-equatorial coupling. How is this possible when such a pathway is symmetry-forbidden for the PH₅ prototype? The answer lies in the fact that the new σ -bond results from the participation of one of the ligand's π/π^* system, allowing symmetry-allowed overlap to occur (**Figure S7**). In the TS, a σ_{C-P} bond interacts with the adjacent π^*_{C-C} , in a nucleophilic aromatic substitution (*S*_N*Ar*)-like process (See the *Animation of Frontier Molecular Orbital for C-C Bond Forming Event*: Movie S2). The involvement of nucleophilic σ_{C-P} and electrophilic π^*_{C-C} MOs is evident in the computed HOMO in the TS. The HOMO of the phosphorane intermediate is dominated by the σ_{C-P} bond.

This process is fundamentally distinct from ligand-coupling in PH₅, where both σ_{P-H} bonds are broken as the σ_{H-H} bond is formed. This mechanistic interpretation is consistent with a computed reaction coordinate, for which a stable Meisenheimer adduct is obtained from the ligand-coupling TS (the final loss of phosphinite is, however, computed to occur rather easily and irreversibly to liberate the bipyridyl product). Furthermore, the distinct involvement of the two pyridyl groups along the reaction coordinate can be seen through comparing the aromaticity at the center of each ring, as evaluated by the nuclear independent chemical shift (NICS) values in **Figure S7**. The nucleophilic (apical) pyridyl ligand shows negligible change in ring aromaticity along the reaction coordinate since the p-system undergoes no changes in bonding. In contrast, aromaticity of the electrophilic (equatorial) pyridyl ligand is completely lost along the reaction coordinate as dearomatization occurs due to C-C bond formation.

Figure S7. Orbital control in ligand coupling from $[Int-III\cdot 2H]^{2+}$. Equatorial-apical coupling is symmetry-allowed due to the involvement of the pyridyl π/π^* system.

Additionally, the competing TS that lead to RO-Py couplings were calculated. ROPy is a potential byproduct of this reaction that was previously observed when using different reaction conditions (*31*). Under the reaction conditions used in this study, using 2 equivalents of HCl to protonate the two pyridine groups of the initial phosphonium salt, our calculations suggest that Py-Py couplings are the favored type of coupling (**Figure S8**). Also, we determined experimentally that RO-Py couplings do not take place under basic conditions when using EtOH as the solvent (**Figure S24**).

Figure S8. [**TS-I**·**2H**]²⁺ activation barriers (ΔG^{\ddagger}) and change of G of the reaction (ΔG^{react}) for different types of couplings (SMD-DLPNO-CCSD(T)/cc-pV(DT)Z// ω B97X-D/6-31+G(d), kcal/mol).

4d. Computed Reaction Mechanism from Int-III

Gibbs free energies along the reaction coordinate calculated with the ω B97X-D/def2-QZVPP and DLPNO-CCSD(T)/cc-pV(DT)Z methods show very similar profiles in all the pathways from **Int-III**, **[Int-III·H]**⁺ and **[Int-III·2H]**²⁺ (**Figures S9-11**). The ordering of different configurations is consistent across calculations using DFT and WFT. The reaction profiles correlate well from one method to another, showing energy variations within 3 kcal/mol across the majority of reaction steps, and the same trend upon protonation is found for both methods.

DLPNO-CCSD(T)/cc-pV(DT)Z//ωB97X-D/6-31+G(d)

 $\omega B97X\text{-}D/def2\text{-}QZVPP//\omega B97X\text{-}D/6\text{-}31\text{+}G(d)$

Figure S9. Reaction coordinate for the most favorable pathways of **Int-III**. Top: DLPNO-CCSD(T); Bottom: ω B97X-D. Below: most favorable structures along the reaction pathway (**Py,OMe,ax**) and other competing **TS-I** steps.

Table S	5 4. In	portant	bond	lengths	from t	he [Int	-III]-]	Py,	OMe.ax	pathway.	
		1		0				• •			

	Distances (Å)						
Reaction Step	P-O (OMe ax)	P-C (Py ax.)	P-C (Py eq.)	P-C (Ph eq. 1)	P-C (Ph eq. 2)		
[Int-III]-Py,OMe,ax-b	1.79	1.96	1.87	1.85	1.84		
[TS-I]-Py,OMe,ax-a	1.63	2.50	1.77	1.81	1.82		
[Int-V]-Py,OMe,ax-b	1.67	-	-	1.84	1.84		

4e. Computed Reaction Mechanism from [Int-III·H]⁺

ωB97X-D/def2-QZVPP//ωB97X-D/6-31+G(d)

Figure S10. Reaction coordinate for the most favorable pathways of [**Int-III·H**]⁺. Top: DLPNO-CCSD(T); Bottom: ω B97X-D. Below: most favorable structures along the reaction pathway (**Py,OMe,ax**) and other competing [**TS-I·H**]⁺ steps.

Departion Stan	Distances (Å)						
Reaction Step	P-O (OMe ax)	P-C (Py ax.)	P-C (Py eq.)	P-C (Ph eq. 1)	P-C (Ph eq. 2)		
[Int-III·H] ⁺ -Py,OMe,ax-a	1.77	1.95	1.87	1.85	1.84		
[TS-I·H]⁺-Py,OMe,ax-a	1.65	2.35	1.76	1.82	1.82		
[Int-IV·H] ⁺ -Py,OMe,ax-a	1.60	-	1.90	1.80	1.80		
[TS-II·H] ⁺ -Py,OMe,ax-a	1.62	-	2.32	1.81	1.81		
[Int-V·H] ⁺ -Py,OMe,ax-a	1.67	-	-	1.84	1.84		

Table S5. Important bond lengths from the [Int-III·H]⁺-Py,OMe,ax pathway.

4f. Computed Reaction Mechanism from [Int-III·2H]²⁺

DLPNO-CCSD(T)/cc-pV(DT)Z//ωB97X-D/6-31+G(d)

Figure S11. Reaction coordinate for the most favorable pathways of $[Int-III\cdot 2H]^{2+}$. Top: DLPNO-CCSD(T); Bottom: ω B97X-D. Below: most favorable structures along the reaction pathway (**PyH**⁺,**OMe**,**ax**) and other competing $[TS-I\cdot 2H]^{2+}$ steps.

Table S6.	Important bond	lengths from	the [Int-III·2H]	²⁺ -PvH ⁺	,OMe,ax p	athway.
				•	/ / /	

	Distances (Å)							
Reaction Step	P-O (OMe ax)	P-C (Py ax.)	P-C (Py eq.)	P-C (Ph eq. 1)	P-C (Ph eq. 2)			
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	1.73	1.99	1.86	1.85	1.84			
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	1.63	2.49	1.78	1.81	1.81			
[Int-IV·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	1.59	-	1.91	1.80	1.80			
[TS-II·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	1.62	-	2.29	1.81	1.80			
[Int-V·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	1.66	-	-	1.84	1.84			

4g. Solvation Model Validation of SMD Using COSMO-RS

[Int-III·H]⁺ and [Int-III·2H]²⁺ pathways involved mono- and di-protonated species, which involves a high G of solvation (see **Table S7**). This might cause problems when using SMD, since it is known that errors in calculated solvation G using SMD for ions are greater than for neutral molecules (62). In order to discard large systematic errors coming from G of solvation, we calculated the different most stable pathways for Int-III, [Int-III·H]⁺ and [Int-III·2H]²⁺ with COSMO-RS (87-91), which calculates G of solvation differently to SMD.

We adapted the standard procedure that COSMO-RS follows to calculate solvation G, since this procedure involves ground state optimization of molecules and does not allow for inclusion of transition states. In the standard protocol, first the program optimizes ground state structures in the gas and solution phase using Turbomole with BP/TZVP (COSMO), followed by singlepoint energy calculations in the two phases using Turbomole with BP/TZVPD (COSMO) and a fine grid marching tetrahedron cavity (FINE). We adapted this protocol to be able to model transition states. For this, we directly optimized geometries of ground and transition states with ω B97X-D/6-31+G(d) in gas and solution phase using Gaussian 16, and then we employed these optimized geometries as the input files for the final single-point calculations in gas and solution phase performed with COSMO-RS (BP/TZVPD (FINE, COSMO)) at 80 °C. EtOH was used as the solvent for the solvation G calculations, using also geometries optimized with ω B97X-D/6-31+G(d) as the ground and transition states studied.

In order to generate the reaction G profiles with the calculated COSMO-RS solvation G, first the G of the structures in gas phase was calculated as explained in the computational methods, including QHA entropy and single-point energy corrections using DLPNO-CCSD(T)/cc-pV(DT)Z// ω B97X-D/6-31+G(d) and ω B97X-D/def2-QZVPP// ω B97X-D/6-31+G(d) at 80 °C. Then the solvation G values calculated with COSMO-RS were added to the G values in gas phase to obtain the final G in solution (**Tables S7-8**). In all the cases studied, similar G profiles were observed using the initial SMD and the generated COSMO-RS results (**Figure S12-13**), which suggests that there are not any major systematic errors coming from the calculation of G of solvation.

DLPNO-CCSD(T)/cc-pV(DT)Z//ωB97X-D/6-31+G(d)

Figure S12. G profiles of the most stable reaction pathways of **Int-III**, **[Int-III·H]**⁺ and **[Int-III·2H]**²⁺ calculated with DLPNO-CCSD(T)/cc-pV(DT)Z// ω B97X-D/6-31+G(d).

Figure S13. G profiles of the most stable reaction pathways of **Int-III**, **[Int-III·H]**⁺ and **[Int-III·2H]**²⁺ calculated with ω B97X-D/def2-QZVPP// ω B97X-D/6-31+G(d).

Table S7. Thermochemical data including absolute energies, zero-point energies (ZPE), T·S, G of solvation (G_{solv}) and G of the most stable reaction pathways of **Int-III**, [**Int-III·H**]⁺ and [**Int-III·2H**]²⁺ using gas phase optimizations (G_{GP}) with DLPNO-CCSD(T)/cc-pV(DT)Z// ω B97X-D/6-31+G(d) and COSMO-RS.

System	E (kcal/mol)	ZPE (kcal/mol)	T·S (kcal/mol)	G _{GP} (kcal/mol)	G _{solv} (kcal/mol)	$\begin{array}{l} G_{GP}+G_{solv} \\ (kcal/mol) \end{array}$	G _{rel} (kcal/mol)
[Int-III]-Py,OMe,ax-b	-886841.41	244.83	60.08	-886635.89	-18.66	-886654.55	0.00
[TS-I]-Py,OMe,ax-a	-886801.45	243.67	59.85	-886597.04	-25.95	-886622.99	31.56
[Int-V]-Py,OMe,ax-a	-886872.71	244.61	62.51	-886669.28	-18.36	-886687.64	-33.09
[Int-III·H] ⁺ -PyH ⁺ ,OMe,ax-b	-887087.27	254.00	60.36	-886872.74	-56.20	-886928.95	0.00
[TS-I·H] ⁺ -Py,OMe,ax-a	-887071.33	252.97	60.44	-886858.10	-50.32	-886908.42	20.53
[Int-IV·H]⁺-Py,OMe,ax-b	-887111.52	253.88	60.59	-886897.20	-46.39	-886943.59	-14.64
[TS-II·H]⁺-Py,OMe,ax-a	-887101.03	253.17	60.65	-886887.68	-48.74	-886936.43	-7.48
[Int-V·H]⁺-Py,OMe,ax-a	-887113.40	253.71	62.05	-886900.41	-57.69	-886958.11	-29.16
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-887271.38	263.08	60.43	-887047.79	-151.01	-887198.80	0.00
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-887261.62	261.82	60.58	-887039.46	-142.47	-887181.93	16.86
[Int-IV·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-887293.14	262.61	60.96	-887070.31	-141.73	-887212.04	-13.24
[TS-II·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-887282.83	261.92	61.27	-887061.21	-143.26	-887204.46	-5.67
[Int-V·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-887291.94	262.56	62.07	-887070.06	-155.75	-887225.81	-27.01

Table S8. Thermochemical data including absolute energies, zero-point energies (ZPE), T·S, G of solvation (G_{solv}) and G of the most stable reaction pathways of **Int-III**, [**Int-III·H**]⁺ and [**Int-III·2H**]²⁺ using gas phase optimizations (G_{GP}) with ω B97X-D/def2-QZVPP// ω B97X-D/6-31+G(d) and COSMO-RS.

System	E (kcal/mol)	ZPE (kcal/mol)	T·S (kcal/mol)	G _{GP} (kcal/mol)	G _{solv} (kcal/mol)	$\begin{array}{l} G_{GP}+G_{solv} \\ (kcal/mol) \end{array}$	G _{rel} (kcal/mol)
[Int-III]-Py,OMe,ax-b	-888055.66	244.83	60.08	-887850.14	-18.66	-887868.80	0.00
[TS-I]-Py,OMe,ax-a	-888017.97	243.67	59.85	-887813.55	-25.95	-887839.50	29.30
[Int-V]-Py,OMe,ax-a	-888088.64	244.61	62.51	-887885.20	-18.36	-887903.57	-34.77
[Int-III·H] ⁺ -PyH ⁺ ,OMe,ax-b	-888305.57	254.00	60.36	-888091.05	-56.20	-888147.25	0.00
[TS-I·H] ⁺ -Py,OMe,ax-a	-888290.81	252.97	60.44	-888077.58	-50.32	-888127.91	19.34
[Int-IV·H] ⁺ -Py,OMe,ax-b	-888331.30	253.88	60.59	-888116.98	-46.39	-888163.37	-16.12
[TS-II·H]⁺-Py,OMe,ax-a	-888321.42	253.17	60.65	-888108.08	-48.74	-888156.82	-9.57
[Int-V·H]⁺-Py,OMe,ax-a	-888333.53	253.71	62.05	-888120.53	-57.69	-888178.23	-30.98
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-888493.54	263.08	60.43	-888269.95	-151.01	-888420.96	0.00
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-888485.41	261.82	60.58	-888263.25	-142.47	-888405.72	15.24
[Int-IV·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-888517.59	262.61	60.96	-888294.77	-141.73	-888436.50	-15.54
[TS-II·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-888507.45	261.92	61.27	-888285.83	-143.26	-888429.09	-8.13
[Int-V·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-888515.76	262.56	62.07	-888293.88	-155.75	-888449.63	-28.68

4h. NBO Analysis

We carried out an IRC analysis starting from $[TS-I\cdot 2H]^{2+}-PyH^+$, OMe, ax-b (conformations a and b lead to similar results) containing 40 points, in which point 0 represents the TS-I and points 20 and -20 represent the end points obtained towards the Int-III and Int-IV steps, respectively (Figure S14). We then calculated Wiberg bond orders of the various P-C/P-O bonds and electron populations of the two lone electron pairs of the oxygen atom (LP_{Ox}) from an NBO analysis every two IRC points (Tables S9-10).

Figure S14. Enumeration of the points comprising the IRC analysis.

IRC step number	Wiberg Bond Orders				
	C-C bond formation	P-C bond (axial)	P-C bond (equatorial)		
19	0.0634	0.5838	0.8132		
17	0.0665	0.5644	0.8165		
15	0.0705	0.5411	0.8199		
13	0.0762	0.5140	0.8233		
11	0.0846	0.4827	0.8273		
9	0.0977	0.4465	0.8319		
7	0.1186	0.4048	0.8375		
5	0.1538	0.3556	0.8446		

3	0.2105	0.2992	0.8528
1	0.2951	0.2379	0.8609
-1	0.4062	0.1773	0.8658
-3	0.5304	0.1256	0.8658
-5	0.6504	0.0862	0.8609
-7	0.7528	0.0585	0.8523
-9	0.8315	0.0403	0.8416
-11	0.8864	0.0290	0.8300
-13	0.9188	0.0221	0.8196
-15	0.9351	0.0182	0.8121
-17	0.9440	0.0160	0.8073
-19	0.9489	0.0143	0.8048

 Table S10.
 LP_{Ox} along the IRC analysis.

IRC step number	Electron population			
	Lone electron pair 1	Lone electron pair 2		
19	1.9506	1.9111		
17	1.9508	1.9112		
15	1.9509	1.9111		
13	1.9509	1.9108		
11	1.9507	1.9102		
9	1.9503	1.9092		
7	1.9497	1.9078		
5	1.9491	1.9061		
3	1.9483	1.9042		
1	1.9476	1.9025		
-1	1.9469	1.9011		
-3	1.9463	1.9002		
-5	1.9456	1.8993		
-7	1.9447	1.8984		
-9	1.9439	1.8974		
-11	1.9431	1.8963		
-13	1.9425	1.8957		
-15	1.9421	1.8957		
-17	1.9416	1.8961		
-19	1.9411	1.8968		

5. Potential Energy Surface (PES) Relaxed Scans

All the scans were performed using ω B97X-D/6-31+G(d) in gas phase and freezing the coordinates of the P and O atoms involved in the forming P-O bond. Distances at which the two atoms were frozen increased progressively by 0.1 Å starting from 1.71 Å, which is approximately the typical distance for P-O bonds observed in the different systems.

In agreement with the previous experimental results, when using an alkoxy salt, the RO⁻ attack to the initial phosphonium salt is barrierless and exergonic and, therefore, this should not be the rate-limiting step (RLS) of the process (**Figure S15**, left). Instead, the RLS in this case should be the RO⁻ attack to the Py group (**TS-I**, **Figure S9**). Contrarily, the addition of ROH to the initial phosphonium salt shows a high activation energy in the computational energy scans, which suggests that this is the RLS and agrees with the experimental kinetic studies (**Figure S15**, right). Similar results were obtained using other degrees of protonation (1 and 2 eq H⁺).

Figure S15. Relaxed PES scans of the addition of MeO⁻ (left) and MeOH (right) to PPh₂Py₂ (ω B97X-D/6-31+G(d)).

Additionally, PES relaxed scans were carried out to determine whether **Int-IV** could introduce an additional molecule of alcohol before P-C cleavage. As seen in **Figure S16**, the addition of an additional molecule of alcohol to form a P(V)-intermediate before product release shows a high activation barrier, which suggests that this is a slow reaction. Therefore, we ruled out this possibility since the competing P-C cleavage ([**TS-II·2H**]²⁺) has a low activation barrier of 7 kcal/mol.

Figure S16. PES relaxed scan along the coordinate corresponding to the addition of MeOH to **[Int-IV·2H]**²⁺. Similar results were obtained using different conformations of **[Int-IV·2H]**²⁺.

6. Captions to Movies S1-2

Animation of Reaction Coordinate (computational analysis) Movie S1:

ELF analysis of [TS-I·2H]²⁺-PyH⁺,OMe,ax-a. Electron localization function (ELF) analysis of transition state $[TS-I·2H]^{2+}-PyH^+$,OMe,ax-a along its intrinsic reaction coordinate (IRC), showing only the ELF part corresponding to Py-Py bond formation. This video shows a typical axial Py·H⁺ attack to an equatorial Py·H⁺ in reaction step TS-I. See supporting computational details for the methods employed, the video was created using PyMol (using a contour level of 0.88), Adobe Photoshop and Windows Movie Maker.

Animation of Frontier Molecular Orbital for C-C Bond Forming Event (computational analysis) Movie S2:

Orbital analysis of $[TS-I·2H]^{2+}-PyH^+,OMe,ax-a$. Changes in the HOMO involved in transition state $[TS-I·2H]^{2+}-PyH^+,OMe,ax-a$ along its intrinsic reaction coordinate (IRC). This video shows a typical axial $Py \cdot H^+$ attack to an equatorial $Py \cdot H^+$ in reaction step **TS-I**. See supporting computational details for the methods employed, the video was created using Multiwfn (using an isovalue of 0.08) and Windows Movie Maker.

7. ¹H NMR and ³¹P NMR Salt Protonation Study

Figure S17. ¹H NMR study to determine protonation state of phosphonium salt (**3a**) upon addition of one and two equivalents of DCl at room temperature. DCl was generated *in situ* via reaction of CD₃OD with acyl chloride. ¹H NMR ran in CD₃OD and the residual solvent peak was calibrated to 3.31 ppm.

Figure S18. ³¹P NMR study to determine protonation state of phosphonium salt (**3a**) upon addition of one and two equivalents of DCl at room temperature. DCl was generated *in situ* via reaction of CD₃OD with acyl chloride.

8. Aryl Group Substitution Study: Reaction Kinetics

R= H (3a), OMe (3a'), Me (3a''), or Cl (3a''')

Standard Conditions: Kinetic Profile

0.140 • Run 1 0.0015x+0.0163 0.120 • Run 2 R² = 0.9702 • 0.100 = 0.0014x + 0.0109 $R^2 = 0.9849$ **4a** (0.080) 0.060 0.040 0.020 0.000 0 10 20 30 40 50 60 70 80 90 Time (min)

Standard Salt 90min

Figure S19. Concentration profile of **4a** over time with TfOH on phosphonium salt **3a**. Yields were determined at the given timepoints using ¹H NMR in CD₃OD with triphenylmethane as the internal standard. Procedure for data collection is detailed below.

The standard reaction was monitored for 9 hours in duplicate and the average was used for comparison of initial rates with phosphonium salt derivatives **3a**' to **3a**''' (**Figure S23**). The linear range for the standard reaction (reaction time of 30 minutes; 15% yield) was chosen for analysis of the initial rate. Each reaction performed for the kinetic analysis was carried to completion to validate method of monitoring product formation instead of starting material consumption; each reaction regardless of phosphonium salt derivative gave a 85-93% yield.

Procedure for Aryl Group Substitution Study:

An oven dried 8 mL vial with a septa cap was charged with the phosphonium salt (Characterization of phosphonium salts shown in Preparation of Heteroaryl Phosphonium Salt section (**3a** to **3a**'')) (0.5 mmol), triphenylmethane (122 mg, 0.5 mmol), and EtOH (1.25 mL). The vial was subjected to three rapid cycles of vacuum / nitrogen backfill and TfOH (132 μ L, 1.0 mmol) was added via a syringe. The septa cap was quickly replaced with an unpierced one and the reaction vial placed in an oil bath preheated to 80 °C. At each timepoint, 75 μ L of the reaction mixture was sampled via a syringe and charged to a vial. The vial was then concentrated *in vacuo*. The resulting residue was then dissolved in CD₃OD and ¹H NMR spectrum was obtained on the sample. The reaction was allowed to progress until the phosphonium salt was fully consumed and the final yield for the reaction was obtained via ¹H NMR in CD₃OD(18-48 hours). Each reaction profile was performed in duplicate and the average of the two runs used for initial rate analysis (**Figure S23**). This procedure is identical to the protocol for the standard reaction rate investigation.

p-OMe 90min

Figure S20: Standard reaction conditions run with TfOH with phosphonium salt 3a' to obtain the initial reaction rate. Study was ran in duplicate. Yields were determined at the given timepoints using ¹H NMR in CD₃OD with triphenylmethane as the internal standard.

p-Me 30min

Figure S21: Standard reaction conditions run with TfOH with phosphonium salt 3a'' to obtain the initial reaction rate. Study was ran in duplicate. Yields were determined at the given timepoints using ¹H NMR in CD₃OD with triphenylmethane as the internal standard.

Figure S22: Standard reaction conditions run with TfOH with phosphonium salt 3a''' to obtain the initial reaction rate. Study was ran in duplicate. Yields were determined at the given timepoints using ¹H NMR in CD₃OD with triphenylmethane as the internal standard.

Time (min) -Cl	-H		-Me	-OMe
5	0.058	0.014	0.002	4.00E-04
10	0.091	0.023	0.006	2.20E-03
15	0.109	0.034	0.009	4.00E-03
20	0.129	0.043	0.012	5.20E-03
25	0.140	0.053	0.016	6.60E-03
30	0.152	0.060	0.020	8.40E-03
45	0.171	0.086	0.032	1.40E-02
60	0.188	0.105	0.041	1.92E-02
90	0.211	0.133	0.060	2.98E-02

Conc. of 4a (Average of 2 Runs)

EtOH TfOH 30min (Average)

EtOH TfOH 90min (Average)

Figure S23: Average reaction progression over 30 min and 90 min for phosphonium salt **3a**-**3a**^{'''} used to obtain the initial reaction rate for relative rate values. Yields were determined at the given timepoints using ¹H NMR in CD₃OD with triphenylmethane as the internal standard.

Table S11: Relative Initial Rates (30 min) ($rate_X/rate_H$) of Phosphonium Salts **3a-3a**^{'''} under Standard Reaction Conditions.

Relative Rate:	
-Cl	1.89
-H	1.00
-Me	0.37
-OMe	0.16

Analysis: The investigation into the relative initial rates for the ligand-coupling reaction shows a correlation between reaction rate and electrophilicity at the phosphorus center. The more electron deficient phosphonium salt resulted in a relative rate of 1.89 while more electron rich phosphonium salts resulted in slower relative rates of reaction compared to the standard (-H) phosphonium. Since each phosphonium derivative results in an average 87%+ yield of **4a**, byproduct formation is not dramatically impacting the rate of product formation. This agrees with the hypothesis that the rate determining step is EtOH addition to the phosphorus center to form the phosphorane intermediate (**[Int-III·2H]**²⁺).

9. Alkoxide Investigation

Figure S24. Reaction of phosphonium salt **3a** with NaOEt in EtOH at room temperature. Reaction was performed to investigate if ligand coupling occurs at lower temperatures with a stronger nucleophile (alkoxide vs alcohol). A mixture of products was observed, including 46% desired C-C bond formation (**4a**) along with undesired C-H products (41% combined). *Yield obtained by ¹H NMR using 1,3,5-trimethoxybenzene as internal standard. [†]Yield was obtained via GC/FID using 1,3,5-trimethoxybenzene as internal standard (Response Factors: pyridine: 1.46; 2-phenylpyridine: 0.597).

Procedure for Alkoxide Investigation:

An oven dried 8 mL vial with a septa cap was charged with NaH (60% dispersion in mineral oil, 15 mg, 0.38 mmol) and 1,3,5-trimethoxybenzene (42 mg, 0.25 mmol). The vial was placed under a nitrogen atmosphere, cooled to -78 °C, and then EtOH (0.63 mL) was added. The vial was allowed to warm to 0 °C and stirred for 30 minutes. The reaction was then warmed to room temperature and the cap was briefly removed and the phosphonium salt **3a** (142 mg, 0.25 mmol) was added in one portion. The reaction was subjected to three rapid cycles of vacuum/nitrogen backfill and the reaction stirred for 5 minutes at room temperature (phosphonium salt **3a** not detected by LCMS after 5 minutes). The reaction was quenched with H₂O, the aqueous layer was separated and extracted with CH₂Cl₂ (3x). The combined organic extracts were washed with a saturated aqueous solution of brine, dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash column chromatography (basic alumina: 10% EtOAc in hexanes to 20% EtOAc in hexanes) afforded **4a** as a white crystalline solid (27 mg, 0.12 mmol, 46% yield). (Characterization of **4a** product shown in Ligand-Coupling Reactions to Make Heterobiaryls)

Analysis: The investigation into reaction of a stronger nucleophile (alkoxide vs alcohol) with phosphonium salt **3a** gave results consistent with a rate limiting step of phosphorane formation $([Int-III\cdot2H]^{2+})$ for the standard acidic conditions ligand-coupling reaction. Since the calculated barrier for C-C bond formation is only 30 kcal/mol from [Int-III] as long as [Int-III] is formed, one would expect to observe C-C bond formation at temperatures lower than 80 °C. By using an alkoxide as the nucleophile to form [Int-III] we remove this potential barrier from the reaction coordinate (alkoxide attack on the phosphonium center was computed to be barrierless Figure S14). The result of this experiment giving 41% of **4a** when ran at room temperature indicates that in the standard acidic conditions it is the alcohol addition to form [Int-III·2H]²⁺ that is the rate limiting step and it is this step that requires higher temperatures.

10. Challenges and Limitations

Salt Formation: Challenges/Limitations

Figure S25. Challenges and limitations for phosphonium salt formation and ligand-coupling reaction.

Figure S26. Additional examples of phosphorus ligand-coupling.

12. Experimental Procedures

12a. Preparation of Heterocyclic Phosphonium Salt Precursors

Ethyl 2-butylnicotinate

An oven-dried 100 mL round bottom flask was charged with ZnCl₂ (1.91 g, 14.00 mmol) and anhydrous THF (28 mL). The colorless solution was cooled to 0 °C, n-BuLi (2.5 M in hexanes, 5.60 mL, 14.00 mmol) was added dropwise, and the reaction mixture was stirred for 1 hour. The resulting n-butylzinc chloride solution (14.00 mmol) was added dropwise to a 50 mL round bottom flask charged with ethyl 2-bromonicotinate (1.61 g, 7.00 mmol), Pd(PPh₃)₄ (81 mg, 0.07 mmol), and 7 mL of anhydrous THF. After 3 hours of stirring the reaction mixture at room temperature was quenched with H_2O (20 mL), organic layer separated, and aqueous layer extracted with CH₂Cl₂ (3 x 50 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel: CH₂Cl₂ to 5% EtOAc in CH₂Cl₂) to provide the title compound as a light yellow oil (680 mg, 3.29 mmol, 47% yield). IR v_{max}/cm⁻¹ (film): 3047, 2957, 2932, 2871, 1722, 1583, 1567, 1442, 1365, 1274, 1249, 1136, 1095, 1079, 1040, 765; ¹H NMR (400 MHz, CDCl₃) δ: 8.63 (1H, dd, J = 4.8, 1.6 Hz), 8.13 (1H, dd, J = 1.8, 7.9 Hz), 7.18 (1H, dd, J = 4.8, 7.8 Hz), 4.37 (2H, q, J = 7.2Hz), 3.14 (2H, t, J = 8.0 Hz), 1.73-1.65 (2H, m), 1.47-1.38 (5H, m), 0.94 (3H, t, J = 7.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ: 166.81, 163.42, 151.66, 138.33, 125.74, 120.64, 61.29, 36.84, 32.26, 22.89, 14.21, 13.96; *m/z* HRMS (DART) found [M+H]⁺ 208.1349, C₁₂H₁₈NO₂⁺ requires 208.1338.

2-((4-Bromo-3-fluorophenoxy)methyl)pyridine

An oven dried 100 mL round bottom was charged with 2-(chloromethyl)pyridine hydrochloride (2.46 g, 15.00 mmol), 4-bromo-3-fluorophenol (2.87 g, 15.00 mmol), K₂CO₃ (6.22 g, 45.00 mmol) and CH₃CN (30 mL), and the mixture was refluxed overnight. After cooling to room temperature, the mixture was poured into water (50 mL) and extracted with EtOAc (3×50 mL). The combined organic layer was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (silica gel: 16% EtOAc in hexanes to 33% EtOAc in hexanes) to give 2-((4-bromo-3-fluorophenoxy)methyl)pyridine as a white amorphous powder (4.07 g, 14.40 mmol, 96% yield). mp 56–58 °C; IR *v*_{max}/cm⁻¹ (film): 3096, 3067, 3024, 2921, 1595, 1587, 1574, 1488, 1479, 1458, 1435, 1416, 1379, 1323, 1301, 1285, 1266, 1239, 1176, 1168, 1154, 1146, 1124, 1061, 1055, 1028, 995, 969, 850, 839, 829, 796, 761, 754, 747; ¹H NMR (400 MHz, CDCl₃) δ : 8.60 (1H, d, *J* = 4.8 Hz), 7.71 (1H, t, *J* = 7.7)

Hz), 7.45 (1H, d, J = 7.8 Hz), 7.39 (1H, t, J = 8.6 Hz), 7.23 (1H, dd, J = 6.8, 5.6 Hz), 6.78 (1H, dd, J = 10.3, 2.3 Hz), 6.68 (1H, dd, J = 8.9, 2.8 Hz), 5.16 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 159.40 (d, J = 245.4 Hz), 158.88 (d, J = 9.8 Hz), 156.16, 149.35, 136.85, 133.39 (d, J = 1.8 Hz), 122.86, 121.30, 112.00 (d, J = 3.2 Hz), 103.93 (d, J = 25.6 Hz), 99.85 (d, J = 21.1 Hz), 71.12; ¹⁹F NMR (365 MHz, CDCl₃) δ : -104.97 (t, J = 9.0 Hz); m/z HRMS (DART) found [M+H]⁺ 281.9935, C₁₂H₁₀BrFNO⁺ requires 281.9930.

7-Chloro-4-(3-fluorophenoxy)quinoline

An oven dried 80 mL pressure tube was charged with 4,7-dichloroquinoline (1.19 g, 6.00 mmol), and 3-fluorophenol (1.63 mL, 18.00 mmol). The flask was subjected to three cycles of vacuum/nitrogen backfill. The mixture was heated at 170 °C for 30 minutes, cooled to room temperature and diluted with CH₂Cl₂. The suspension was washed with an aqueous solution of NaOH (6M), the organic layer was separated and washed with H₂O (3 x 25 mL). The organic extract was dried (MgSO₄), filtered and concentrated in vacuo to provide the title compound as a pink crystalline solid (1.398 g, 5.10 mmol, 85% yield). mp 78-80 °C; IR v_{max}/cm^{-1} (film): 3013, 1612, 1378, 1161, 1135, 876, 819; ¹H NMR (400 MHz, CDCl₃) δ: 8.71 (1H, d, *J* = 5.2 Hz), 8.26 (1H, d, J = 8.9 Hz), 8.10 (1H, d, J = 2.0 Hz), 7.54 (1H, dd, J = 11.0, 6.9 Hz), 7.47-7.41 (1H, m),7.05-6.98 (2H, m), 6.93 (1H, dt, J = 9.4, 4.6 Hz), 6.61 (1H, d, J = 5.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ: 163.55 (d, 248.9 Hz), 162.32, 155.22 (d, J= J = 10.5 Hz), 152.26, 150.33, 136.30, 131.19 (d, J 9.5 = Hz), 128.19, 127.32, 123.20, 119.79, 116.55 (d, J = 3.4 Hz), 112.83 (d, J = 21.0 Hz), 108.87 (d, J = 24.1 Hz), 104.81; ¹⁹F NMR (365 MHz, CDCl₃) δ : -109.43 (q, J = 7.1 Hz); m/z HRMS (DART) found [M+H]⁺ 274.0426, C₁₅H₁₀ClFNO⁺ requires 274.0429.

(R)-3-(Pyrrolidin-2-ylmethoxy)pyridine

Prepared according to Holladay's report (93) using Boc-D-Prolinol (4.03 g, 20.00 mmol), 3hydroxypyridine (1.50 g, 30.00 mmol), diethyl azodicarboxylate (4.72 mL, 30.00 mmol), and PPh₃ (7.87 g, 30.00 mmol), and THF (100 mL). To provide the title compound as an orange oil (2.42 g, 13.60 mmol, 68% yield). IR v_{max} /cm⁻¹ (film): 3034, 2957, 2871, 1688, 1585, 1485, 1129, 1112, 1013; ¹H NMR (400 MHz, CDCl₃) δ : 8.31 (1H, t, *J* = 3.6 Hz), 8.21 (1H, t, *J* = 3.0 Hz), 7.20-7.19 (2H, m), 3.99-3.90 (2H, m), 3.60 (1H, m), 3.08-2.96 (3H, m), 2.02-1.92 (1H, m), 1.90-1.75 (2H, m), 1.63-1.54 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 154.85, 142.23, 138.01, 123.74, 121.07, 70.73, 57.26, 48.31, 27.71, 24.98; *m/z* HRMS (DART) found [M+H]⁺ 179.1179, C₁₀H₁₅N₂O⁺ requires 179.1187.

(R)-3-((1-(3-Fluoro-4-(trifluoromethyl)benzyl)pyrrolidin-2-yl)methoxy)pyridine

An oven-dried 100 mL round bottom flask was charged with (R)-3-(pyrrolidin-2ylmethoxy)pyridine (1.62 g, 9.10 mmol), 3-fluoro-4-(trifluoromethyl)benzaldehyde (1.40 mL, 10.00 mmol), and sodium triacetoxyhydroborate (3.86 g, 18.20 mmol). The flask was subjected to three cycles of vacuum/nitrogen backfill. CH₂Cl₂ (45 mL) was added to the reaction flask along with glacial AcOH (1.05 mL). After 1 hour stirring at room temperature, the reaction was quenched with a saturated solution of NH₄Cl (30 mL) and diluted with CH₂Cl₂ and the organic layer was separated. The aqueous layer was basified with NaHCO₃ and extracted with CH₂Cl₂ (2 x 20 mL). The combined organic extracts were dried (MgSO₄), filtered, and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel gradient elution: 2% MeOH in CH₂Cl₂ to 6% MeOH in CH₂Cl₂) to provide the title compound as an orange oil (2.50 g, 7.10 mmol, 78% yield). IR v_{max}/cm⁻¹ (film): 3060, 2966, 2875, 2797, 1629, 1485, 961, 946, 830, 533; ¹H NMR (400 MHz, CDCl₃) δ: 8.29 (1H, d, *J* = 2.8 Hz), 8.21 (1H, dd, *J* = 4.5, 1.2 Hz), 7.50 (1H, t, J = 7.6 Hz), 7.23-7.13 (4H, m), 4.20 (1H, d, J = 14.1 Hz), 4.01-3.90 (2H, m), 3.57 (1H, d, J = 14.2 Hz), 3.09-3.04 (1H, m), 3.00-2.96 (1H, m), 2.30 (1H, q, J = 2.3 Hz), 2.11-2.02 (1H, m), 1.88-1.70 (3H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 159.83 (dq, J = 255.8, 2.4 Hz), 155.02, 147.52 (d, J = 7.2 Hz), 142.22, 137.98, 126.89-126.83 (2C, m), 122.68 (dq, J = 271.7, 0.8 Hz), 123.79, 123.67 (d, J = 3.4 Hz), 120.97, 116.52 (d, J = 20.7 Hz), 71.92, 62.52, 58.94, 54.80, 28.51, 23.24; ¹⁹F NMR (365 MHz, CDCl₃) δ : -61.15 (d, J = 12.8 Hz), -115.05 (m); m/zHRMS (DART) found [M+H]⁺ 355.1454, C₁₈H₁₉F₄N₂O⁺ requires 355.1428.

2-(3-Chloro-5-fluorophenyl)-6-methylpyridine

An oven dried round bottom flask was charged with 2-bromo-6-methylpyridine (1.14 mL, 10.00 mmol), (3-chloro-5-fluorophenyl)boronic acid (2.62 g, 15.00 mmol), Pd(OAc)₂ (34 mg, 0.15 mmol), K₃PO₄ (4.25 g, 20.00 mmol), 2-propanol (50 mL), and H₂O (50 mL). The mixture

was heated at 80 °C overnight before being cooled to room temperature and diluted with CH₂Cl₂. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2x). The combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography (silica gel, gradient elution: 0.5% EtOAc in hexanes to 2% EtOAc in hexanes) followed by a second flash column (silica gel, gradient elution: 1.5% EtOAc in hexanes to 2% EtOAc in hexanes) afforded the title compound as a white solid (1.64 g, 7.40 mmol, 74% yield). mp 34-35 °C; IR v_{max}/cm⁻¹ (film): 3087, 2923, 1607, 1573, 1432, 1388, 1311, 880, 790; ¹H NMR (400 MHz, CDCl₃) &: 7.79 (1H, s), 7.69-7.60 (2H, m), 7.48 (1H, d, *J* = 7.7 Hz), 7.18-7.08 (2H, m), 2.62 (3H, s); ¹³C NMR (100 MHz, CDCl₃) &: 162.83 (d, *J* = 248.5 Hz), 158.49, 153.66 (d, *J* = 2.6 Hz), 142.74 (d, *J* = 8.4 Hz), 136.87, 135.11 (d, *J* = 10.8 Hz), 122.68 (d, *J* = 3.1 Hz), 122.54, 117.25, 115.94 (d, *J* = 25.1 Hz), 112.12 (d, *J* = 22.9 Hz), 24.43; ¹⁹F NMR (365 MHz, CDCl₃) &: -110.81 (t, *J* = 9.1 Hz); *m*/z HRMS (DART) found [M+H]⁺ 222.0494, C₁₂H₁₀ClFN⁺ requires 222.0480.

2-(3-Fluoro-5-(pyridin-3-yl)phenyl)-6-methylpyridine

Prepared according to an established procedure (*12*) using 2-(3-chloro-5-fluorophenyl)-6methylpyridine (1.64 g, 7.40 mmol), pyridin-3-ylboronic acid (1.0 g, 8.13 mmol), Pd₂(dba)₃ (68 mg, 0.074 mmol), tricyclohexylphosphane (50 mg, 0.18 mmol), aqueous K₃PO₄ (1.26 M, 10 mL, 12.60 mmol) and 1,4-dioxanes (20 mL). Flash column chromatography (silica gel, 40% EtOAc in hexanes) afforded the title compound as an off white solid (979 mg, 3.71 mmol, 50% yield). mp 110-111 °C; IR v_{max}/cm⁻¹ (film): 3039, 2917, 1572, 1447, 1437, 1341, 1174, 869, 791; ¹H NMR (400 MHz, CDCl₃) δ : 8.91 (1H, d, *J* = 2.5 Hz), 8.64 (1H, dd, *J* = 4.8, 1.6 Hz), 8.00 (1H, t, *J* = 1.6 Hz), 7.94 (1H, ddd, *J* = 7.7, 2.5, 1.6 Hz), 7.74 (1H, ddd, *J* = 9.7, 2.4, 1.6 Hz), 7.68 (1H, t, *J* = 7.7 Hz), 7.56 (1H, d, *J* = 7.7 Hz), 7.40 (1H, ddd, *J* = 7.7, 4.8, 0.8 Hz), 7.31 (1H, ddd, *J* = 9.4, 2.5, 1.6 Hz), 7.16 (1H, d, *J* = 7.7 Hz), 2.64 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 163.44 (d, *J* = 246.0 Hz) 158.52, 154.80 (d, *J* = 2.7 Hz), 134.25, 123.43, 122.34, 121.26 (d, *J* = 2.5 Hz), 117.49, 113.98 (d, *J* = 22.6 Hz), 113.32 (d, *J* = 22.8 Hz), 24.53; ¹⁹F NMR (365 MHz, CDCl₃) δ : -112.31 (t, *J* = 9.7 Hz); *m*/z HRMS (DART) found [M+H]⁺ 265.1136, C₁₇H₁₄FN₂⁺ requires 265.1136.

(2R, 6S)-2,6-Dimethyl-4-(quinolin-4-ylmethyl)morpholine

An oven-dried 200 mL round bottom flask was charged with 4-quinolinecarboxaldehyde (2.36 g, 15.00 mmol), cis-2,6,-dimethylmorpholine (2.03 mL, 16.50 mmol), and sodium triacetoxyhydroborate (6.36 g, 30.00 mmol). The flask was subjected to three cycles of vacuum/nitrogen backfill. DCM (75 mL) was added to the reaction flask along with glacial AcOH (1.73 mL). After 1.0 hour stirring at room temperature, the reaction was quenched with a saturated aqeuous solution of NH₄Cl (30 mL), diluted with CH₂Cl₂, and the organic layer was separated. The aqueous layer was basified with a saturated aqueous solution of NaHCO₃ and extracted with CH₂Cl₂ (2 x 20 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (silica gel: 50% EtOAc in hexanes) to provide the title compound as a yellow oil (2.98 g, 11.60 mmol, 77% yield). IR v_{max}/cm⁻¹ (film): 3035, 2971, 2868, 2813, 2774, 980, 815, 662, 645, 591; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta$: 8.84 (1H, d, J = 4.3 Hz), 8.23 (1H, d, J = 8.4 Hz), 8.11 (1H, d, J = 8.4 Hz), 7.70 (1H, m), 7.54 (1H, m), 7.40 (1H, d, J = 4.3 Hz), 3.87 (2H, s), 3.69 (2H, m), 2.72 (2H, d, J = 10.4 Hz). 1.87 (2H, t, J = 10.7 Hz). 1.13 (6H, d, J = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ ; 150.03, 148.34, 143.60, 129.89, 129.11, 127.62, 126.26, 124.17, 121.37, 71.65 (2C), 59.62, 19.01; m/z HRMS (DART) found [M+H]⁺ 257.1647, C₁₆H₂₀N₂O⁺ requires 257.1648.

Methyl 3-(diphenylphosphaneyl)propanoate (1)

Prepared according to Alonso's report (*30*). An oven-dried round bottomed flask was charged with diphenylphosphane (17.4 mL, 100 mmol) under a nitrogen atmosphere. Methyl acrylate (9.0 mL, 100 mmol), previously degassed via N₂ sparging, was added dropwise at room temperature over 15 minutes. The reaction was stirred for 16 hours at room temperature before concentrating *in vacuo*. The crude material was purified by flash chromatography (silica gel: 9% EtOAc in hexanes) afforded the title compound as a colorless oil (24.26 g, 89.10 mmol, 89% yield). IR v_{max}/cm⁻¹ (film): 3053, 2949, 1735, 1481, 1433, 1353, 1221, 1164, 736, 695; ¹H NMR (400 MHz, CDCl₃) δ : 7.47-7.39 (4H, m), 7.38-7.30 (6H, m), 3.65 (3H, s), 2.46-2.31 (4H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 173.05 (d, *J* = 15.3 Hz), 137.52 (d, *J* = 13.0 Hz), 132.39 (d, *J* = 19.2 Hz), 128.47, 128.22 (d, *J* = 6.6 Hz), 51.33, 30.21 (d, *J* = 19.8 Hz), 22.69 (d, *J* = 12.2 Hz); ³¹P (162 MHz, CDCl₃) δ : -15.76; *m*/*z* HRMS (DART) found [M+H]⁺ 273.1057, C₁₆H₁₈O₂P⁺ requires 273.1039.

12b. Preparation of Heteroaryl Phosphines General Procedure A

An oven dried 8 mL vial (≤ 0.5 mmol scale) or a round bottom flask (> 0.5 mmol scale) equipped with a stir bar was charged with the heterocycle (1.0 equiv) and placed under a nitrogen atmosphere. CH₂Cl₂ (0.1 M) was added, the reaction vessel cooled to -78 °C and Tf₂O (1.0 equiv) was added dropwise over 5 minutes. The reaction was stirred for 30 minutes before the mixture was warmed to -50 °C and then methyl 3-(diphenylphosphaneyl)propanoate (1.1 equiv) was added dropwise as a solution (2.0 M in CH₂Cl₂). The reaction was subjected to three rapid cycles of vacuum / nitrogen backfill and was stirred for a further 30 minutes at -50 °C. The reaction was cooled to -78 °C and DBU (3.0 equiv) was added dropwise via syringe, the cooling bath was removed and the reaction was allowed to warm to room temperature while stirring for approximately 2 hours. The reaction was diluted with H₂O and then extracted with CH₂Cl₂ (3x). The combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography under the stated conditions to provide the heteroaryl phosphine product.

Notes.

1) To maximize the yield vigorous stirring is required.

2) For long term storage (>2 weeks) it is best to keep the heteroaryl phosphine product in a -20 °C fridge.

4-(Diphenylphosphaneyl)-2-phenylpyridine (2a)

Prepared according to general procedure A using 2-phenylpyridine (2.13 mL, 14.90 mmol), Tf₂O (2.50 mL, 14.90 mmol), methyl 3-(diphenylphosphaneyl)propanoate (4.44 g, 16.30 mmol), DBU (6.67 mL, 44.70 mmol) and CH₂Cl₂ (149 mL). Crude (to determine the inherent regioselectivity a separate reaction was ran with 1eq DBU instead of 3eq resulting in a pre-fragmented phosphonium salt. See crude ³¹P NMR for structure) regiomeric ratio 13.3:1.0 (4-position:2-position). Flash column chromatography (silica gel, gradient elution: 1% Et₂O in toluene to 2.5% Et₂O in toluene) afforded the title compound as a white solid (3.59 g, 10.57 mmol, 71% yield). mp 73-74 °C; IR v_{max}/cm⁻¹ (film): 3053, 1570, 1434, 1373, 1026, 907, 837, 733, 693; ¹H NMR (400 MHz, CDCl₃) δ : 8.63 (1H, dd, *J* = 5.1, 2.4 Hz), 7.92 (2H, d, *J* = 7.5 Hz), 7.65 (1H, d, *J* = 7.5 Hz) 7.50-7.35 (13H, m), 7.06 (1H, dd, *J* = 6.2, 5.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 156.79 (d, *J* = 5.1 Hz), 149.48 (d, *J* = 17.5 Hz), 149.12 (d, *J* = 4.2 Hz), 139.04, 134.93 (d, *J* = 10.1 Hz), 134.09 (d, *J* = 20.4 Hz), 129.44, 128.94, 128.76 (d, *J* = 7.5 Hz), 128.62, 126.86, 125.48 (d, *J* = 13.5 Hz), 124.13 (d, *J* = 18.0 Hz); ³¹P (162 MHz, CDCl₃) δ : -6.38; *m*/z HRMS (DART) found [M+H]⁺ 340.1271, C₂₃H₁₉NP⁺ requires 340.1250.

2-(4-Bromophenyl)-4-(diphenylphosphaneyl)pyridine (2b)

Prepared according to general procedure A using 2-(4-bromophenyl)pyridine (2.20 g, 9.40 mmol), Tf₂O (1.58 mL, 9.40 mmol), methyl 3-(diphenylphosphaneyl)propanoate (2.82 g, 10.34 mmol), DBU (4.21 mL, 28.20 mmol) and CH₂Cl₂ (94 mL). Crude (to determine the inherent regioselectivity a separate reaction was ran with 1eq DBU instead of 3eq resulting in a pre-fragmented phosphonium salt. See crude ³¹P NMR for structure.) regiomeric ratio 13.9:1.0 (4-position:2-position). Flash column chromatography (silica gel: 1% ether in toluene) afforded the title compound as a white solid (2.40 g, 5.75 mmol, 61% yield). mp 120-123 °C; IR v_{max}/cm⁻¹ (film): 3056, 1580, 1462, 1431, 1403, 1366, 1070, 826, 741, 694; ¹H NMR (400 MHz, CDCl₃) δ : 8.61 (1H, dd, *J* = 5.0, 2.4 Hz), 7.79 (2H, d, *J* = 8.6 Hz), 7.61 (1H, d, *J* = 7.3 Hz), 7.55 (2H, d, *J* = 8.6 Hz), 7.48-7.36 (10H, m), 7.06 (1H, t, *J* = 5.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 155.52 (d, *J* = 5.3 Hz), 149.85 (d, *J* = 18.3 Hz), 149.12 (d, *J* = 4.1 Hz), 137.81, 134.77 (d, *J* = 9.9 Hz), 134.07 (d, *J* = 20.6 Hz), 131.70, 129.49, 128.78 (d, *J* = 7.6 Hz), 128.37, 125.73 (d, *J* = 13.0 Hz),

123.77 (d, J = 18.4 Hz), 123.45; ³¹P (162 MHz, CDCl₃) δ : -6.35; m/z HRMS (DART) found [M+H]⁺ 418.1046, C₂₃H₁₈BrNP⁺ requires 418.1036.

5-Chloro-4-(diphenylphosphino)-2-methylpyridine (2c)

Prepared according to general procedure A using 5-chloro-2-methylpyridine (333 mg, 2.60 mmol), Tf₂O (437 µL, 2.60 mmol), methyl 3-(diphenylphosphino)propanoate (779 mg, 2.86 mmol), DBU (1.17 mL, 7.80 mmol) and CH₂Cl₂ (26 mL). Flash chromatography (silica gel: 9% EtOAc in hexanes to 16% EtOAc in hexanes) afforded the title compound as a white amorphous powder (524 mg, 1.69 mmol, 65% yield). mp 112–114 °C; IR v_{max} /cm⁻¹ (film): 3052, 2990, 2921, 1563, 1477, 1441, 1434, 1323, 1127, 749, 744; ¹H NMR (400 MHz, CDCl₃) δ : 8.42 (1H, d, *J* = 4.5 Hz), 7.44–7.37 (6H, m), 7.32–7.28 (4H, m), 6.48 (1H, d, *J* = 3.0 Hz), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.39, 148.01, 147.45 (d, *J* = 19.8 Hz), 134.15 (d, *J* = 20.7 Hz), 133.52 (d, *J* = 8.9 Hz), 133.28 (d, *J* = 22.2 Hz), 129.58, 128.87 (d, *J* = 7.6 Hz), 126.91, 23.93; ³¹P NMR (162 MHz, CDCl₃) δ : –11.81; *m*/z HRMS (DART) found [M+H]⁺ 312.0710, C₁₈H₁₆ClNP⁺ requires 312.0709.

3-Chloro-4-(diphenylphosphino)pyridine (2d)

Prepared according to general procedure A using 3-chloropyridine (380 µL, 4.00 mmol), Tf₂O (672 µL, 4.00 mmol), methyl 3-(diphenylphosphino)propanoate (1.20 g, 4.40 mmol), DBU (1.80 mL, 12.00 mmol) and CH₂Cl₂ (40 mL). Flash chromatography (silica gel: CH₂Cl₂ to 5% EtOAc in CH₂Cl₂ afforded the title compound as a white powder (1.08 g, 3.64 mmol, 91% yield). mp 66-68 °C; IR v_{max} /cm⁻¹ (film): 3047, 1568, 1478, 1447, 1433, 1392, 1265, 1181, 1119, 1095, 1077, 1029, 836, 744; ¹H NMR (400 MHz, CDCl₃) δ : 8.54 (1H, d, *J* = 4.4 Hz), 8.32 (1H, dd, *J* = 4.9, 0.8 Hz), 7.46–7.36 (6H, m), 7.34–7.27 (4H, m), 6.64 (1H, ddd, *J* = 5.0, 2.8, 0.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 148.85, 147.70 (d, *J* = 20.5 Hz), 147.34, 136.20 (d, *J* = 22.2 Hz), 134.14 (d, *J* = 20.9 Hz), 133.29 (d, *J* = 9.1 Hz), 129.66, 128.91 (d, *J* = 7.8 Hz), 127.35; ³¹P NMR (162 MHz, CDCl₃) δ : –11.94; *m*/*z* LRMS (ESI + APCI) found [M+H]⁺ 298.1, C₁₇H₁₄ClNP⁺ requires 298.1.

Prepared according general procedure 2-((4-bromo-3-А using to fluorophenoxy)methyl)pyridine (1.41 g, 5.00 mmol), Tf₂O (840 µL, 5.00 mmol), methyl 3-(diphenylphosphino)propanoate (1.50 g, 5.50 mmol), DBU (2.25 mL, 15.00 mmol) and CH₂Cl₂ (50 mL). Flash chromatography (silica gel: 16% EtOAc in hexanes) afforded the title compound as a white amorphous powder (1.96 g, 4.20 mmol, 84% yield). mp 125–127 °C; IR $v_{\text{max}}/\text{cm}^{-1}$ (film): 3091, 3068, 2915, 1603, 1580, 1540, 1490, 1476, 1470, 1447, 1435, 1431, 1375, 1294, 1242, 1168, 1149, 1094, 1062, 1027, 991, 949, 887, 853, 831, 804, 747, 731; ¹H NMR (400 MHz, CDCl₃) δ: 8.50-8.48 (1H, m), 7.42-7.27 (11H, m), 7.22-7.20 (1H, m), 7.05-7.02 (1H, m), 6.64 (1H, dd, J = 10.2, 2.8 Hz), 6.56 (1H, ddd, J = 8.9, 2.8, 1.0 Hz), 5.13 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 159.36 (d, J = 245.5 Hz), 158.60 (d, J = 9.7 Hz), 155.60 (d, J = 4.2 Hz), 150.34 (d, J = 18.4 Hz), 148.87 (d, J = 4.3 Hz), 134.60 (d, J = 9.8 Hz), 134.12 (d, J = 20.4 Hz), 133.32 (d, J = 1.9 Hz), 129.58, 128.83 (d, J = 7.5 Hz), 126.30 (d, J = 14.9 Hz), 124.69 (d, J = 15.9 Hz), 112.01 (d, J = 3.2 Hz), 104.02 (d, J = 25.4 Hz), 99.87 (d, J = 21.2 Hz), 70.83; ¹⁹F NMR (365 MHz, CDCl₃) δ : -105.03 (t, J = 8.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ : -6.50; m/z HRMS (DART) found [M+H]⁺ 466.0399, C₂₄H₁₉BrFNOP⁺ requires 466.0372.

2-(Diphenylphosphino)-4-methylquinoline (2f)

Prepared according to general procedure A using 4-methylquinoline (793 µL, 6.00 mmol), Tf₂O (1.01 mL, 6.00 mmol), methyl 3-(diphenylphosphino)propanoate (1.80 g, 6.60 mmol), DBU (2.70 mL, 18.00 mmol) and CH₂Cl₂ (60 mL). Flash chromatography (silica gel: 16% EtOAc in hexanes) afforded the title compound as a white amorphous powder (1.63 g, 4.98 mmol, 83% yield). mp 99–102 °C; IR v_{max}/cm^{-1} (film): 3058, 2953, 2926, 2858, 1727, 1576, 1541, 1497, 1479, 1444, 1435, 1431, 761, 751, 739; ¹H NMR (400 MHz, CDCl₃) δ : 8.17 (1H, d, J = 8.4 Hz), 7.96 (1H, d, J = 8.3 Hz), 7.72–7.68 (1H, m), 7.58–7.54 (1H, m), 7.50–7.46 (4H, m), 7.40–7.37 (6H, m), 7.06 (1H, s), 2.58 (3H, d, J = 0.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 164.19 (d, J = 3.8 Hz), 148.32 (d, J = 15.3 Hz), 143.42 (d, J = 2.8 Hz), 136.40 (d, J = 11.4 Hz), 134.11 (d, J = 19.4 Hz), 130.24, 129.17, 128.86, 128.48 (d, J = 7.0 Hz), 126.88, 126.53, 124.88 (d, J = 14.6 Hz), 123.60, 18.71; ³¹P NMR (162 MHz, CDCl₃) δ : –2.45; *m*/*z* HRMS (DART) found [M+H]⁺ 328.1254, C₂₂H₁₉NP⁺ requires 328.1255.

2-(Diphenylphosphaneyl)-4-ethoxyquinoline (2g)

Prepared according to general procedure A, using 4-ethoxyquinoline (500 mg, 3.00 mmol), Tf₂O (500 µL, 3.00 mmol), methyl-3-(diphenylphosphaneyl)propanoate (900 mg, 3.30 mmol), DBU (1.35 mL, 9.00 mmol), and CH₂Cl₂ (60 mL). The crude material was purified by flash chromatography (silica gel: 15% EtOAc in hexanes) to provide the title compound as a white crystalline solid (880 mg, 2.46 mmol, 82% yield). mp 114-118 °C; IR ν_{max}/cm^{-1} (film): 3058, 2975, 1482, 1231, 1115, 1018, 696; ¹H NMR (400 MHz, CDCl₃) δ : 8.18 (1H, dd, *J* = 8.8, 1.2 Hz), 8.05 (1H, d, *J* = 8.2 Hz), 7.70-7.64 (1H, m), 7.51-7.39 (5H, m); 7.38-7.31 (6H, m), 6.49 (1H, d, *J* = 0.6 Hz), 3.94 (2H, q, *J* = 7.0 Hz), 1.41 (3H, t, *J* = 7.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 165.60 (d, *J* = 4.7 Hz), 160.96 (d, *J* = 3.5 Hz), 149.60 (d, *J* = 16.9 Hz), 136.56 (d, *J* = 11.9 Hz), 134.10 (d, *J* = 19.4 Hz), 129.73, 129.15, 128.92, 128.49 (d, *J* = 7.0 Hz), 125.72, 121.72, 120.23, 104.02, 63.69, 14.22 ³¹P NMR (162 MHz, CDCl₃) δ : -1.06; *m*/*z* HRMS (DART) found [M+H]⁺ 358.1349 C₂₃H₂₁N₂OP⁺ requires 358.1355.

Ethyl (S)-4-((4-chlorophenyl)(4-(diphenylphosphaneyl)pyridin-2-yl)methoxy)piperidine-1-carboxylate (2h)

Prepared according to general procedure A using ethyl (*S*)-4-((4-chlorophenyl)(pyridin-2yl)methoxy)piperidine-1-carboxylate (1.026 g, 2.74 mmol), Tf₂O (0.46 mL, 2.74 mmol), methyl 3-(diphenylphosphaneyl)propanoate (820 mg, 3.01 mmol), DBU (1.22 mL, 8.21 mmol) and CH₂Cl₂ (27.5 mL). Flash column chromatography (silica gel, gradient elution: 45% EtOAc in hexanes to 50% EtOAc in hexanes) afforded the title compound as a tan oil (1.19 g, 2.13 mmol, 78% yield). IR v_{max}/cm⁻¹ (film): 3052, 2981, 2928, 1692, 1577, 1489, 1434, 1381, 1272, 1227, 1087, 742; ¹H NMR (400 MHz, CDCl₃) δ : 8.37 (1H, ddd, *J* = 5.1, 2.3, 0.8 Hz), 7.41-7.19 (15H, m), 6.95 (1H, m), 5.52 (1H, s), 4.10 (2H, q, *J* = 7.2 Hz), 3.61-3.45 (3H, m), 3.25-3.06 (2H, m), 1.80-1.67 (1H, m), 1.63-1.38 (3H, m), 1.23 (3H, t, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 161.03 (d, *J* = 4.2 Hz), 155.36, 150.31 (d, *J* = 18.2 Hz), 148.31 (d, *J* = 4.2 Hz), 139.82, 134.79 (d, *J* = 10.1 Hz), 134.76 (d, *J* = 10.1 Hz), 134.12 (d, *J* = 20.7 Hz), 134.01 (d, *J* = 20.7 Hz), 133.31, 129.51 (d, *J* = 2.8 Hz), 128.72 (d, *J* = 7.6 Hz), 128.45, 128.14, 125.75 (d, *J* = 15.0 Hz), 123.83 (d, *J* = 15.6 Hz), 80.72, 72.23, 61.13, 40.69, 30.80, 30.66, 14.64; ³¹P NMR (162 MHz, CDCl₃) δ : -6.35; *m*/*z* HRMS (DART) found [M+H]⁺ 559.1947, C₃₂H₃₃ClN₂O₃P⁺ requires 559.1917.

(2R, 6S)-4-((2-(Diphenylphosphaneyl)quinolin-4-yl)methyl)-2,6-dimethylmorpholine (2i)

Prepared according to general procedure A, using (*2R*, 6*S*)-2,6-dimethyl-4-(quinolin-4-ylmethyl)morpholine (1.28 g, 5.00 mmol), Tf₂O (840 µL, 5.00 mmol), methyl-3-(diphenylphosphaneyl)propanoate (1.50 g, 5.50 mmol), DBU (2.25 mL, 15.00 mmol), and CH₂Cl₂ (50 mL). Crude material was purified by flash chromatography (silica gel: 15% EtOAc in hexanes) to provide the title compound as a white amorphous solid (1.42 g, 3.25 mmol, 65% yield). IR v_{max}/cm⁻¹ (film): 3054, 2971, 2932, 2868, 2811, 2236, 570, 566, 542, 537, 529; ¹H NMR (400 MHz, CDCl₃) & 7.95 (1H, d, *J* = 8.5 Hz), 7.88 (1H, d, *J* = 8.0 Hz), 7.48 (1H, m), 7.33 (1H, m), 7.30-7.24 (4H, m), 7.20-7.12 (6H, m), 7.07 (1H, s), 3.59 (2H, s), 3.35-3.24 (2H, m), 2.37 (2H, d, *J* = 10.4 Hz), 1.57 (2H, t, *J* = 10.7 Hz), 0.90 (6H, d, *J* = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃) & 164. 39 (d, *J* = 3.7 Hz), 148.59 (d, *J* = 15.1 Hz), 128.45 (d, *J* = 2.7 Hz), 136.39 (d, *J* = 11.3 Hz), 134.05 (d, *J* = 19.5 Hz) 130.26, 129.12, 128.90, 128.45 (d, *J* = 6.9 Hz), 126.5, 125.96, 123.94 (d, *J* = 14.5 Hz), 123.45, 71.46, 59.42, 58.82, 18.94; ³¹P NMR (162 MHz, CDCl₃) &: -2.22; *m*/z HRMS (DART) found [M+H]⁺ 441.2065, C₂₈H₃₀N₂OP⁺ requires 441.2090.

Additional Examples: Characterization

4-(Diphenylphosphaneyl)-2-(thiophen-3-yl)pyridine

Prepared according to general procedure A using 2-(thiophen-3-yl)pyridine (967 mg, 6.00 mmol), Tf₂O (1.0 mL, 6.00 mmol), methyl 3-(diphenylphosphaneyl)propanoate (1.80 g, 6.60 mmol), DBU (2.7 mL, 18.00 mmol) and CH₂Cl₂ (60 mL). Flash column chromatography (silica gel, gradient elution: toluene to 2% Et₂O in toluene) afforded the title compound as a white solid (1.19 g, 3.44 mmol, 58% yield). mp 102-104 °C; IR v_{max}/cm^{-1} (film): 3115, 3065, 3014, 1576, 1475, 1435, 1430, 1378, 793, 744, 694; ¹H NMR (400 MHz, CDCl₃) δ : 8.55, (1H, dd, J = 5.0,

2.4 Hz), 7.82 (1H, dd, J = 3.0, 1.0 Hz), 7.55 (1H, dd, J = 5.0, 1.0 Hz), 7.51 (1H, d, J = 7.3 Hz), 7.47-7.37 (10H, m), 7.34 (1H, dd, J = 5.1, 3.0 Hz), 6.99 (1H, app t, J = 5.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 152.84 (d, J = 5.3 Hz), 149.44 (d, J = 17.5 Hz), 149.03 (d, J = 4.3 Hz), 141.75, 134.87 (d, J = 10.1 Hz), 134.09 (d, J = 20.3 Hz), 129.45, 128.76 (d, J = 7.6 Hz), 126.14 (d, J = 15.1 Hz), 125.17 (d, J = 13.7 Hz), 123.92, 123.73 (2C); ³¹P (162 MHz, CDCl₃) δ : -6.67; *m/z* HRMS (DART) found [M+H]⁺ 346.0840, C₂₁H₁₇NP⁺ requires 346.0814.

12c. Preparation of Heteroaryl Phosphonium Salts General Procedure B

An oven dried 8 mL vial (≤ 0.5 mmol scale) or a round bottom flask (> 0.5 mmol scale) equipped with a stir bar was charged with the heterocycle (1.0 equiv) and placed under a nitrogen atmosphere. CH₂Cl₂ (0.1 M) was added, the reaction vessel cooled to -78 °C and Tf₂O (1.0 equiv) was added dropwise over 5 minutes. The reaction was stirred for 30 minutes before the mixture was warmed to -50 °C and then the heteroaryl phosphine (1.1 equiv) was added in one portion as a solid or dropwise as a solution (2.0 M in CH₂Cl₂). The reaction was subjected to three rapid cycles of vacuum / nitrogen backfill and was stirred for a further 30 minutes at -50 °C. The reaction was cooled to -78 °C and DBU (1.0 equiv) was added dropwise via syringe, the cooling bath was removed and the reaction was allowed to warm to room temperature while stirring (approximately 15-30 minutes). The reaction mixture was diluted with CH₂Cl₂ and washed with H₂O (3x). The organic layer was dried (MgSO₄), filtered and concentrated *in vacuo* to approximately 2-10 mL (depending on the scale of the reaction). The concentrated reaction mixture was added dropwise to an excess of chilled Et₂O (0 °C) that was then placed in a -20 °C refrigerator for approximately 2-12 hours. The suspension was filtered on a frit, the solid washed with chilled Et₂O (0 °C) and dried *in vacuo* to provide the pure phosphonium salt.

Notes.

1) In a small number of cases, residual CH_2Cl_2 can become trapped in the phosphonium salt products. In these cases, heating the salts under vacuum (50-100 °C) removed the solvent.

2) To maximize the yield vigorous stirring is required.

3) Filtration can be done as soon as the precipitate settles.

4) In cases where an oil forms instead of a solid it is recommended to decant using Et_2O (0 °C) instead of washing on a frit.

5) In general, CH₂Cl₂ results in the best yields for pyridine salt formation and EtOAc should be used for diazine salt formation for best results.

6) Et_2O typically works best for crashing out the phosphonium salt, however crashing out with 50:50 Et_2O :hexanes or hexanes have been seen to improve isolation of the phosphonium salt.

7) At lower temperatures (-78 °C) on select substrates pseudodimer formation was observed, raising the temperature (-50 °C or -30 °C) generally eliminated this undesired side reaction.

Diphenyl(2-phenylpyridin-4-yl)(pyridin-4-yl)phosphonium trifluoromethanesulfonate (3a)

Prepared according to general procedure B using pyridine (119 μ L, 1.50 mmol), Tf₂O (250 µL, 1.50 mmol), 4-(diphenylphosphaneyl)-2-phenylpyridine (560 mg, 1.65 mmol), DBU (224 CH₂Cl₂ (15 mL). After μL. 1.50 mmol) and the purification procedure (solid was dissolved in approximately 2-10 mL of CH₂Cl₂ and the solution was again added dropwise to an excess of chilled Et₂O (0 °C). The mixture was then placed in -20 °C refrigerator for 5 hour. The resulting suspension was filtered on a frit and the solid was washed with chilled Et₂O (0 °C) and dried in vacuo to provide the pure phosphonium salt), the title compound was isolated as a white solid (702 mg, 1.24 mmol, 83% yield). mp 73 °C; IR v_{max}/cm⁻¹ (film): 3059, 1573, 1440, 1262, 1223, 1150, 1109, 1030; ¹H NMR (400 MHz, CDCl₃) δ: 9.09 (1H, app t, J =5.1 Hz), 9.03 (2H, app t, J = 5.1 Hz), 7.99-7.87 (4H, m) 7.87-7.78 (5H, m), 7.77-7.63 (6H, m), 7.57 (1H, dd, J = 13.1, 5.1 Hz), 7.48-7.41 (3H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 158.99 (d, J = 10.4 Hz), 151.60 (d, J = 11.8 Hz), 151.49 (d, J = 10.3 Hz), 136.49 (d, J = 1.6 Hz), 136.35 (d, J = 3.0 Hz), 134.29 (d, J = 10.7 Hz), 130.93 (d, J = 13.3 Hz), 130.14, 128.75, 127.40 (d, J = 84.4 Hz), 126.98 (d, J = 8.2 Hz), 126.89, 126.39 (d, J = 84.3 Hz), 125.18 (d, J = 8.3 Hz), 122.96 (d, J = 8.9 Hz), 120.38 (q, J = 321.4 Hz), 113.59 (d, J = 89.4 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.14; ³¹P NMR (162 MHz, CDCl₃) δ: 21.76; *m/z* HRMS (ESI + APCI) found [M- $OTf]^+ 417.1537, C_{28}H_{22}N_2P^+$ requires 417.1521.

Bis(4-methoxyphenyl)(2-phenylpyridin-4-yl)(pyridin-4-yl)phosphonium trifluoromethanesulfonate (3a')

Prepared according to general procedure B using pyridine (24 µL, 0.30 mmol), Tf₂O (50 µL, 0.30 mmol), 4-(bis(4-methoxyphenyl)phosphaneyl)-2-phenylpyridine (prepared from diethyl phosphate and 1-bromo-4-chlorobenzene using Gessner's, Han's, and Bergbreiter's reports followed by general procedure A (93-96). (135 mg, 0.33 mmol), DBU (46 µL, 0.30 mmol) and CH₂Cl₂ (3 mL). After the purification procedure (solid was dissolved in approximately 2-10 mL of CH₂Cl₂ and the solution was again added dropwise to an excess of chilled Et₂O (0 °C). The mixture was then placed in -20 °C refrigerator for 5 hour. The resulting suspension was filtered on a frit and the solid was washed with chilled Et₂O (0 °C) and dried in vacuo to provide the pure phosphonium salt), the title compound was isolated as a white crystalline solid (136 mg, 0.22 mmol, 72% yield). mp 73-74 °C; IR v_{max}/cm⁻¹ (film): 3046, 2934, 1592, 1573, 1536, 754, 563, 556; ¹H NMR (400 MHz, CDCl₃) δ: 9.10-8.93 (3H, m), 7.95-7.86 (2H, m), 7.79 (1H, d, J = 14.1 Hz), 7.66-7.55 (6H, m), 7.53-7.42 (4H, m), 7.34-7.27 (4H, m), 3.95 (6H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 166.00 (d, J = 3.0 Hz), 159.39 (d, J = 10.4), 151.78 (d, J = 10.7 Hz), 151.74 (d, J = 10.0 Hz), 136.88 (d, J = 1.7 Hz), 136.65 (d, J = 12.4 Hz), 130.56, 129.27 (d, J = 85.2 Hz), 129.15, 128.39 (d, J = 85.4 Hz), 127.22, 127.06 (d, J = 7.7 Hz), 125.16 (d, J = 8.3 Hz), 123.09 (d, *J* = 8.7 Hz), 120.76 (q, *J* = 321.2 Hz), 117.14 (d, *J* = 14.5 Hz), 103.51 (d, *J* = 98.2 Hz), 56.19; ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.20; ³¹P NMR (162 MHz, CDCl₃) δ: 20.74; *m/z* LRMS (ESI + APCI) found $[M-OTf]^+$ 477.2, $C_{30}H_{26}N_2O_2P^+$ requires 477.2.

trifluoromethanesulfonate

(2-phenylpyridin-4-yl)(pyridin-4-yl)di-p-tolylphosphonium (3a'')

Prepared according to general procedure B using pyridine (60 µL, 0.75 mmol), Tf₂O (126 μL, 4-(di-p-tolylphosphaneyl)-2-phenylpyridine (prepared di(p-0.75 mmol), from tolyl)phopshine using Alonso's report (30) and general procedure A) (312 mg, 0.83 mmol), DBU (112 µL, 0.75 mmol) and CH₂Cl₂ (7.5 mL). After the purification procedure (solid was dissolved in approximately 2-10 mL of CH₂Cl₂ and the solution was again added dropwise to an excess of chilled Et₂O (0 °C). The mixture was then placed in -20 °C refrigerator for 5 hour. The resulting suspension was filtered on a frit and the solid was washed with chilled Et₂O (0 °C) and dried in vacuo to provide the pure phosphonium salt), the title compound was isolated as a brown crystalline solid (375 mg, 0.63 mmol, 84% yield). mp 70-71 °C; IR v_{max}/cm⁻¹ (film): 2936, 2861, 1574, 1444, 547, 543, 538, 528; ¹H NMR (400 MHz, CDCl₃) δ: 9.15-8.93 (3H, m), 7.97-7.87 (2H, m), 7.82 (1H, d, J = 14.4 Hz), 7.72-7.44 (14H, m), 2.55 (6H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 159.34 (d, J = 10.3 Hz), 151.83 (d, J = 10.8), 151.63 (d, J = 9.9 Hz), 148.52 (d, J = 10.8) 3.3 Hz), 136.79, 134.46 (d, J = 11.2 Hz), 131.96 (d, J = 13.6 Hz), 130.52, 129.10, 128.31 (d, J = 84.5 Hz), 127.67 (d, J = 75.5 Hz), 127.30, 127.20, 125.33 (d, J = 8.4 Hz), 123.17 (d, J = 8.7), 120.64 (q, J = 321.0 Hz), 110.34 (d, J = 92.3 Hz), 21.92; ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.29; ³¹P NMR (162 MHz, CDCl₃) δ: 21.61; *m/z* LRMS (ESI + APCI) found [M- $OTf]^+ 445.2, C_{30}H_{26}N_2P^+$ requires 445.2.

Bis(4-chlorophenyl)(2-phenylpyridin-4-yl)(pyridin-4-yl)phosphonium trifluoromethanesulfonate (3a''')

Prepared according to general procedure B using pyridine (84 µL, 1.00 mmol), Tf₂O (168 µL, 1.00 mmol), 4-(bis(4-chlorophenyl)phosphaneyl)-2-phenylpyridine (prepared from diethyl phosphate and 1-bromo-4-chlorobenzene using Gessner's, Han's, and Bergbreiter's reports followed by general procedure A (94-96)) (449 mg, 1.10 mmol), NEt₃ (140 µL, 1.10 mmol) and CH₂Cl₂ (10 mL). After the purification procedure (solid was dissolved in approximately 2-10 mL of CH₂Cl₂ and the solution was again added dropwise to an excess of chilled Et₂O (0 °C). The mixture was then placed in -20 °C refrigerator for 5 hour. The resulting suspension was filtered on a frit and the solid was washed with chilled Et₂O (0 °C) and dried in vacuo to provide the pure phosphonium salt), the title compound was isolated as a yellow crystalline solid (366 mg, 0.57 mmol, 57% yield). mp 88-90 °C; IR v_{max}/cm⁻¹ (film): 3046, 2974, 2844, 1592, 1536, 727, 560, 555; ¹H NMR (400 MHz, CDCl₃) δ: 9.21-8.97 (3H, m), 8.00-7.91 (2H, m), 7.87 (1H, d, J = 14.3 Hz), 7.84-7.61 (10H, m), 7.57-7.43 (4H, m); 13 C NMR (100 MHz, CDCl₃) δ : 159.71 (d, J =10.4 Hz), 152.04 (d, J = 11.0), 152.00 (d, J = 10.2 Hz), 144.30 (d, J = 3.9 Hz), 136.67 (d, J = 1.8Hz), 136.09 (d, J = 11.9 Hz), 132.01 (d, J = 12.4 Hz), 131.79 (d, J = 14.3 Hz), 130.74, 129.43 (d, J = 14.3 Hz), 130.74 (d, J = 14.3 Hz), 130. J = 13.5 Hz), 129.20, 127.09 (d, J = 85.0 Hz), 127.04 (d, J = 83.2), 125.78, 125.26 (d, J = 8.7Hz), 123.27 (d, J = 9.0), 120.58 (q, J = 321.0 Hz), 112.22 (d, J = 92.7 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.40; ³¹P NMR (162 MHz, CDCl₃) δ: 21.96; *m/z* LRMS (ESI + APCI) found [M-OTf]⁺ 485.1, C₂₈H₂₀Cl₂N₂P⁺ requires 485.1.

(2-(4-Bromophenyl)pyridin-4-yl)(3-chloropyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (3b)

Prepared according to general procedure B using 3-chloropyridine (95 µL, 1.00 mmol), Tf₂O (168 µL, 1.00 mmol), 2-(4-Bromophenyl)-4-(diphenylphosphaneyl)pyridine (460 mg, 1.10 mmol), DBU (149 µL, 1.00 mmol) and CH₂Cl₂ (10 mL). After the purification procedure, the title compound was isolated as a white solid (556 mg, 0.82 mmol, 82% yield). mp 94-96 °C; IR v_{max} /cm⁻¹ (film): 3062, 1579, 1439, 1258, 1223, 1149, 1107, 1029, 724; ¹H NMR (400 MHz, CDCl₃) δ : 9.04 (1H, app t, J = 5.4 Hz), 8.97-8.82 (2H, m), 8.02 (1H, d, J = 14.5 Hz), 7.96-7.85 (4H, m), 7.84-7.72 (8H, m), 7.64-7.52 (3H, m), 7.41 (1H, dd, J = 15.1, 5.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 158.30 (d, J = 10.8 Hz), 151.78 (d, J = 11.1 Hz), 151.59 (d, J = 5.1 Hz), 150.33 (d, J = 10.1 Hz), 136.46 (d, J = 3.0 Hz), 135.67 (d, J = 1.7 Hz), 134.51, 134.27, 132.14, 131.17 (d, J = 13.6 Hz), 130.91 (d, J = 8.4 Hz), 128.93, 127.66 (d, J = 85.7 Hz), 125.57 (d, J = 88.3 Hz), 125.33 (d, J = 8.5 Hz), 125.13, 123.02 (d, J = 9.1 Hz), 120.57 (q, J = 321.2 Hz), 113.39 (d, J = 90.4 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.18; ³¹P (162 MHz, CDCl₃) δ : 22.17; *m*/*z* HRMS (ESI + APCI) found [M-OTf]⁺ 529.0239, C₂₈H₂₀BrClN₂P⁺ requires 529.0236.

(2-(4-Bromophenyl)pyridin-4-yl)(2-butyl-3-(ethoxycarbonyl)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (3c)

Prepared according to general procedure B (except that after 2-(4-bromophenyl)-4-(diphenylphosphino)pyridine was added, the reaction mixture was stirred for 30 min at -30 °C) using ethyl 2-butylnicotinate (300.4 mg, 1.45 mmol), Tf₂O (244 µL, 1.45 mmol), 2-(4-bromophenyl)-4-(diphenylphosphino)pyridine (667 mg, 1.60 mmol), DBU (218 µL, 1.45 mmol) and CH₂Cl₂ (14.5 mL). After the purification procedure, the title compound was isolated as a white amorphous powder (831 mg, 1.07 mmol, 74% yield). mp 212-214 °C; IR v_{max}/cm^{-1} (film): 3045, 2950, 2927, 2870, 1706, 1787, 1578, 1547, 1538, 1463, 1440, 1435, 1404, 1369, 1291, 1275, 1258, 1223, 1177, 1152, 1136, 1105, 1069, 1030, 1013, 1004, 816, 751, 727, 721, 697, 685; ¹H NMR (400 MHz, CDCl₃) δ : 9.04-9.00 (2H, m), 7.94-7.84 (5H, m), 7.80-7.69 (8H, m), 7.60-7.54 (3H, m), 7.33 (1H, dd, J = 15.7, 5.0 Hz), 3.51 (2H, q, J = 7.2 Hz), 3.07 (2H, t, J = 7.8 Hz), 1.82-1.74 (2H, m), 1.41 (2H, sext, J = 7.4 Hz), 0.99-0.93 (6H, m); ¹³C NMR (100 MHz,

CDCl₃) δ : 166.34 (d, J = 3.7 Hz), 164.12 (d, J = 6.3 Hz), 157.79 (d, J = 10.6 Hz), 153.20 (d, J = 11.6 Hz), 151.37 (d, J = 11.0 Hz), 135.91 (d, J = 2.9 Hz), 135.84 (d, J = 1.7 Hz), 134.53 (d, J = 10.5 Hz), 132.17, 130.65 (d, J = 13.3 Hz), 129.71 (d, J = 86.4 Hz), 128.79, 128.50 (d, J = 4.9 Hz), 127.95 (d, J = 9.5 Hz), 126.79 (d, J = 83.3 Hz), 125.40 (d, J = 8.1 Hz), 125.07, 123.09 (d, J = 8.8 Hz), 120.66 (q, J = 319.6 Hz), 115.84 (d, J = 90.5 Hz), 63.18, 37.27 (d, J = 1.5 Hz), 31.87, 22.62, 13.75, 13.26; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.19; ³¹P NMR (162 MHz, CDCl₃) δ : 27.28; m/z HRMS (ESI + APCI) found [M-OTf]⁺ 623.1460, C₃₅H₃₃BrN₂O₂P⁺ requires 623.1463.

(5-Chloro-2-methylpyridin-4-yl)(3-methoxypyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (3d)

Prepared according to general procedure B (except that after 5-chloro-4-(diphenylphosphino)-2-methylpyridine was added, the reaction mixture was stirred for 30 min at -30 °C) using 3-methoxypyridine (202 µL, 2.00 mmol), Tf₂O (336 µL, 2.00 mmol), 5-chloro-4-(diphenylphosphino)-2-methylpyridine (686 mg, 2.20 mmol), DBU (300 µL, 2.00 mmol) and CH₂Cl₂ (20 mL). After the purification procedure, the title compound was isolated as an amorphous white powder (842 mg, 1.48 mmol, 74% yield). mp 182-186 °C; IR $v_{\text{max}}/\text{cm}^{-1}$ (film): 3060, 2951, 1570, 1544, 1483, 1460, 1439, 1411, 1380, 1326, 1300, 1258, 1222, 1140, 1103, 1087, 1072, 1043, 1029, 998, 914, 823, 808, 753, 722, 688, 646; ¹H NMR (400 MHz, CDCl₃) δ: 8.74 (1H, d, J = 6.6 Hz), 8.70 (1H, d, J = 6.7 Hz), 8.62 (1H, t, J = 4.6 Hz), 7.91-7.87 (2H, m), 7.81-7.76 (4H, m), 7.72-7.67 (4H, m), 7.39 (1H, dd, J = 15.2, 5.0 Hz), 7.26 (1H, d, J = 15.6 Hz), 3.72 (3H, s), 2.65 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 160.05 (d, J = 10.2 Hz), 155.60, 150.83 (d, J = 5.7 Hz), 144.17 (d, J = 11.3 Hz), 136.64 (d, J = 4.5 Hz), 135.91 (d, J = 3.1 Hz), 134.11 (d, J = 11.2 Hz), 130.81 (d, J = 13.7 Hz), 130.79 (d, J = 2.2 Hz), 129.12 (d, J = 8.1 Hz), 127.68 (d, J = 6.8 Hz), 126.35 (d, J = 90.1 Hz), 120.68 (q, J = 319.6 Hz), 114.06 (d, J = 92.0Hz), 113.45 (d, J = 88.4 Hz), 57.39 (dd, J = 4.6, 5.9 Hz), 24.19; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.26; ³¹P NMR (162 MHz, CDCl₃) δ : 21.15; *m/z* HRMS (ESI + APCI) found [M-OTf]⁺ 419.1099, C₂₄H₂₁ClN₂OP⁺ requires 419.1080.

(3-Chloro-pyridin-4-yl)(3-fluoropyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (3e)

Prepared according to general procedure B (except that after the initial extraction the aqueous layer was extracted an additional 3 times with CH_2Cl_2 and then the combined organic was washed once with water prior to concentration) using 3-fluoropyridine (43 µL, 0.50 mmol), Tf₂O (84 μL, 0.50 mmol), 3-chloro-4-(diphenylphosphino)pyridine (164 mg, 0.55 mmol), DBU (75 µL, 0.50 mmol) and CH₂Cl₂ (5.0 mL). After the purification procedure (concentrated CH₂Cl₂ solution of crude product was added dropwise to an excess of 50% Et₂O in hexanes instead of Et₂O), the title compound was isolated as a pale yellow solid (148 mg, 0.27 mmol, 54% yield). mp 59-62 °C; IR v_{max}/cm⁻¹ (film): 3085, 3024, 1586, 1546, 1472, 1440, 1403, 1282, 1247, 1225, 1201, 1184, 1154, 1132, 1106, 1030, 996, 749; ¹H NMR (400 MHz, CDCl₃) δ: 8.99-8.71 (4H, m), 8.02-7.68 (2H, m), 7.83-7.57 (9H, m), 7.45 (1H, dd, J = 15.4, 4.8 Hz); ¹³C NMR (100 MHz, CD₃OD) δ : 160.39 (d, J = 264.3Hz), 153.28 (d, J = 5.2 Hz), 151.07 (d, J = 10.4 Hz), 149.09 (dd, J = 10.7, 5.3 Hz), 141.83 (dd, J = 24.0, 4.1 Hz), 137.73 (d, J = 3.2 Hz), 136.19 (d, J = 2.0 Hz), 135.86 (d, J = 11.7 Hz), 132.22 (d, J = 14.1 Hz), 131.34 (d, J = 8.7 Hz), 129.60 (d, J = 3.8 Hz), 127.07 (d, J = 91.3 Hz), 121.73 (d, J = 319.0 Hz), 116.20 (dd, J = 87.5, 13.3 Hz), 115.76 (d, J = 13.3 Hz); ¹⁹F NMR (365 MHz, CD₃OD) δ: -79.79, -111.00; ³¹P NMR (162 MHz, CDCl₃) δ: 19.61 (d, J = 4.0 Hz); m/z LRMS (ESI + APCI) found [M-OTf]⁺ 393.1, C₂₂H₁₆ClFN₂OP⁺ requires 393.1.

(2-((4-Bromo-3-fluorophenoxy)methyl)pyridin-4-yl)(2-butyl-5-(trifluoromethyl)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate and (6-((4-bromo-3-fluorophenoxy)methyl)-4-(diphenylphosphoryl)pyridin-2-yl)(2-((4-bromo-3-fluorophenoxy)methyl)pyridin-4-yl)diphenylphosphonium (3f)

Pseudodimer Impurity

5.6:1

Prepared according to general procedure B using 2-butyl-5-(trifluoromethyl)pyridine (93 mg, 0.46 mmol), Tf₂O (77 μ L, 0.46 mmol), 2-((4-bromo-3-fluorophenoxy)methyl)-4-(diphenylphosphino)pyridine (234 mg, 0.50 mmol), DBU (68 µL, 0.46 mmol) and CH₂Cl₂ (4.6 mL). After the purification procedure, the title compounds were isolated as a mixture (crude: 3.7:1; pure: 5.6:1) as a white amorphous powder (204 mg). The mixture was carried forward through the ligand coupling step. IR v_{max}/cm^{-1} (film): 3063, 2959, 2932, 2872, 1603, 1578, 1532, 1486, 1439, 1384, 1320, 1259, 1223, 1143, 1120, 1106, 1029, 997, 968, 945, 909, 848, 834, 727; Major, ¹H NMR (400 MHz, CDCl₃) δ : 9.16 (1H, d, J = 7.3 Hz), 9.03 (1H, t, J = 5.2 Hz), 7.93-7.90 (2H, m), 7.80-7.62 (10H, m), 7.36 (1H, t, J = 8.4 Hz), 7.21 (1H, d, J = 17.4 Hz), 6.63 (1H, dd, J = 10.0, 2.7 Hz), 6.58 (1H, dd, J = 8.7, 2.4 Hz), 5.33 (2H, s), 2.94 (2H, t, J = 7.7 Hz), 1.66 (2H, qn, J = 7.6 Hz), 1.31 (2H, sext, J = 7.5 Hz), 0.87 (3H, t, J = 7.3 Hz); Major, ¹³C NMR (100 MHz, CDCl₃) δ : 170.37 (d, J = 9.8 Hz), 159.21 (d, J = 245.9 Hz), 158.88 (d, J = 10.3 Hz), 157.97 (d, J = 9.8 Hz), 151.53 (d, J = 10.7 Hz), 150.06 (m), 136.40 (d, J = 3.0 Hz), 134.56 (d, J = 7.7 Hz), 133.52, 130.93 (d, J = 13.4 Hz), 130.24 (d, J = 8.5 Hz), 128.43 (d, J = 84.9 Hz), 126.52 (d, J = 8.5 Hz), 124.46 (d, J = 8.8 Hz), 124.17 (d, J = 4.1 Hz), 123.82 (d, J = 79.6 Hz), 122.48 (qd, J = 273.8, 2.3 Hz), 120.56 (q, J = 319.5 Hz), 114.65 (d, J = 89.3 Hz), 111.81 (d, J = 3.0 Hz), 103.90 (d, J = 25.5 Hz), 100.22 (d, J = 21.1 Hz), 70.00 (d, J = 1.5 Hz), 37.94, 30.25, 22.14, 13.63; Major, ¹⁹F NMR (365 MHz, CDCl₃) δ : -53.41 (d, J = 1.7 Hz), -78.35, -104.68 (t, J = 8.4 Hz); Major, ³¹P NMR (162 MHz, CDCl₃) δ : 26.97 (d, J = 2.4 Hz); m/z HRMS (ESI + APCI) found [M-OTf]⁺ 667.1166, C₃₄H₂₉BrF₄N₂OP⁺ requires 667.1137.

(3-Fluoropyridin-4-yl)(4-methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (3g)

Prepared according to general procedure B, using 3-fluoropyridine (171 µL, 2.00 mmol), Tf₂O (336 µL, 2.00 mmol), 2-(diphenylphosphaneyl)-4-methylquinoline (720 mg, 2.20 mmol), DBU (300 µL, 2.00 mmol), and CH₂Cl₂ (20 mL). After purification procedure, the title compound was provided as a light brown crystalline solid (660 mg, 1.16 mmol, 58% yield). mp 65-66 °C IR v_{max}/cm⁻¹ (film): 3064, 1545, 1505, 997, 857, 688; ¹H NMR (400 MHz, CDCl₃) δ : 8.88-8.83 (2H, m), 8.19 (1H, d, J = 8.2 Hz), 8.14 (1H, d, J = 8.2 Hz), 7.95-7.78 (13H, m), 7.41 (1H, dt, J = 14.2, 5.1 Hz), 2.88 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 158.98 (d, J = 265.8 Hz), 149.37 (d, J = 11.4 Hz), 148.49 (d, J = 23.9 Hz), 148.15 (dd, J = 9.9, 6.4 Hz), 142.67 (d, J = 120.2 Hz), 139.85 (dd, J = 22.9, 3.8 Hz), 136.27 (d, J = 31.1 Hz), 134.67 (d, J = 10.6 Hz), 131.68, 130.92 (d, J = 13.4 Hz), 130.65 (d, J = 1.2 Hz), 130.54, 129.45 (d, J = 3.1 Hz), 128.86 (dd, J = 7.0, 1.7 Hz), 125.22 (d, J = 27.1 Hz), 124.61 (d, J = 1.4 Hz), 120.79 (q, J = 321.1 Hz), 116.43 (dd, J = 84.7, 13.9 Hz), 114.84 (d, J = 88.9 Hz), 19.19 (d, J = 1.6 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.25, -109.74 (d, J = 6.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ : 11.79; *m*/z HRMS (ESI + APCI) found [M-OTf]⁺ 423.1454, C₂₇H₂₁FN₂P⁺ requires 423.1426.

(4-(Ethoxycarbonyl)pyridin-2-yl)(4-ethoxyquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (3h)

Prepared according to general procedure B, using 4- picolyl acid ethyl ester (150 µL, 1.00 mmol), Tf₂O (168 µL, 1.00 mmol), 2-(diphenylphosphaneyl)-4-ethoxyquinoline (392 mg, 1.10 mmol), DBU (150 µL, 1.00 mmol), and CH₂Cl₂ (10 mL). After purification procedure, (concentrated CH₂Cl₂ solution of crude product was added dropwise to an excess of 50% Et₂O in hexanes instead of Et₂O) the title compound was provided as a light brown amorphous solid (400 mg, 0.61 mmol, 61% yield). IR v_{max} /cm⁻¹ (film): 3064, 2986, 1729, 1476, 942, 851, 557, 537; ¹H NMR (400 MHz, CDCl₃) δ : 9.19 (1H, d, *J* = 4.8 Hz), 8.48 (1H, d, *J* = 5.8 Hz), 8.35 (1H, d, *J* =

8.3 Hz), 8.31-8.25 (1H, m), 8.05 (1H, d, J = 8.5 Hz), 7.93-7.66 (12H, m), 7.18 (1H, d, J = 6.2 Hz), 4.40 (2H, q, J = 7.1 Hz), 4.22 (2H, q, J = 7.0 Hz), 1.51 (3H, t, J = 7.0 Hz), 1.35 (3H, t, J = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 163.46 (d, J = 14.2 Hz), 163.15 (d, J = 2.7 Hz), 153.32 (d, J = 20.0 Hz), 149.59 (d, J = 25.9 Hz), 145.87 (d, J = 120.4 Hz), 145.13 (d, J = 119.0 Hz), 139.52 (d, J = 10.4 Hz), 135.75 (d, J = 3.1 Hz), 134.91 (d, J = 9.9 Hz), 131.83, 131.26 (d, J = 24.2 Hz), 130.45 (d, J = 13.0 Hz), 129.31 (d, J = 18.0 Hz), 127.48 (d, J = 3.5 Hz), 122.66, 121.93 (d, J = 2.5 Hz), 120.78 (q, J = 321.0 Hz), 116.87 (d, J = 87.9 Hz), 106.06, 105.78, 65.83, 62.74, 14.04, 13.92; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.25; ³¹P NMR (162 MHz, CDCl₃) δ : 9.58; *m*/*z* HRMS (ESI + APCI) found [M-OTf]⁺ 507.1919, C₃₁H₂₈N₂O₃P⁺ requires 507.1832.

(7-Chloro-4-(3-fluorophenoxy)quinolin-2-yl)(4-methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (3i)

Prepared according to general procedure B, using 7-chloro-4-(3-fluorophenoxy)quinoline (244 mg, 0.89 mmol), Tf₂O (151 µL, 0.89 mmol), 2-(diphenylphosphaneyl)-4-methylquinoline (320 mg, 0.99 mmol), DBU (133 µL, 0.89 mmol), and CH₂Cl₂ (9 mL). After purification procedure, the title compound was provided as a brown amorphous solid (330 mg, 0.47 mmol, 53% vield). IR v_{max}/cm⁻¹ (film): 3067, 1607, 666, 605, 579, 544, 532; ¹H NMR (400 MHz, CDCl₃) δ: 8.41 (1H, d, J = 9.0 Hz), 8.16-8.14 (2H, m), 7.92-7.67 (15H, m), 7.54 (1H, d, J = 4.6 Hz), 7.31 (1H, q, J = 5.8 Hz), 7.10 (1H, d, J = 5.6 Hz), 6.98 (1H, dd, J = 8.2, 1.8 Hz), 6.92-6.84 (2H, m), 2.78 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 163.16 (d, J = 249.9 Hz), 162.90 (d, J = 249.9 Hz), 13.9 Hz), 153.49 (d, J = 10.4 Hz), 150.56 (d, J = 25.7 Hz), 148.76 (d, J = 10.6 Hz), 148.15 (d, J= 8.6 Hz), 147.67 (d, J = 132.3 Hz), 143.40 (d, J = 114.9 Hz), 138.65, 135.63 (d, J = 3.1 Hz), 134.76 (d, J = 9.8 Hz), 131.75 (d, J = 9.4 Hz), 131.56, 130.77, 130.66, 130.35 (d, J = 12.9 Hz), 128.87 (d, J = 3.0 Hz), 128.57 (d, J = 1.0 Hz), 128.56, 126.04 (d, J = 25.7 Hz), 124.47 (d, J = 1.3Hz), 123.78, 120.77 (q, J = 321.2 Hz), 119.87 (d, J = 2.5 Hz), 116.91 (d, J = 87.7 Hz), 117.03 (d, J = 3.5 Hz), 113.69 (d, J = 20.9 Hz), 109.23 (d, J = 27.4 Hz), 108.87 (d, J = 24.2 Hz), 19.14 (d, J = 1.5 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.19, -108.64 (q, J = 8.3 Hz); ³¹P NMR (162 MHz, CDCl₃) δ: 8.06; *m/z* HRMS (ESI + APCI) found [M-OTf]⁺ 599.1450, C₃₈H₂₇ClFN₂OP⁺ requires 599.1467.

(4-Methylquinolin-2-yl)diphenyl(2-(propylthio)pyrimidin-4-yl)phosphonium trifluoromethanesulfonate (3j)

Prepared according to general procedure B (except the stirring time after the addition of the heteroaryl phosphine was 45 minutes instead of 30 minutes) using 2-(propylthio)pyrimidine (154 mg, 1.00 mmol), Tf₂O (168 µL, 1.00 mmol), 2-(diphenylphosphaneyl)-4-methylquinoline (360 mg, 1.10 mmol), DBU (149, 1.00 mmol) and EtOAc (5 mL). After the purification procedure, the title compound was isolated as a brown solid (433 mg, 0.72 mmol, 72% yield). mp 52-54 °C; IR v_{max}/cm⁻¹ (film): 3064, 2963, 1576, 1544, 1526, 1439, 1259, 1143, 1029, 727; ¹H NMR (400 MHz, CDCl₃) δ: 8.91 (1H, dd, J = 7.6, 4.8 Hz), 8.21-8.12 (2H, m), 7.95-7.87 (3H, m), 7.87-7.80 (5H, m), 7.80-7.73 (4H, m), 7.70 (1H, dd, *J* = 6.0, 4.8 Hz), 7.65 (1H, d, *J* = 4.8 Hz), 2.93 (2H, t, J = 7.3 Hz), 2.83 (3H, s), 1.53 (2H, sext, J = 7.3 Hz), 0.84 (3H, t, J = 7.3 Hz); ¹³C NMR (100) MHz, CDCl₃) δ : 174.98 (d, J = 18.0 Hz), 159.91 (d, J = 7.3 Hz), 154.41 (d, J = 111.9 Hz), 148.87 (d, J = 10.7 Hz), 148.51 (d, J = 23.4 Hz), 142.36 (d, J = 117.1 Hz), 136.04 (d, J = 3.0Hz), 134.99 (d, J = 9.9 Hz), 131.72, 130.77-130.43 (3C, m), 129.12 (d, J = 3.0 Hz), 125.98 (d, J = 26.5 Hz), 124.51 (d, J = 1.2 Hz), 123.11 (d, J = 19.6 Hz), 120.74 (q, J = 321.1 Hz), 115.21 (d, J = 87.3 Hz), 33.05, 22.02, 19.18 (d, J = 1.5 Hz), 13.23; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.21; ³¹P (162 MHz, CDCl₃) δ : 9.49; m/z HRMS (ESI + APCI) found [M-OTf]⁺ 480.1673, C₂₉H₂₇N₃PS⁺ requires 480.1663.

(5,6-Dimethylpyrazin-2-yl)(4-ethoxyquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (3k)

Prepared according to general procedure B using 2,3-dimethylpyrazine (128 μ L, 1.20 mmol), Tf₂O (336 μ L, 1.20 mmol), 2-(diphenylphosphino)-4-ethoxyquinoline (472 mg, 1.32 mmol), DBU (180 μ L, 1.20 mmol) and CH₂Cl₂ (12 mL). After the purification procedure (concentrated CH₂Cl₂ solution of crude product was added dropwise to an excess of hexanes instead of Et₂O and placed at room temperature overnight), the title compound was isolated as a light brown amorphous powder (663 mg, 1.08 mmol, 90% yield). mp 145-148 °C; IR v_{max}/cm^{-1}

(film): 3066, 2989, 1571, 1551, 1507, 1438, 1410, 1385, 1354, 1316, 1260, 1222, 1192, 1145, 1108, 1029, 997, 771, 751, 728, 707; ¹H NMR (400 MHz, CDCl₃) δ : 8.67 (1H, s), 8.35 (1H, d, J = 8.4 Hz), 8.04 (1H, d, J = 8.5 Hz), 7.90-7.81 (7H, m), 7.77-7.70 (5H, m), 7.26 (1H, d, J = 6.1 Hz), 4.25 (2H, q, J = 7.0 Hz), 2.73 (3H, s), 2.69 (3H, s), 1.52 (3H, t, J = 7.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 163.27 (d, J = 14.0 Hz), 159.36 (d, J = 3.4 Hz), 156.13 (d, J = 15.5 Hz), 149.50 (d, J = 25.9 Hz), 147.83 (d, J = 23.3 Hz), 144.83 (d, J = 118.6 Hz), 136.09 (d, J = 83.7 Hz), 135.67 (d, J = 3.0 Hz), 134.74 (d, J = 9.9 Hz), 131.76, 130.37 (d, J = 12.9 Hz), 129.38, 129.16, 122.50, 121.80 (d, J = 2.4 Hz), 120.73 (q, J = 319.6 Hz), 116.49 (d, J = 87.7 Hz), 105.64 (d, J = 29.0 Hz), 65.66, 22.76, 22.42, 14.01; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.26; ³¹P NMR (162 MHz, CDCl₃) δ : 7.50; *m*/*z* HRMS (ESI + APCI) found [M-OTf]⁺ 464.1931, C₂₉H₂₇N₃OP⁺ requires 464.1892.

(2-((S)-(4-Chlorophenyl)((1-(ethoxycarbonyl)piperidin-4-yl)oxy)methyl)pyridin-4-yl)(3-(((R)-1-(3-fluoro-4-(trifluoromethyl)benzyl)pyrrolidin-2-yl)methoxy)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (3l)

Prepared according general procedure B. using (*R*)-3-((1-(3-fluoro-4to (trifluoromethyl)benzyl)pyrrolidin-2-yl)methoxy)pyridine (177 mg, 0.50 mmol), Tf₂O (85 µL, 0.50 mmol), ethyl (S)-4-((4-chlorophenyl)(4-(diphenylphosphaneyl)pyridin-2vl)methoxy)piperidine-1-carboxylate (307 mg, 0.55 mmol), DBU (75 uL, 0.89 mmol), and CH₂Cl₂ (5 mL). After the purification procedure (concentrated CH₂Cl₂ solution of crude product was added dropwise to an excess of 50% Et₂O in hexanes instead of Et₂O), the title compound was provided as a brown amorphous solid (370 mg, 0.35 mmol, 70% yield). IR v_{max}/cm^{-1} (film): 3061, 2950, 2873, 825, 560, 557, 535, 528; ¹H NMR (500 MHz, CDCl₃) δ : 8.90 (1H, t, J = 5.1Hz), 8.74 (1H, d, J = 6.4 Hz), 8.57 (1H, t, J = 4.4 Hz), 7.92-7.45 (13H, m), 7.36-7.27 (4H, m), 7.14-6.96 (3H, m), 5.72 (1H, s), 4.21-4.04 (3H, m), 3.89-3.78 (1H, m), 3.69-3.44 (4H, m), 3.32-3.05 (3H, m), 2.85-2.65 (1H, m), 2.24-1.94 (2H, br), 1.83-1.63 (3H, m), 1.48-1.35 (4H, m), 1.34-1.16 (4H, m); ¹³C NMR (125 MHz, CDCl₃) δ : 164.41 (d, J = 9.9 Hz), 159.67 (dq, J = 256.0, 2.4 Hz), 155.43, 155.18, 151.30 (d, J = 10.5 Hz), 144.50 (d, J = 11.4 Hz), 138.69, 136.28-136.10 (m), 134.25-134.02 (m, 2C), 132.57, 131.94 (dd, J = 14.6, 4.6 Hz), 131.03 (dd, J = 13.4, 7.7 Hz), 128.89, 128.86 (d, J = 15.3 Hz), 128.69 (d, J = 4.8 Hz), 128.59 (d, J = 85.2 Hz), 128.52 (d, J = 12.3 Hz), 128.52 (d, J70.8 Hz), 128.32, 127.31-127.08 (m), 125.56 (d, J = 8.6 Hz), 123.15 (d, J = 9.4 Hz), 122.51 (dq,

J = 271.8, 1.9 Hz), 120.63 (q, J = 320.7 Hz), 114.79 (dd, J = 81.0, 28.2 Hz), 113.05 (d, J = 88.0 Hz), 72.56, 61.37, 57.85, 54.02, 53.99, 40.82, 40.76, 31.46, 30.43, 29.67, 27.89, 22.63, 14.66; ¹⁹F NMR (365 MHz, CDCl₃) δ : -61.18 (d, J = 13.2 Hz), -78.25, -113.33-115.80 (m); ³¹P NMR (162 MHz, CDCl₃) δ : 21.01; m/z HRMS (ESI + APCI) found [M-OTf]⁺ 911.3094, C₅₀H₄₉ClF₄N₄O₄P⁺ requires 911.3116.

(S)-(2-((4-Chlorophenyl))((1-(ethoxycarbonyl)piperidin-4-yl)oxy)methyl)pyridin-4-yl)(3-(3-fluoro-5-(6-methylpyridin-2-yl)phenyl)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (3m)

Prepared according to general procedure B using 2-(3-fluoro-5-(pyridin-3-yl)phenyl)-6methylpyridine (132 mg, 0.50 mmol), Tf₂O (84 µL, 0.50 mmol), ethyl (S)-4-((4-chlorophenyl)(4-(diphenylphosphaneyl)pyridin-2-yl)methoxy)piperidine-1-carboxylate (308 mg, 0.55 mmol), DBU (75 µL, 0.50 mmol) and CH₂Cl₂ (5 mL). After the purification procedure, the title compound was isolated as a white solid (305 mg, 0.31 mmol, 63% yield). mp 103-109 °C; IR v_{max}/cm⁻¹ (film): 3063, 2928, 1687, 1438, 1261, 1224, 1149, 1030, 796; ¹H NMR (400 MHz, CDCl₃) δ : 9.00 (1H, app t, J = 4.7 Hz), 8.82 (1H, d, J = 7.0 Hz), 8.74 (1H, app t, J = 5.3 Hz), 7.81-7.72 (2H, m), 7.71-7.60 (9H, m), 7.58-7.47 (3H, m), 7.44 (1H, d, J = 9.8 Hz), 7.28 (1H, s), 7.29-7.19 (6H, m), 7.07 (1H, d, J = 7.6 Hz), 7.02 (1H, d, J = 7.7 Hz), 6.46 (1H, d, J = 8.3 Hz) 5.62 (1H, s), 4.09 (2H, q, J = 7.2 Hz), 3.62-3.44 (3H, m), 3.17-3.02 (2H, m), 2.44 (3H, s), 1.73-1.59 (2H, m), 1.48-1.33 (2H, m), 1.23 (3H, t, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 163.84 (d, J = 9.9 Hz), 162.21 (d, J = 249.4 Hz), 158.45, 155.36, 153.28 (d, J = 7.8 Hz), 152.76 (d, J = 2.2 Hz), 150.98-150.64 (2C, m), 141.63 (d, J = 7.8 Hz), 140.06 (d, J = 7.2 Hz), 138.47, 137.34, 136.68-136.51 (m), 136.01-135.82 (m), 134.63-134.36 (m), 133.90, 130.80 (d, J =13.3 Hz), 128.74 (d, J = 83.4 Hz), 128.72, 128.62 (d, J = 9.0 Hz), 128.43, 125.91 (d, J = 8.1 Hz), 124.96 (d, J = 83.9 Hz), 124.06, 123.52 (d, J = 9.0 Hz), 122.95, 120.73 (q, J = 321.2 Hz), 117.38, 116.4 (d, J = 23.3 Hz), 115.36 (d, J = 88.8 Hz), 115.12 (d, J = 88.8 Hz), 114.44 (d, J = 22.2 Hz), 79.76, 72.91, 61.24, 40.78, 40.70, 31.32, 30.27, 24.50, 14.63 ; ¹⁹F NMR (365 MHz, CDCl₃) δ : -110.66 (t, J = 9.4 Hz), -78.16; ³¹P (162 MHz, CDCl₃) δ : 20.63; m/z HRMS (ESI + APCI) found [M-OTf]⁺ 821.2852, C₄₉H₄₄ClFN₄O₃P⁺ requires 821.2824.

(4-(((2R,6S)-2,6-Dimethylmorpholino)methyl)quinolin-2-yl)(3-(3-fluoro-5-(6-
methylpyridin-2-yl)phenyl)pyridin-4-yl)diphenylphosphoniumtrifluoromethanesulfonate
(3n)

Prepared according to general procedure B using 2-(3-fluoro-5-(pyridin-3-yl)phenyl)-6methylpyridine (132 mg, 0.50 mmol), Tf₂O (84 µL, 0.50 mmol), (2R, 6S)-4-((2-(diphenylphosphaneyl)quinolin-4-yl)methyl)-2,6-dimethylmorpholine (242 mg, 0.55 mmol), DBU (75 µL, 0.50 mmol) and CH₂Cl₂ (5 mL). After the purification procedure, the title compound was isolated as an off white solid (317 mg, 0.37 mmol, 74% yield). mp 106-111 °C; IR v_{max}/cm⁻¹ (film): 3063, 2971, 2930, 2856, 1575, 1439, 1263, 1223, 1143, 1030, 728; ¹H NMR (400 MHz, CDCl₃) δ : 9.03 (1H, app t, J = 4.7 Hz), 8.75 (1H, d, J = 6.8 Hz), 8.12 (1H, d, J = 8.4Hz), 8.02-7.89 (6H, m), 7.88-7.75 (6H, m), 7.59 (1H, t, J = 7.7 Hz), 7.55-7.36 (4H, m), 7.05 (1H, d, J = 7.7 Hz), 6.93 (1H, s), 6.64 (1H, d, J = 7.8 Hz), 6.31 (1H, d, J = 8.2 Hz), 3.75 (2H, s), 3.43-3.21 (2H, m), 2.52-2.38 (5H, m), 1.83 (2H, t, J = 10.2 Hz), 1.07 (6H, d, J = 6.3 Hz); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta$: 162.04 (d, J = 249.4 Hz), 158.29, 152.53 (d, J = 7.4 Hz), 152.27 (d, J = 2.5Hz), 150.80 (d, J = 10.5 Hz), 148.33 (d, J = 23.0), 147.71 (br), 144.34 (d, J = 118.4 Hz), 141.49 (d, J = 8.0 Hz), 139.73 (d, J = 7.3 Hz), 137.38-137.20 (m), 137.12, 136.08 (d, J = 3.1 Hz), 135.06 (d, J = 9.8 Hz), 131.61, 130.76 (d, J = 12.9 Hz), 130.22 (2C, m), 128.95 (d, J = 9.7 Hz), 128.39 (d, J = 85.0 Hz), 127.11 (d, J = 3.4 Hz), 123.26, 123.04 (d, J = 2.5 Hz), 122.91, 122.44 (d, J = 28.4 Hz) 120.85 (q, J = 321.3 Hz), 116.58 (d, J = 86.4 Hz), 116.55, 116.00 (d, J = 23.4Hz), 113.76 (d, J = 22.6 Hz), 71.62, 59.29, 57.36, 24.58, 18.86; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.07, -111.47 (t, J = 10.2 Hz); ³¹P (162 MHz, CDCl₃) δ : 11.94; m/z HRMS (ESI + APCI) found [M-OTf]⁺ 703.2979, C₄₅H₄₁FN₄OP⁺ requires 703.3002.

(4-(((2S, 6R)-2,6-Dimethylmorpholino)methyl)quinolin-2-yl)(3-(((R)-1-(3-fluoro-4-(trifluoromethyl)benzyl)pyrrolidin-2-yl)methoxy)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (30)

Prepared according to general procedure Β. using (*R*)-3-((1-(3-fluoro-4-(trifluoromethyl)benzyl)pyrrolidin-2-yl)methoxy)pyridine (177 mg, 0.50 mmol), Tf₂O (85 µL, 0.50 mmol). 6S)-4-((2-(diphenylphosphaneyl)quinolin-4-yl)methyl)-2,6-(2R,dimethylmorpholine (242 mg, 0.55 mmol), DBU (75 µL, 0.89 mmol), and CH₂Cl₂ (5 mL). After the purification procedure (concentrated CH₂Cl₂ solution of crude product was added dropwise to an excess of 50% Et₂O in hexanes instead of Et₂O), the title compound was provided as a brown amorphous solid (310 mg, 0.33 mmol, 66% yield). IR v_{max}/cm⁻¹ (film): 3061, 3012, 2974, 2935, 2875, 2818, 1630, 1440, 909, 689, 665, 636, 603; ¹H NMR (400 MHz, CDCl₃) δ; 8.75 (1H, d, J = 6.6 Hz), 8.65-8.60 (1H, m), 8.23 (1H, dd, J = 7.9, 0.7 Hz), 8.15 (1H, d, J = 8.4 Hz),7.98-7.69 (13H, m), 7.34 (1H, t, J = 7.7 Hz), 7.12 (1H, dd, J = 19.6, 9.8 Hz), 6.85-6.69 (2H, m), 4.10-3.91 (4H, m), 3.53-3.40 (2H, m), 3.34 (1H, d, J = 14.2 Hz), 2.80 (1H, d, J = 13.8 Hz), 2.65-2.51 (3H, m), 2.07-1.87 (3H, m), 1.87-1.74 (1H, m), 1.69-1.54 (1H, m), 1.47-1.25 (3H, m), 1.11 (6H, app t, J = 5.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 159.46 (dq, $J = 257.36\ 257.4,\ 2.3$ Hz), 155.69, 148.76 (d, J = 23.1 Hz), 148.24, (d, J = 11.2 Hz), 144.40 (d, J = 10.2 Hz), 143.96 (d, J 120.6 Hz), 136.87 (m), 135.79 (m), 134.55-134.19 (m), 131.76, 130.66 (d, J = 13.2 Hz), 130.63, 129.17, 128.57, 128.27 (d, J = 73.9 Hz), 127.00-126.76 (m, 2C), 124.03, 123.86, 123.63 (d, J = 3.6 Hz), 122.37, 122.50 (dq, J = 273.6 Hz), 120.76 (q, J = 318.4 Hz), 116.78 (dd, J = 89.6, 3.1 Hz), 116.11 (dd, J = 91.4, 1.4 Hz), 114.57 (d, J = 86.2 Hz), 73.54, 71.64, 62.21, 59.64, 59.39 (d, J = 4.7 Hz), 58.10, 54.07, 27.83, 22.56, 19.96 (d, J = 3.2 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ : -61.13 (d, $J = 13.74 \ 13.7 \ Hz$), -78.14, -114.39- (-)115.04 (m); ³¹P NMR (162 MHz, CDCl₃) δ: 12.52; *m/z* HRMS (ESI + APCI) found [M-OTf]⁺ 793.3407, C₄₆H₄₆F₄N₄O₂P⁺ requires 793.3295.

(2-(1-(4-Chlorophenyl)-3-(dimethylamino)propyl)pyridin-4-yl)diphenyl(2-phenylpyridin-4-yl)phosphonium trifluoromethanesulfonate (3p)

Chlorphenamine (412.2 mg, 1.50 mmol) was dissolved in Et₂O (3 mL) and cooled to 0 °C. Trifluoromethanesulfonic acid (134 µL, 1.50 mmol) was added dropwise, the ice bath was removed and the solution was stirred for 10 minutes at room temperature. The solution was concentrated in vacuo and the resulting acid salt was subjected to general procedure B (except that after 4-(diphenylphosphino)-2-phenylpyridine was added, the reaction mixture was stirred for 30 min at -78 °C) using Tf₂O (252 µL, 1.50 mmol), 4-(diphenylphosphino)-2-phenylpyridine (560 mg, 1.65 mmol), DBU (450 µL, 3.00 mmol) and CH₂Cl₂ (15 mL). After the purification procedure, the title compound was isolated as a white amorphous powder (714 mg, 0.95 mmol, 63% yield). mp 130-133 °C; IR v_{max}/cm⁻¹ (film): 3060, 1574, 1489, 1468, 1440, 1378, 1259, 1223, 1150, 1124, 1109, 1028, 729, 636; ¹H NMR (400 MHz, CDCl₃) δ : 9.05 (1H, d, J = 5.2Hz), 9.00 (1H, t, J = 5.2 Hz), 7.95-7.87 (4H, m), 7.80-7.77 (5H, m), 7.70-7.65 (4H, m), 7.52-7.45 (5H, m), 7.39 (1H, dd, J = 13.0, 4.8 Hz), 7.27 (2H, d, J = 8.3 Hz), 7.17 (2H, d, J = 8.3 Hz), 4.46 $(1H, t, J = 7.4 \text{ Hz}), 3.07-2.93 (2H, m), 2.83-2.76 (1H, m), 2.69 (6H, s), 2.44-2.35 (1H, m); {}^{13}C$ NMR (100 MHz, CDCl₃) δ : 164.22 (d, J = 9.6 Hz), 159.31 (d, J = 10.3 Hz), 151.77 (d, J = 10.9Hz), 151.36 (d, J = 10.5 Hz), 139.50, 136.68 (d, J = 1.6 Hz), 136.48 (d, J = 2.5 Hz), 134.56 (d, J = 10.6 Hz), 133.05, 131.13, 130.99, 130.53, 129.42, 129.06, 128.98, 127.58 (d, J = 83.9 Hz), 127.27 (d, J = 83.6 Hz), 127.13, 125.31 (d, J = 8.3 Hz), 125.09 (d, J = 8.2 Hz), 123.20 (d, J = 8.8Hz), 120.40 (q, J = 318.7 Hz), 114.01 (d, J = 88.9 Hz), 56.27, 49.15, 43.36, 29.65; ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.30; ³¹P NMR (162 MHz, CDCl₃) δ: 22.06; *m/z* HRMS (ESI + APCI) found [M-OTf]⁺ 612.2328, C₃₉H₃₆ClN₃P⁺ requires 612.2335.

(2-(4-Bromophenyl)pyridin-4-yl)(8-chloro-11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-6,11dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (3q)

Prepared according to general procedure B using loratadine (383 mg, 1.00 mmol), Tf₂O (168 µL, 1.00 mmol), 2-(4-Bromophenyl)-4-(diphenylphosphaneyl)pyridine (460 mg, 1.10 mmol), DBU (149 µL, 1.00 mmol) and CH₂Cl₂ (10 mL). After the purification procedure, the title compound was isolated as an off white solid (770 mg, 0.81 mmol, 81% yield). mp 159-164 °C; IR v_{max}/cm⁻¹ (film): 3055, 2981, 1687, 1438, 1262, 1223, 1109, 1030, 730; ¹H NMR (400 MHz, CDCl₃) δ : 9.01 (1H, app t, J = 5.1 Hz), 8.73 (1H, app t, J = 4.7 Hz), 8.05-7.62 (13H, m), 7.60-7.40 (3H, m) 7.16 (1H, dd, J = 7.7, 5.1 Hz), 7.06 (2H, s), 6.63 (1H, s), 4.06 (2H, q, J = 6.8Hz), 3.80-3.57 (2H, m), 3.40-3.16 (3H, m) 2.74 (1H, d, J = 17.4 Hz), 2.63-2.09 (5H, m), 1.60-1.39 (1H, m), 1.20 (3H, t, J = 7.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 163.34 (d, J = 8.5 Hz), 158.14 (d, J = 10.5 Hz), 155.15, 151.83 (d, J = 10.9 Hz), 149.26 (d, J = 11.6 Hz), 139.30, 136.53, 136.46-136.12 (2C, m), 135.45 (d, J = 1.4 Hz), 134.26 (d, J = 10.6 Hz), 133.83, 133.37, 132.17-131.89 (2C, m), 131.41, 131.20 (d, J = 13.2 Hz), 129.64, 128.71, 128.64 (d, J = 83.6 Hz), 127.54 (d, J = 10.3 Hz), 126.28, 125.35 (d, J = 8.3 Hz), 125.14 (d, J = 82.3 Hz), 122.94 (d, J = 8.9 Hz), 120.48 (q, J = 321.4 Hz), 114.84 (d, J = 88.2 Hz), 114.39 (d, J = 88.1 Hz), 61.17, 44.48, 44.34, 30.52, 30.43-30.10 (2C, m), 29.30, 14.45; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.15; ³¹P (162 MHz, CDCl₃) δ : 20.87; m/z HRMS (ESI + APCI) found [M-OTf]⁺ 798.1693, C₄₅H₃₉BrClN₃O₂P⁺ requires 798.1652.

(2-(2-Chloro-5-(2-chloro-4-(methylsulfonyl)benzamido)phenyl)pyridin-4-yl)(4-methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (3r)

Prepared according to general procedure B (except the stirring time after the addition of Tf_2O was 2 hours instead of 30 minutes, the stirring time after the addition of the phosphine was 1.5 hours instead of 30 minutes, and after the addition of DBU the reaction was allowed to slowly warm from -78 °C to 0 °C over 3 hours instead of warming from -78 °C to room temperature over approximately 15-30 minutes) using vismodegib (506 mg, 1.20 mmol), Tf₂O (200 µL, 1.20 mmol), 2-(diphenylphosphaneyl)-4-methylquinoline (432 mg, 1.32 mmol), DBU (180 µL, 1.20 mmol) and CH₂Cl₂ (30 mL). After the purification procedure (concentrated CH₂Cl₂ solution was added dropwise to an excess of Et₂O at room temperature. The resulting suspension was immediately filtered on a frit and the solid was washed with room temperature Et₂O. The solid was dissolved in approximately 5 mL CH_2Cl_2 and this process was repeated (4x) before the solid was dried *in vacuo* to provide the pure phosphonium salt), the title compound was isolated as a pale yellow solid (592 mg, 0.66 mmol, 55% yield). mp 119-125 °C; IR v_{max}/cm⁻ ¹ (film): 3255, 3062, 1681, 1575, 1539, 1439, 1364, 1315, 1274, 1246, 1152, 1029, 726; ¹H NMR (400 MHz, CDCl₃) δ : 9.90 (1H, s), 8.98 (1H, app t, J = 5.1 Hz), 8.24-8.09 (3H, m), 8.01-7.59 (18H, m), 7.56 (1H, d, J = 4.8 Hz), 7.31-7.23 (1H, m), 2.93 (3H, s), 2.77 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 164.27, 157.96 (d, J = 10.9 Hz), 150.87 (d, J = 10.6 Hz), 148.76 (d, J =10.9 Hz), 148.46 (d, J = 23.0 Hz), 142.65 (d, J = 118.3), 142.04, 140.23, 137.66, 136.79 (d, J = 1.6 Hz), 136.05 (d, J = 2.7 Hz), 134.58 (d, J = 10.3 Hz), 132.23, 131.83, 130.92-130.42 (2C, m), 130.29, 129.85, 128.77 (d, J = 3.1 Hz), 128.46 (d, J = 83.7 Hz), 128.59-128.24 (3C, m), 126.35, 125.82 (d, J = 7.6 Hz), 125.59, 125.10 (d, J = 27.0 Hz), 124.31, 123.07, 122.38, 120.24 (d, J = 12.5320.9 Hz), 115.31 (d, J = 87.8 Hz), 44.14, 19.05 (d, J = 1.4 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.30; ³¹P (162 MHz, CDCl₃) δ: 13.30; *m/z* HRMS (ESI + APCI) found [M-OTf]⁺ 746.1185, C₄₁H₃₁Cl₂N₃O₃PS⁺ requires 746.1201.

(5,7-Dichloro-4-(4-fluorophenoxy)quinolin-2-yl)(4-ethoxyquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (3s)

Prepared according to general procedure B, using 5,7-dichloro-4-(4-fluorophenoxy)quinoline

(308 mg, 1.00 mmol), Tf₂O (168 µL, 1.00 mmol), 2-(diphenylphosphaneyl)-4ethoxyquinoline (392 mg, 1.10 mmol), DBU (150 µL, 1.00 mmol), and EtOAc (10 mL). After the purification procedure (concentrated CH₂Cl₂ solution of crude product was added dropwise to an excess of 50% Et₂O in hexanes instead of Et₂O), the title compound was provided as a brown amorphous solid (400 mg, 0.49 mmol, 49% yield). IR v_{max}/cm⁻¹ (film): 3070, 2989, 2248, 855, 834, 646, 594, 572; ¹H NMR (400 MHz, CDCl₃) δ : 8.31 (1H, d, J = 8.1 Hz), 8.02 (1H, d, J = 8.1 Hz) = 2.1 Hz), 7.87-7.64 (14H, m), 7.16-7.04 (3H, m), 7.00 (1H, d, J = 6.4 Hz), 6.96-6.88 (2H, m), 4.14 (2H, q, J = 7.0 Hz), 1.47 (3H, t, J = 7.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 164.34 (d, J =12.9 Hz), 153.30 (d, J = 14.0 Hz), 160.27 (d, J = 246.1 Hz), 151.68 (d, J = 25.5 Hz), 149.24 (d, J = 25.5 Hz), 149.25 (d, J = 25.5 Hz), 149.24 (d, J = 25.5 Hz), 149.25 (d = 25.4 Hz), 148.30 (d, J = 117.4 Hz), 148.14 (d, J = 2.8 Hz), 144.56 (d, J = 116.9 Hz), 136.97, 135.54 (d, J = 2.9 Hz), 134.68 (d, J = 10.0 Hz), 132.24, 131.67, 131.09 (d, J = 1.2 Hz), 130.27 (d, J = 13.0 Hz), 129.13, 127.99, 122.77 (d, J = 8.6 Hz), 122.45, 121.56 (d, J = 2.3 Hz), 120.64 (q, J = 321.3 Hz), 118.17 (d, J = 2.3 Hz), 117.21, 116.96, 116.51 (d, J = 87.5 Hz), 110.93 (d, J = 26.9 Hz), 105.92 (d, J = 29.0 Hz), 65.51, 13.93; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.19, -114.90- (-)115.01 (m); ³¹P NMR (162 MHz, CDCl₃) δ : 8.41; *m/z* HRMS (ESI + APCI) found [M-OTf]⁺ 663.1166, C₃₈H₂₇Cl₂FN₂O₂P⁺ requires 663.1199.

(5-Chloro-6'-methyl-3-(4-(methylsulfonyl)phenyl)-[2,3'-bipyridin]-4'-yl)(4-methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (3t)

Prepared according to general procedure B except with NaOAc added with phosphine, using 5-chloro-6'-methyl-3-(4-(methylsulfonyl)phenyl)-2,3'-bipyridine (538 mg, 1.50 mmol), Tf₂O (255 µL, 1.50 mmol), 2-(diphenylphosphaneyl)-4-methylquinoline (540 mg, 1.65 mmol), DBU (225 µL, 1.50 mmol), NaOAc (123 mg, 1.50 mmol) and CH₂Cl₂ (15 mL). After the purification procedure (concentrated CH₂Cl₂ solution was added dropwise to an excess of Et₂O at room temperature. The resulting suspension was immediately filtered on a frit and the solid was washed with room temperature Et₂O. The solid was dissolved in approximately 5 mL CH₂Cl₂ and this process was repeated (3x) before the solid was dried in vacuo to provide the pure phosphonium salt), the title compound was provided as a yellow crystalline solid (840 mg, 1.04 mmol, 69% yield). mp 165-170 °C; IR v_{max}/cm^{-1} (film): 3060, 1576, 1312, 770, 721, 547; ¹H NMR (400 MHz, CDCl₃) δ : 8.24 (1H, d, J = 7.0 Hz), 8.12-7.93 (8H, m), 7.87-7.67 (9H, m), 7.62-7.55 (3H, m), 7.30-7.23 (2H, m), 3.17 (3H, s), 2.74 (3H, s), 2.60 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ: 160.87 (d, J = 11.1 Hz), 152.08 (d, J = 7.2 Hz), 148.24 (d, J = 11.1 Hz), 147.98 (d, J = 2.1 Hz), 147.32 (d, J = 24.0 Hz), 147.15 (d, J = 125.9 Hz), 146.15, 141.55, 141.15, 138.54, 135.30, 135.29, 135.13 (d, J = 3.0 Hz), 134.85 (d, J = 9.4 Hz), 133.39 (d, J = 3.2 Hz), 131.95, 131.71, 130.71 (d, J = 10.1 Hz), 130.23, 130.07 (d, J = 6.3 Hz), 129.74 (d, J = 1.3 Hz), 128.92 (d, J = 87.0 Hz), 128.36, 128.12 (d, J = 3.1 Hz), 124.45, 123.53 (d, J = 26.9 Hz), 120.83 (q, J = 321.2 Hz), 119.37 (d, J = 88.5 Hz), 44.14, 24.62, 18.84 (d, J = 1.6 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.15; ³¹P NMR (162 MHz, CDCl₃) δ: 16.31; *m/z* HRMS (ESI + APCI) found [M-OTf]⁺ 684.1666 C₄₀H₃₂ClN₃O₂PS⁺ requires 684.1641.
(3-(2-((2-Methyl-5-(4-((4-methylpiperazin-1yl)methyl)benzamido)phenyl)amino)pyrimidin-4-yl)pyridin-4-yl)(4-methylquinolin-2yl)diphenylphosphonium trifluoromethanesulfonate (3u)

Prepared according to general procedure B (except that the stirring time after addition of Tf₂O was 2 hours instead of 30 minutes, the stirring time after addition of 2-(diphenylphosphino)-4-methylquinoline was 1.5 hours instead of 30 minutes, and after the addition of DBU the reaction was allowed to slowly warm from -78 °C to 0 °C over 3 hours instead of warming from -78 °C to room temperature over approximately 15-30 minutes) using (15,25,45,5R)-2-((R)-(benzyloxy)(quinolin-4-yl)methyl)-5-vinylquinuclidine (592 mg, 1.20 mmol), Tf₂O (200 µL, 1.20 mmol), 2-(diphenylphosphino)-4-methylquinoline (432 mg, 1.32 mmol), DBU (180 µL, 1.20 mmol) and CH₂Cl₂ (30 mL). After the purification procedure (concentrated CH₂Cl₂ solution was added dropwise to an excess of Et₂O at room temperature. The resulting suspension was immediately filtered on a frit and the solid was washed with room temperature Et₂O. The solid was dissolved in approximately 5 mL CH₂Cl₂ and this process was repeated (3x) before the solid was dried in vacuo to provide the pure phosphonium salt), the title compound was isolated as a yellow amorphous powder (710 mg, 0.73 mmol, 61% yield). mp 155-158 °C; IR v_{max}/cm⁻¹ (film): 3316, 3056, 2795, 1662, 1568, 1527, 1505, 1474, 1450, 1406, 1254, 1222, 1149, 1104, 1028, 857, 815, 752, 726, 689; ¹H NMR (400 MHz, CDCl₃) δ: 9.52 (1H, d, J = 6.4 Hz), 9.04 (1H, dd, J = 4.8, 4.4 Hz), 8.53 (1H, s), 8.23 (1H, d, J = 5.1 Hz),8.01–7.99 (1H, m), 7.87-7.59 (15H, m), 7.52 (1H, d, J = 4.8 Hz), 7.45 (1H, dd, J = 4.3, 2.0 Hz), 7.39 (2H, d, J = 8.2 Hz), 7.28 (1H, dd, J = 15.7, 5.1 Hz), 7.22 (1H, d, J = 5.2 Hz), 7.06 (1H, d, J = 1.9 Hz, 6.92 (1H, d, J = 8.5 Hz), 5.51 (1H, s), 3.54 (2H, s), 2.77-2.51 (14H, m), 1.50 (3H, s); ¹³C NMR (100 MHz, CD₃CN) δ: 166.21, 161.17, 159.55 (d, J = 1.1 Hz), 159.01, 154.33 (d, J =1.1 Hz), 152.10 (d, J = 6.3 Hz), 149.77 (d, J = 11.3 Hz), 149.43, 148.63, 148.38, 148.10, 142.66, 137.94, 136.82, 136.06 (d, J = 2.1 Hz), 135.71 (d, J = 9.3 Hz), 135.33 (d, J = 85.6 Hz), 132.86 (d, J = 9.8 Hz), 132.23, 131.02 (d, J = 12.7 Hz), 130.44 (d, J = 4.4 Hz), 129.85, 129.45 (d, J = 3.0 Hz), 128.45, 126.72, 126.06 (d, J = 84.5 Hz), 125.56 (d, J = 1.0 Hz), 123.30, 123.04, 122.31 (d, J = 90.6 Hz), 122.01 (q, J = 319.1 Hz), 117.99, 115.59, 110.10, 62.06, 55.02, 51.51, 44.62, 18.95 (d, J = 1.6 Hz), 17.29; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.13; ³¹P NMR (162 MHz, CDCl₃) δ : 18.51; *m/z* HRMS (ESI + APCI) found [M-OTf]⁺ 819.3695, C₅₁H₄₈N₈OP⁺ requires 819.3689.

Additional Examples Characterization

Diphenyl (2- (thiophen-3-yl) pyridin-4-yl) (3- (trifluoromethyl) pyridin-4-yl) phosphonium trifluoromethane sulfonate

Prepared according to general procedure B using 3-(trifluoromethyl)pyridine (144 µL, 1.25 mmol), Tf₂O (210 µL, 1.25 mmol), 4-(diphenylphosphaneyl)-2-(thiophen-3-yl)pyridine (475 mg, 1.375 mmol), DBU (187 µL, 1.25 mmol) and CH₂Cl₂ (12.5 mL). After the purification procedure, the title compound was isolated as an off white solid (633 mg, 0.99 mmol, 79% yield). mp 92-97 °C; IR v_{max}/cm⁻¹ (film): 3094, 1575, 1439, 1323, 1258, 1223, 1140, 1118, 1029, 723; ¹H NMR (400 MHz, CDCl₃) δ : 9.26 (1H, d, *J* = 6.4 Hz), 9.19 (1H, br s), 8.96 (1H, t, *J* = 5.5 Hz), 8.08 (1H, dd, *J* = 3.1, 1.3 Hz), 7.96-7.87 (3H, m), 7.84-7.68 (8H, m), 7.64-7.55 (2H, m), 7.46 (1H, ddd, *J* = 13.4, 5.1, 1.5 Hz), 7.36 (1H, dd, *J* = 5.1, 3.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 156.24 (d, *J* = 10.2 Hz), 155.33 (d, *J* = 10.8 Hz), 151.58 (d, *J* = 10.2 Hz), 150.37-150.10 (m), 139.67 (d, *J* = 1.9 Hz), 136.46 (d, *J* = 3.0 Hz), 134.75 (d, *J* = 10.7 Hz), 131.58 (d, *J* = 8.7 Hz), 131.00 (d, *J* = 13.7 Hz), 128.34 (d, *J* = 85.1 Hz), 127.14, 126.91, 126.85 (qd, *J* = 33.0, 3.8 Hz), 126.09, 124.35 (d, *J* = 321.4 Hz), 114.77 (d, *J* = 89.9 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.30, -53.70 (d, *J* = 2.6 Hz); ³¹P (162 MHz, CDCl₃) δ : 26.91; *m*/z HRMS (ESI + APCI) found [M-OTf]⁺ 491.1888, C₂₇H₁₉F₃N₂PS⁺ requires 491.0959.

Diphenyl(2-phenylpyridin-4-yl)(pyridin-2-yl)phosphonium trifluoromethanesulfonate

Prepared according to general procedure B (except that the reaction was warmed to -30 °C prior to the addition of the heteroaryl phosphine instead -50 °C) using 2-phenylpyridine (1.29 mL, 9.0 mmol), Tf₂O (1.5 mL, 9.00 mmol), 2-(diphenylphosphaneyl)pyridine (2.61 g, 9.90 mmol), DBU (1.35 mL, 9.00 mmol) and CH₂Cl₂ (90 mL). After the purification procedure, the title compound was isolated as a white solid (4.59 g, 8.11 mmol, 90% yield). mp 110-114 °C; IR v_{max} /cm⁻¹ (film): 3064, 1572, 1439, 1378, 1263, 1223, 1149, 1110, 1030, 728, 689, 637; ¹H NMR (400 MHz, CDCl₃) δ : 9.06-8.97 (2H, m), 8.23-8.15 (1H, m), 8.01 (1H, d, *J* = 13.9 Hz), 7.97-7.66

(14 H, m), 7.56 (1H, dd, J = 12.8 Hz, 5.1 Hz), 7.50-7.39 (3H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 158.54 (d, J = 10.2 Hz), 152.37 (d, J = 19.8 Hz), 150.97 (d, J = 10.8 Hz), 142.67 (d, J = 120.96 Hz), 138.57 (d, J = 10.8 Hz), 136.64 (d, J = 1.5 Hz), 135.90 (d, J = 2.9 Hz), 134.27 (d, J = 10.3 Hz), 132.10 (d, J = 25.1 Hz), 130.55 (d, J = 13.1 Hz), 129.95, 128.81 (d, J = 84.2 Hz), 128.67 (2C), 126.74, 125.24 (d, J = 7.9 Hz), 123.39 (d, J = 8.2 Hz), 120.43 (q, J = 321.3 Hz), 114.76 (d, J = 88.6 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.16; ³¹P (162 MHz, CDCl₃) δ : 13.94; m/z HRMS (ESI + APCI) found [M-OTf]⁺ 417.1545, C₂₈H₂₂N₂P⁺ requires 417.1521.

(2-Butyl-3-(ethoxy carbonyl) pyridin-4-yl) (4-methyl quinolin-2-yl) diphenyl phosphonium trifluoromethane sulfonate

Prepared according to general procedure B (except that after 2-(diphenylphosphino)-4methylquinoline was added, the reaction mixture was stirred for 30 min at -30 °C) using ethyl 2butylnicotinate (248.8 mg, 1.20 mmol), Tf₂O (336 µL, 1.20 mmol), 2-(diphenylphosphino)-4methylquinoline (432 mg, 1.32 mmol), DBU (180 µL, 1.20 mmol) and CH₂Cl₂ (12 mL). After the purification procedure, the title compound was isolated as a white amorphous powder (505 mg, 0.74 mmol, 62% yield). mp 135-138 °C; IR v_{max}/cm⁻¹ (film): 3062, 2958, 2871, 1703, 1577, 1547, 1504, 1438, 1367, 1259, 1223, 1149, 1100, 1030, 998, 912, 857, 753, 724; ¹H NMR (400 MHz, CDCl₃) δ: 8.98 (1H, t, J = 4.7 Hz), 8.17 (1H, d, J = 8.4 Hz), 8.13 (1H, d, J = 8.4 Hz), 7.92-7.71 (13H, m), 7.20 (1H, dd, J = 15.2, 5.0 Hz), 3.33 (2H, q, J = 7.1 Hz), 3.09 (2H, t, J = 7.8 Hz), 2.85 (3H, s), 1.82-1.75 (2H, m), 1.42 (2H, sext, J = 7.4 Hz), 0.95 (3H, t, J = 7.3 Hz), 0.78 (3H, t, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 166.54 (d, J = 3.2 Hz), 163.85 (d, J = 6.1 Hz), 152.74 (d, J = 11.6 Hz), 148.51 (d, J = 11.1 Hz), 147.85, 147.61, 145.86, 144.63, 135.53 (d, J = 3.0 Hz), 134.61 (d, J = 9.8 Hz), 130.64 (d, J = 98.2 Hz), 130.38 (d, J = 12.9 Hz), 129.24 (d, J 83.9 Hz), 129.04 (d, J = 4.1 Hz), 128.68 (d, J = 3.1 Hz), 127.82 (d, J = 9.4 Hz), 124.52 (d, J = 1.3 Hz), 124.26, 120.81 (q, J = 319.8 Hz), 117.58 (d, J = 87.7 Hz), 62.83, 37.33 (d, J = 1.4 Hz), 31.99, 22.66, 19.14 (d, J = 1.5 Hz), 13.76, 13.01; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.15; ³¹P NMR (162 MHz, CDCl₃) δ : 19.61; *m*/z HRMS (ESI + APCI) found [M-OTf]⁺ 533.2438, C₃₄H₃₄N₂O₂P⁺ requires 533.2358.

(S) - (3 - (1 - Methyl pyrrolidin - 2 - yl) pyridin - 4 - yl) diphenyl (2 - phenyl pyridin - 4 - yl) phosphonium trifluoromethanesul fon ate

Prepared according to general procedure B (except that after 4-(diphenylphosphino)-2phenylpyridine was added, the reaction mixture was stirred for 30 min at -78 °C) using (-)nicotine (193 µL, 1.20 mmol), Tf₂O (336 µL, 1.20 mmol), 4-(diphenylphosphino)-2phenylpyridine (448 mg, 1.32 mmol), DBU (180 µL, 1.20 mmol) and CH₂Cl₂ (12 mL). After the purification procedure, the title compound was isolated as a yellow amorphous powder (751 mg, 1.06 mmol, 88% yield). mp 169-173 °C; IR v_{max}/cm⁻¹ (film): 3060, 2944, 2786, 1571, 1536, 1484, 1467, 1441, 1399, 1377, 1258, 1223, 1150, 1107, 1029, 909, 775, 723, 690; ¹H NMR (400 MHz, CDCl₃) δ : 9.36 (1H, d, J = 7.2 Hz), 9.09 (1H, t, J = 5.2 Hz), 8.83 (1H, d, J = 4.8 Hz), 7.95-7.80 (13H, m), 7.65 (1H, ddd, J = 12.9, 5.0, 1.2 Hz), 7.47-7.45 (3H, m), 7.25 (1H, dd, J = 15.8, 5.1 Hz), 3.05 (1H, t, J = 7.2 Hz), 2.95 (1H, t, J = 8.1 Hz), 2.00–1.93 (1H, m), 1.81–1.69 (4H, m), 1.46-1.34 (2H, m), 1.05-0.96 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 159.19 (d, J = 10.2 Hz), 152.92 (d, J = 8.1 Hz), 151.98 (d, J = 10.8 Hz), 150.20 (d, J = 10.7 Hz), 144.01 (d, J = 6.7 Hz), 136.61 (d, J = 1.7 Hz), 136.38 (t, J = 3.6 Hz), 134.41 (dd, J = 0.8, 10.6 Hz), 131.27 (dd, J = 2.4, 13.1 Hz), 130.51, 129.18 (d, J = 83.1 Hz), 129.07, 127.84 (d, J = 10.0 Hz), 127.07, 125.33 (d, J= 8.0 Hz), 124.54 (d, J = 81.4 Hz), 123.03 (d, J = 8.6 Hz), 120.70 (q, J = 319.5 Hz), 115.12 (dd, J = 19.9, 88.0 Hz), 66.11 (d, J = 5.3 Hz), 55.82, 39.26, 35.25, 22.84; ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.13; ³¹P NMR (162 MHz, CDCl₃) δ: 20.39; *m/z* HRMS (ESI + APCI) found [M-OTf]⁺ 500.2265, C₃₃H₃₁N₃P⁺ requires 500.2256.

(4-Methylquinolin-2-yl)(2-((1-(4-phenoxyphenoxy)propan-2-yl)oxy)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate

Prepared according to general procedure B (except that after 2-(diphenylphosphino)-4methylquinoline was added, the reaction mixture was stirred for 30 min at -78 °C) using pyriproxyfen (424 mg, 1.32 mmol), Tf₂O (222 µL, 1.32 mmol), 2-(diphenylphosphino)-4methylquinoline (475 mg, 1.45 mmol), DBU (198 µL, 1.32 mmol) and CH₂Cl₂ (13 mL). After the purification procedure, the title compound was isolated as a white amorphous powder (856 mg, 1.07 mmol, 81% yield). mp 75–78 °C; IR v_{max}/cm^{-1} (film): 3063, 2983, 1585, 1541, 1503, 1488, 1438, 1399, 1340, 1311, 1260, 1218, 1150, 1108, 1076, 1029, 997, 988, 910, 872, 857, 845, 754, 725; ¹H NMR (400 MHz, CDCl₃) δ : 8.55 (1H, t, J = 5.4 Hz), 8.19 (2H, dd, J = 7.6, 2.0 Hz), 7.94-7.89 (3H, m), 7.86-7.74 (9H, m), 7.65 (1H, d, J = 4.4 Hz), 7.32-7.26 (3H, m), 7.05-6.87 (8H, m), 5.69 (1H, sext, J = 5.4 Hz), 4.19-4.10 (2H, m), 2.85 (3H, s), 1.51 (3H, d, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 163.54 (d, J = 15.7 Hz), 158.11, 154.71, 150.25, 149.36 (d, J = 12.1 Hz), 148.98 (d, J = 10.8 Hz), 148.50 (d, J = 22.8 Hz), 143.42 (d, J = 117.2 Hz), 136.07 (d, J = 2.9 Hz), 134.63 (d, J = 10.2 Hz), 131.76, 130.80 (d, J = 83.2 Hz), 130.76 (d, J = 12.9 Hz), 130.57, 129.46, 128.93 (d, J = 3.0 Hz), 125.45, 125.18, 124.47 (d, J = 1.2 Hz), 122.39, 120.78 (q, J = 319.6 Hz), 71.33, 70.51, 19.14 (d, J = 1.4 Hz), 16.42; ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.30; ³¹P NMR (162 MHz, CDCl₃) δ : 13.27; *m/z* HRMS (ESI + APCI) found [M-OTf]⁺ 647.2502, C₄₂H₃₆N₂O₃P⁺ requires 647.2464.

(4-((1*R*)-(Benzyloxy)((1*R*,4*R*)-5-vinylquinuclidin-2-yl)methyl)quinolin-2-yl)(4-methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate

Prepared according to general procedure B (except that the stirring time after addition of 2-(diphenylphosphino)-4-methylquinoline was 1 hour instead of 30 minutes) using (1S, 2S, 4S, 5R)-2-((R)-(benzyloxy)(quinolin-4-yl)methyl)-5-vinylquinuclidine (769 mg, 2.00 mmol), Tf₂O (336 μL, 2.00 mmol), 2-(diphenylphosphino)-4-methylquinoline (720 mg, 2.20 mmol), DBU (300 μL, 2.00 mmol) and CH₂Cl₂ (20 mL). After the purification procedure (concentrated CH₂Cl₂ solution was added dropwise to an excess of chilled Et₂O (0 °C). The mixture was then placed in a -20°C refrigerator for approximately 1 hour. The resulting suspension was filtered on a frit and the solid was washed with chilled Et₂O (0 °C). The solid was redissolved in approximately 10 mL of CH_2Cl_2 and was precipitated a second time via dropwise addition to an excess of chilled Et_2O (0) °C). The resulting suspension was filtered on a frit, the solid washed with chilled Et₂O (0 °C) and dried in vacuo to provide the pure phosphonium salt), the title compound was isolated as a white amorphous powder (671 mg, 0.78 mmol, 39% yield). mp 178-181 °C; IR v_{max}/cm⁻¹ (film): 3062, 2939, 2323, 1576, 1505, 1438, 1261, 1222, 1148, 1110, 1029, 997, 859, 754, 727, 636; ¹H NMR (400 MHz, CDCl₃) δ: 8.82 (1H, d, J = 7.4 Hz), 8.23 (1H, d, J = 9.4 Hz), 8.16-8.10 (2H, m), 7.94-7.26 (16H, m), 7.21-7.11 (3H, m), 6.98 (2H, d, J = 7.1 Hz), 6.45 (1H, br s), 5.75-5.67 (1H, m), 5.05-5.00 (2H, m), 4.65 (1H, d, J = 11.1 Hz), 4.36 (1H, d, J = 11.1 Hz), 3.81 (1H, br s), 3.54(1H, br s), 3.42 (1H, dd, J = 12.3, 11.5 Hz), 3.12-3.05 (2H, m), 2.80 (3H, s), 2.70-2.64 (1H, m),

2.09-1.64 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 149.02 (d, J = 22.5 Hz), 148.48 (d, J = 10.4 Hz), 148.28 (d, J = 23.0 Hz), 145.52 (d, J = 10.2 Hz), 145.35, 144.49, 143.76 (d, J = 83.9 Hz), 137.21, 135.91, 135.57 (t, J = 3.7 Hz), 134.97 (d, J = 9.7 Hz), 134.79 (d, J = 9.7 Hz), 131.91, 131.45, 131.14, 130.29 (d, J = 12.8 Hz), 130.23 (d, J = 15.0 Hz), 128.88 (d, J = 3.0 Hz), 128.42, 128.01, 127.17, 126.37 (d, J = 2.9 Hz), 125.95 (d, J = 25.5 Hz), 124.47, 124.04, 120.51 (q, J = 319.1 Hz), 117.05 (d, J = 86.7 Hz), 117.03, 116.63 (d, J = 86.1 Hz), 74.86, 71.76, 60.05, 54.53, 43.86, 36.75, 26.44, 23.99, 19.09 (d, J = 1.2 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.23; ³¹P NMR (162 MHz, CDCl₃) δ : 8.74; m/z HRMS (ESI + APCI) found [M-OTf]⁺ 710.3303, C₄₈H₄₅N₃OP⁺ requires 710.3300.

12d. Ligand-coupling Reactions to Make Heterobiaryls General Procedure C

An oven dried 8 mL vial with a septa cap was charged with the phosphonium salt (1.0 equiv) and EtOH or TFE (0.4 M). The vial was subjected to three rapid cycles of vacuum / nitrogen backfill and then HCl or TfOH (2.0 equiv) was added via a syringe. The septa cap was quickly replaced with an unpierced one and the reaction was heated to 80 °C for the stated time. The reaction was quenched with a saturated aqueous solution of Na₂CO₃ and the aqueous layer was extracted with CH₂Cl₂ (3x). The combined organic extracts were washed with a saturated aqueous solution of brine, dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography under the stated conditions to provide the heterobiaryl.

2-Phenyl-4,4'-bipyridine (4a)

Prepared according to general procedure C using diphenyl(2-phenylpyridin-4-yl)(pyridin-4-yl)phosphonium trifluoromethanesulfonate (283 mg, 0.50 mmol), 4.0 M HCl in dioxanes (250 μ L, 1.00 mmol), and EtOH (1.25 mL). The was reaction was heated to 80 °C for 14 hours. Flash column chromatography (silica gel, gradient elution: 40% EtOAc in hexanes to 50% EtOAc in hexanes) afforded the title compound as an off white solid (102 mg, 0.44 mmol, 88% yield). mp 64-65 °C; IR v_{max}/cm⁻¹ (film): 3029, 1590, 1532, 1472, 1444, 1389, 1225, 808, 770, 731, 687; ¹H NMR (400 MHz, CDCl₃) δ : 8.87-8.59 (3H, m), 8.02 (2H, d, *J* = 7.2 Hz), 7.88 (1H, s), 7.62-7.32 (6H, m) ; ¹³C NMR (100 MHz, CDCl₃) δ : 158.34, 150.51, 150.34, 146.25, 145.67, 138.78, 129.21, 128.71, 126.86, 121.34, 119.70, 118.16; *m*/*z* HRMS (DART) found [M+H]⁺ 233.1092, C₁₆H₁₃N₂⁺ requires 233.1073.

2-(4-Bromophenyl)-3'-chloro-4,4'-bipyridine (4b)

Prepared according to general procedure C using (2-(4-bromophenyl)pyridin-4-yl)(3chloropyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (340 mg, 0.50 mmol), 4.0 M HCl in dioxanes (250 μ L, 1.00 mmol), and EtOH (1.25 mL). The was reaction was heated to 80 °C for 17 hrs. Flash column chromatography (silica gel: 25% EtOAc in hexanes) afforded the title compound as a white solid (111 mg, 0.32 mmol, 64% yield). mp 153-154 °C; IR v_{max}/cm⁻¹ (film): 3053, 1603, 1579, 1552, 1461, 1412, 1376, 1111, 1006, 831, 741; ¹H NMR (400 MHz, CDCl₃) δ : 8.79 (1H, d, *J* = 5.0 Hz), 8.74 (1H, s), 8.60 (1H, d, *J* = 4.9 Hz), 7.91 (2H, d, *J* = 8.5 Hz), 7.77 (1H, s), 7.61 (2H, d, *J* = 8.5 Hz), 7.37-7.28 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 156.61, 150.35, 149.96, 148.15, 145.03, 144.91, 137.56, 131.92, 129.72, 128.46, 124.53, 123.87, 122.03, 120.01; *m*/z HRMS (DART) found [M+H]⁺ 344.9812, C₁₆H₁₁BrN₂⁺ requires 344.9789.

Ethyl 2'-(4-bromophenyl)-2-butyl-[4,4'-bipyridine]-3-carboxylate (4c)

Prepared according to general procedure C using (2-(4-bromophenyl)pyridin-4-yl)(2-butyl-3-(ethoxycarbonyl)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (155 mg, 0.20 mmol), trifluoromethanesulfonic acid (36 μ L, 0.40 mmol) and EtOH (0.5 mL) at 80 °C for 14 hours. Flash column chromatography (silica gel: 16% EtOAc in hexanes to 33% EtOAc in hexanes) afforded the title compound as a colorless oil (67 mg, 0.15 mmol, 76% yield). IR v_{max}/cm^{-1} (film): 3051, 2956, 2929, 2870, 1722, 1601, 1589, 1575, 1537, 1491, 1475, 1455, 1405, 1379, 1258, 1138, 1099, 1071, 1045, 1008, 825; ¹H NMR (400 MHz, CDCl₃) δ : 8.73 (1H, d, *J* = 5.0 Hz), 8.68 (1H, d, *J* = 5.0 Hz), 7.90 (2H, d, *J* = 8.3 Hz), 7.71 (1H, s), 7.60 (2H, d, *J* = 8.3 Hz), 7.26 (1H, d, *J* = 5.8 Hz), 7.18 (1H, d, *J* = 5.0 Hz), 4.11 (2H, q, *J* = 7.2 Hz), 2.89 (2H, t, *J* = 7.8 Hz), 1.76 (2H, qn, *J* = 7.6 Hz), 1.42 (2H, sext, *J* = 7.4 Hz), 1.00 (3H, t, *J* = 7.2 Hz), 0.94 (3H, t, *J* = 7.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 167.97, 160.08, 156.52, 150.14, 149.95, 147.22, 145.26, 137.49, 131.99, 128.40, 127.85, 123.92, 121.29, 120.68, 119.21, 61.69, 36.02, 31.93, 22.66, 13.86, 13.60; m/z HRMS (DART) found $[M+H]^+$ 439.1029, $C_{23}H_{23}BrN_2O_2^+$ requires 439.1021.

5-Chloro-3'-methoxy-2-methyl-4,4'-bipyridine (4d)

Prepared according to general procedure C using (5-chloro-2-methylpyridin-4-yl)(3-methoxypyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (285 mg, 0.50 mmol), trifluoromethanesulfonic acid (89 µL, 1.00 mmol) and EtOH (1.25 mL) at 80 °C for 14 hours. Flash column chromatography (silica gel: 50% EtOAc in hexanes) afforded the title compound as a colorless crystalline solid (77 mg, 0.33 mmol, 65% yield). mp 105-108 °C; IR v_{max}/cm^{-1} (film): 3029, 2968, 2938, 2842, 1582, 1556, 1506, 1492, 1469, 1441, 1379, 1360, 1312, 1306, 1291, 1269, 1256, 1239, 1213, 1195, 1101, 1017, 846, 833; ¹H NMR (400 MHz, CDCl₃) δ : 8.52 (1H, s), 8.39 (1H, s), 8.33 (1H, d, *J* = 4.7 Hz), 7.09 (1H, d, *J* = 4.7 Hz), 7.05 (1H, s), 3.88 (3H, s), 2.54 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 156.62, 152.18, 148.70, 142.83, 142.52, 134.21, 133.11, 128.01, 124.66, 124.11, 56.18, 23.74; *m*/z HRMS (DART) found [M+H]⁺ 235.0664, C₁₂H₁₂ClN₂O⁺ requires 235.0638.

3-Chloro-3'-fluoro-4,4'-bipyridine (4e)

Prepared according to general procedure C using (3-chloro-pyridin-4-yl)(3-fluoropyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (136 mg, 0.25 mmol), 4.0M HCl in dioxane (125 μ L, 0.50 mmol) and EtOH (0.625 mL) at 80 °C for 23 hours. Flash column chromatography (silica gel: 40% EtOAc in hexanes to 50% EtOAc in hexanes) followed by flash column chromatography (neutral alumina: 20% EtOAc in hexanes to 40% EtOAc in hexanes) afforded the title compound as a white crystalline solid (34 mg, 0.16 mmol, 65% yield). mp 92-94 °C; IR v_{max} /cm⁻¹ (film): 3021, 1578, 1470, 1413, 1398, 1268, 1217, 1202, 1176, 1110, 1027, 830, 752; ¹H NMR (400 MHz, CDCl₃) δ : 8.69 (1H, s), 8.60-8.44 (3H, m), 7.29-7.17 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 155.86 (d, *J* = 259.5 Hz), 150.15, 147.84, 145.81 (d, *J* = 5.4 HZ), 139.81, 139.05 (d, *J* = 24.1 Hz), 131.57 (d, *J* = 13.0 Hz), 130.70, 124.97, 124.63; ¹⁹F NMR (365 MHz, CDCl₃) δ : -128.06 (d, *J* = 5.5 Hz); *m*/*z* LRMS (ESI + APCI) found [M+H]⁺ 209.0, C₁₀H₇ClFN₂⁺ requires 209.0.

2'-((4-Bromo-3-fluorophenoxy)methyl)-2-butyl-5-(trifluoromethyl)-4,4'-bipyridine (4f)

isolated as mixture see 3f

Prepared according to general procedure C using (2-((4-bromo-3-fluorophenoxy)methyl)pyridin-4-yl)(2-butyl-5-(trifluoromethyl)pyridin-4-

yl)diphenylphosphonium trifluoromethanesulfonate (204 mg, isolated as a mixture see 3f), Trifluoromethanesulfonic acid (45 µL, 0.50 mmol) and EtOH (0.625 mL) at 80 °C for 12 hours. Flash column chromatography (silica gel: 2% EtOAc in CH₂Cl₂ to 5% EtOAc in CH₂Cl₂) afforded the title compound as a white amorphous powder (63 mg, 0.13 mmol, 29% yield over two steps). mp 79-81 °C; IR v_{max}/cm⁻¹ (film): 3027, 2958, 2924, 2875, 2860, 1597, 1589, 1564, 1539, 1492, 1467, 1452, 1426, 1415, 1380, 1323, 1292, 1268, 1249, 1189, 1177, 1153, 1130, 1101, 1089, 1057, 1032, 974, 942, 902, 855, 843, 820; ¹H NMR (400 MHz, CDCl₃) δ: 8.88 (1H, s), 8.68 (1H, d, J = 5.0 Hz), 7.44-7.38 (2H, m), 7.22 (1H, d, J = 4.8 Hz), 7.08 (1H, s), 6.78 (1H, dd, J = 10.2, 2.8 Hz), 6.69 (1H, dd, J = 8.9, 2.8 Hz), 5.22 (2H, s), 2.88 (2H, t, J = 7.7 Hz), 1.74 $(2H, qn, J = 7.3 \text{ Hz}), 1.40 (2H, \text{sext}, J = 7.5 \text{ Hz}), 0.94 (3H, t, J = 7.3 \text{ Hz}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}), 1.40 \text{ MHz})$ CDCl₃) δ: 166.90, 159.44 (d, J = 245.7 Hz), 158.68 (d, J = 9.7 Hz), 156.50, 149.21, 147.06 (q, J = 5.5 Hz), 146.29, 146.23 (q, J = 1.8 Hz), 133.47 (d, J = 1.7 Hz), 123.90, 123.50 (q, J = 272.3 Hz), 122.27 (d, J = 1.1 Hz), 121.38 (q, J = 30.6 Hz), 120.59, 111.98 (d, J = 3.2 Hz), 103.98 (d, J = 25.6 Hz), 100.11 (d, J = 21.2 Hz), 70.86, 37.99, 31.58, 22.44, 13.83; ¹⁹F NMR (365 MHz, CDCl₃) δ : -56.55, -104.87 (t, J = 8.4 Hz); m/z HRMS (DART) found $[M+H]^+$ 483.0690, C₂₂H₂₀BrF₄N₂O⁺ requires 483.0695.

2-(3-Fluoropyridin-4-yl)-4-methylquinoline (4g)

Prepared according to general procedure C, using (3-fluoropyridin-4-yl)(4-methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (286 mg, 0.50 mmol), 4.0M HCl in dioxane (250 μ L, 1.00 mmol), and EtOH (1.25 mL) at 80 °C for 12 hours. The crude material was purified by flash chromatography (silica gel gradient elution: 25% EtOAc in hexanes to 50% EtOAc in hexanes) to provide the title compound as a white crystalline solid (68 mg, 0.31 mmol, 57% yield). mp 94-95 °C; IR v_{max}/cm⁻¹ (film): 3038, 2968, 1464, 1350, 1277, 1235, 746; ¹H

NMR (400 MHz, CDCl₃) δ : 8.62 (1H, d, J = 2.8 Hz), 8.59 (1H, dd, J = 4.9, 0.9 Hz), 8.19 (1H, dd, J = 8.4, 0.5 Hz), 8.10 (1H, dd, J = 7.3, 5.0 Hz), 8.05 (1H, dd, J = 8.4, 0.9 Hz), 7.80-7.75 (2H, m), 7.66-7.62 (1H, m), 2.80 (3H, d, J = 0.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 157.28 (d, J = 258.8 Hz); 158.84 (d, J = 2.0 Hz), 148.09, 146.25 (d, J = 5.1 Hz), 145.16, 139.33 (d, J = 26.1 Hz), 134.60 (d, J = 9.5 Hz), 130.50, 129.74, 127.79, 127.20, 124.58, 123.74, 122.69 (d, J = 8.2 Hz), 19.00; ¹⁹F NMR (365 MHz, CDCl₃) δ : -131.61 (d, J = 7.5 Hz); m/z HRMS (DART) found [M+H]⁺ 239.0973, C₁₅H₁₂FN₂⁺ requires 239.0979.

Ethyl 2-(4-ethoxyquinolin-2-yl)isonicotinate (4h)

Prepared according to general procedure C, using (4-(ethoxycarbonyl)pyridin-2-yl)(4ethoxyquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (164 mg, 0.25 mmol), trifluoromethanesulfonic acid (42 µL, 0.50 mmol), and EtOH (0.63 mL) at 80 °C for 12 hours. The crude material was purified by flash chromatography (silica gel: 10% EtOAc in hexanes to 25% EtOAc in hexanes) to provide the title compound as a white crystalline solid (38 mg, 0.12 mmol, 47% yield). mp 102-104 °C; IR v_{max}/cm⁻¹ (film): 3038, 2968, 1464, 1350, 1277, 1235, 746: ¹H NMR (400 MHz, CDCl₃) δ : 9.18 (1H, s), 8.84 (1H,d, J = 5.0 Hz), 8.26 (1H,dd, J = 3.163.2, 1.2 Hz), 8.15 (1H, d, J = 8.4 Hz), 7.97 (1H, s), 7.97 (1H, dd, J = 5.0, 1.6 Hz), 7.71-7.70 (1H, m), 7.56-7.49 (1H, m), 4.55-4.38 (4H, m), 1.62 (3H, t, J = 7.0 Hz), 1.47 (3H, t, J = 7.1 Hz); ¹³C NMR (100)MHz, CDCl₃) δ: 165.36, 162.43, 157.71, 156.56, 149.59, 148.98, 138.80, 129.89, 129.35, 125.93, 123.05, 121.94, 121.54, 121.16, 98.12, 64.34, 61.83, 14.55, 14.29; *m/z* HRMS (DART) found [M+H]⁺ 323.1386, $C_{19}H_{19}N_2O_3^+$ requires 323.1390.

7-Chloro-4-(3-fluorophenoxy)-4'-methyl-2,2'-biquinoline (4i)

Prepared according to general procedure C, using (7-chloro-4-(3-fluorophenoxy)quinolin-2-yl)(4-methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (187 mg, 0.25 mmol), trifluoromethanesulfonic acid (42 μ L, 0.50 mmol), and (2,2,2)-Trifluoroethanol (0.63 mL) at 80°C for 12 hours. The crude material was purified by flash chromatography (silica gel, 10% EtOAc in hexanes) to provide the title compound as a white crystalline solid (70 mg, 0.17 mmol, 67% yield). mp 208-210 °C; IR v_{max}/cm⁻¹ (film): 3068, 1615, 1094, 947, 831, 755, 526; ¹H NMR (400 MHz, CDCl₃) δ : 8.60 (1H, d, *J* = 0.8 Hz), 8.28 (1H, d, *J* = 8.9 Hz), 8.25 (1H, d, *J* = 1.8 Hz), 8.13 (1H, s), 8.07 (1H, dd, *J* = 8.4, 0.7 Hz), 8.03 (1H, dd, *J* = 8.3, 0.9 Hz), 7.69 (1H, m), 7.60-7.53 (2H, m), 7.47 (1H, td, *J* = 12.2, 7.5 Hz), 7.10-6.99 (3H, m), 2.83 (3H, d, *J* = 0.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 163.60 (d, *J* = 248.4 Hz), 161.43, 158.99, 155.76 (d, *J* = 10.6 Hz), 154.93, 150.04, 147.57, 145.07, 136.33, 131.10, (d, *J* = 9.6 Hz), 130.50, 129.22, 128.57, 128.54, 127.50, 126.90, 123.75, 123.26, 120.13, 119.70, 116.32 (d, *J* = 3.4 Hz), 112.44 (d, *J* = 21.1 Hz), 108.65 (d, *J* = 24.2 Hz), 108.65 (d, *J* = 24.2 Hz), 103.43, 18.95; ¹⁹F NMR (365 MHz, CDCl₃) δ : -109.72-(-)109.79 (m); *m*/z HRMS (DART) found [M+H]⁺ 415.1024, C₂5H₁₇CIFN₂O⁺ requires 415.1008.

4-Methyl-2-(2-(propylthio)pyrimidin-4-yl)quinoline (4j)

Prepared according to general procedure C using (4-Methylquinolin-2-yl)diphenyl(2-(propylthio)pyrimidin-4-yl)phosphonium trifluoromethanesulfonate (149 mg, 0.25 mmol), trifluoromethanesulfonic acid (44 μ L, 0.50 mmol), and EtOH (0.63 mL). The was reaction was heated to 80 °C for 5.5 hours. Flash column chromatography (silica gel: 5% EtOAc in hexanes) followed by a second flash column (silica gel, gradient elution: 3% EtOAc in hexanes to 5% EtOAc in hexanes) afforded the title compound as a white solid (27 mg, 0.091 mmol, 37% yield). mp 57-58 °C; IR ν_{max}/cm^{-1} (film): 2925, 1557, 1539, 1505, 1417, 1352, 1317, 1194, 1160,

782; ¹H NMR (400 MHz, CDCl₃) δ : 8.67 (1H, d, J = 4.7 Hz), 8.40 (1H, s), 8.23 (1H, d, J = 4.7 Hz), 8.17 (1H, d, J = 8.1 Hz), 8.03 (1H, d, J = 8.1 Hz), 7.75 (1H, t, J = 7.0 Hz), 7.61 (1H, t, J = 7.0 Hz), 3.26 (2H, t, J = 7.1 Hz), 2.80 (3H, s), 1.88 (2H, sext, J = 7.1 Hz), 1.13 (3H, t, J = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 172.21, 163.22, 158.12, 153.22, 147.70, 145.37, 130.61, 129.53, 128.96, 127.37, 123.80, 119.29, 112.97, 33.04, 22.72, 19.02, 13.62; *m/z* LRMS (ESI + APCI) found [M+H]⁺ 296.2, C₁₇H₁₈N₃S⁺ requires 296.1.

2-(5,6-Dimethylpyrazin-2-yl)-4-ethoxyquinoline (4k)

Prepared according to general procedure C using (5,6-dimethylpyrazin-2-yl)(4ethoxyquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (154 mg, 0.25 mmol), trifluoromethanesulfonic acid (67 µL, 0.75 mmol) and EtOH (625 µL) at 100 °C for 14 hours. Flash column chromatography (silica gel: 33% EtOAc in hexanes) afforded the title compound as a gray amorphous powder (16 mg, 0.06 mmol, 23% yield). mp 189-191 °C; IR v_{max} /cm⁻¹ (film): 3080, 2999, 2977, 2919, 1615, 1586, 1500, 1472, 1460, 1445, 1420, 1402, 1376, 1359, 1347, 1273, 1249, 1232, 1185, 1156, 1114, 1105, 1089, 1027, 993, 953, 919, 861, 837, 818, 784, 777, 767; ¹H NMR (400 MHz, CDCl₃) δ : 9.52 (1H, s), 8.24 (1H, d, *J* = 8.2 Hz), 8.10 (1H, d, *J* = 8.4 Hz), 7.86 (1H, s), 7.71 (1H, dd, *J* = 7.2, 7.1 Hz), 7.50 (1H, dd, *J* = 7.8, 7.3 Hz), 4.42 (2H, q, *J* = 7.0 Hz), 2.64 (3H, s), 2.62 (3H, s), 1.61 (3H, t, *J* = 7.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 162.28, 156.03, 152.39, 150.85, 149.00, 148.17, 140.21, 129.87, 129.28, 125.77, 121.89, 121.37, 97.86, 64.26, 22.23, 22.02, 14.55; *m*/*z* LRMS (DART) found [M+H]⁺ 280.2, C₁₇H₁₈N₃O⁺ requires 280.1. Ethyl 4-((*S*)-(4-chlorophenyl)(3'-(((*R*)-1-(3-fluoro-4-(trifluoromethyl)benzyl)pyrrolidin-2-yl)methoxy)-[4,4'-bipyridin]-2-yl)methoxy)piperidine-1-carboxylate (4l)

(trifluoromethyl)benzyl)pyrrolidin-2-yl)methoxy)pyridin-4-yl)diphenylphosphonium

trifluoromethanesulfonate (106 mg, 0.10 mmol), trifluoromethanesulfonic acid (25 µL, 0.30 mmol), and EtOH (0.25 mL) at 80 °C for 72 hours. The crude material was purified by flash chromatography (silica gel: 2% MeOH in CH₂Cl₂) followed by a second flash chromatography column (silica gel: 2% MeOH in CH₂Cl₂) to provide the title compound as a faint brown oil (43 mg, 0.06 mmol, 60% yield). IR v_{max}/cm^{-1} (film): 3055, 2928, 2872, 1689, 1629, 1604, 1586, 1564, 1502, 964, 766, 645, 619, 534; ¹H NMR (400 MHz, CDCl₃) δ : 8.40 (1H, d, J = 5.5 Hz), 8.35-8.25 (2H, m), 7.62 (1H, s), 7.40-7.34 (1H, s), 7.40-7.34 (3H, m), 7.24 (1H, t, J = 1.7 Hz), 7.22 (2H, m), 6.93-6.85 (2H, m), 5.60 (1H, s), 4.05 (2H, q, *J* = 7.1 Hz), 3.95 (2H, d, *J* = 5.4 Hz), 3.79-3.62 (3H, m), 3.57 (1H, m), 3.17-3.04 (3H, m), 2.86-2.72 (2H, m), 2.10 (1H, q, J = 8.4 Hz), 1.96-1.47 (5H, m), 1.25-1.12 (6H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 161.94, 159.72 (dq, J =255.5, 2.3 Hz), 155.47, 151.76 (m), 148.82, 147.49 (d, J = 7.2 Hz), 144.64, 143.16, 140.14, 135.40, 134.77, 133.47, 128.65, 128.08, 126.75 (2C, m), 122.64 (dq, J = 270.5, 1.1 Hz), 123.86 (m), 123.22 (d, J = 3.4 Hz), 122.58, 116.09 (d, J = 20.7 Hz), 72.80, 62.61, 61.28, 58.75, 54.74, 41.07, 40.99, 31.16, 31.01, 29.67, 28.59, 23.26, 14.66; ¹⁹F NMR δ : -61.13 (d, J = 12.8 Hz), -114.89-(-)115.21 (m); *m/z* HRMS (DART) found [M+H]⁺ 727.2688, C₃₈H₄₀ClF₄N₄O₄⁺ requires 727.2669.

Ethyl (S)-4-((4-chlorophenyl)(3'-(3-fluoro-5-(6-methylpyridin-2-yl)phenyl)-[4,4'-bipyridin]-2-yl)methoxy)piperidine-1-carboxylate (4m)

Prepared according to general procedure C using (S)-(2-((4-chlorophenyl)))(1-(ethoxycarbonyl)piperidin-4-yl)oxy)methyl)pyridin-4-yl)(3-(3-fluoro-5-(6-methylpyridin-2yl)phenyl)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (97 mg, 0.10 mmol), trifluoromethanesulfonic acid (26.5 µL, 0.30 mmol), and EtOH (0.25 mL). The was reaction was heated to 80 °C for 26 hours. Flash column chromatography (the crude reaction mixture was dissolved in 5 mL of CH₂Cl₂ and then 1 mL of trifluoroacetic acid was added, the mixture was loaded onto a silica column and then gradient elution: CH₂Cl₂ to 3% MeOH in CH₂Cl₂) followed by a second flash column (the crude reaction mixture was dissolved in 5 mL of CH₂Cl₂ and then 1 mL of trifluoroacetic acid was added, the mixture was loaded onto a silica column and then gradient elution: CH₂Cl₂ to 2% MeOH in CH₂Cl₂) followed by preparatory thin layer chromatography (silica gel: 3% MeOH in CH₂Cl₂ afforded the title compound as a colorless oil (41 mg, 0.07 mmol, 65% yield). IR v_{max}/cm⁻¹ (film): 3060, 2953, 2925, 1690, 1585, 1576, 1432, 1384, 1228, 1087, 751; ¹H NMR (400 MHz, CDCl₃) δ : 8.74 (2H, br s), 8.54 (1H, d, J = 5.0 Hz), 7.69 (1H, d, J = 9.9 Hz), 7.60-7.50 (2H, m), 7.35 (1H, d, J = 4.2 Hz), 7.24-7.15 (3H, m), 7.13-7.04 (5H, m), 6.84 (1H, d, J = 8.7 Hz), 5.47 (1H, s), 4.09 (2H, q, J = 7.2 Hz), 3.63-3.49 (2H, m), 3.49-3.38 (1H, m), 3.16-3.03 (2H, m), 2.58 (3H, s), 1.72-1.55 (2H, m), 1.54-1.36 (2H, m), 1.23 $(3H, t, J = 7.2 \text{ Hz}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta: 162.95 \text{ (d}, J = 246.7 \text{ Hz}), 161.95, 158.64,$ 155.38, 154.23 (d, J = 2.9 Hz), 151.02, 149.66-149.29 (2C, m), 147.16, 145.05, 142.20 (d, J = 7.8 Hz), 139.54, 138.93 (d, J = 8.3 Hz), 136.94, 134.56, 133.30, 128.52, 127.81, 124.11-123.81 (2C, m), 122.47, 122.44, 120.99, 117.20, 116.54 (d, *J* = 22.6 Hz), 113.28 (d, *J* = 22.7 Hz), 80.38, 72.19, 61.19, 40.78, 40.72, 30.88, 30.68, 24.62, 14.66; ¹⁹F NMR (365 MHz, CDCl₃) δ: -112.23; m/z HRMS (ESI) found $[M+H]^+$ 637.2391, C₃₇H₃₅ClFN₄O₃⁺ requires 637.2376.

(2*R*, 6*S*)-4-((2-(3-(3-fluoro-5-(6-methylpyridin-2-yl)phenyl)pyridin-4-yl)quinolin-4-yl)methyl)-2,6-dimethylmorpholine (4n)

Prepared according to general procedure C (except an additional 18 μ L, 0.20 mmol of trifluoromethanesulfonic acid was added after 40.5 hours) using (4-(((2R, 6S)-2,6dimethylmorpholino)methyl)quinolin-2-yl)(3-(3-fluoro-5-(6-methylpyridin-2-yl)phenyl)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (85 0.10 mg, mmol), trifluoromethanesulfonic acid (35 µL, 0.40 mmol), and EtOH (0.25 mL). The was reaction was heated to 80 °C for 58.5 hours. Flash column chromatography (silica gel: 60% EtOAc in hexanes) followed by a second flash column (silica gel, gradient elution: 1% MeOH in CH₂Cl₂ to 2.5% MeOH in CH₂Cl₂) afforded the title compound as a colorless oil (23.7 mg, 0.046 mmol, 46%). IR v_{max}/cm⁻¹ (film): 3063, 2972, 2928, 1586, 1455, 1430, 1344, 1083, 757; ¹H NMR (400 MHz, CDCl₃) δ: 8.81 (2H, br s), 8.27-8.15 (2H, m), 7.85-7.73 (3H, m), 7.68 (1H, d, *J* = 9.9 Hz), 7.58 (1H, t, J = 7.6 Hz), 7.51 (1H, t, J = 7.7 Hz), 7.23 (1H, d, J = 7.7 Hz), 7.15-7.03 (2H, m), 6.92 (1H, d, J = 9.0 Hz), 3.63 (2H, s), 3.54-3.38 (2H, m), 2.50 (3H, s), 2.40 (2H, d, J = 11.5 Hz), 1.63 (2H, t, J = 10.5 Hz), 1.00 (6H, d, J = 6.3 Hz) ¹³C NMR (100 MHz, CDCl₃) δ : 162.86 (d, J =246.4), 158.62, 156.36, 154.36 (d, J = 2.7 Hz), 150.76, 149.56, 148.57, 146.77, 143.77, 142.18 (d, J = 8.6 Hz), 139.74 (d, J = 8.2 Hz), 136.94, 134.58, 130.19, 129.63, 126.87, 126.64, 124.68, 124.24, 123.95 (d, J = 2.7 Hz), 122.63, 122.40, 117.22, 116.79 (d, J = 22.5 Hz), 113.16 (d, J = 22.7 Hz), 71.51, 59.81, 59.38, 24.51, 18.83; ¹⁹F NMR (365 MHz, CDCl₃) δ : -112.28 (t, J = 9.3 Hz): m/z HRMS (ESI) found $[M+H]^+$ 519.2572, C₃₃H₃₂FN₄O⁺ requires 519.2555.

(2*S*, 6*R*)-4-((2-(3-(((*R*)-1-(3-Fluoro-4-(trifluoromethyl)benzyl)pyrrolidin-2yl)methoxy)pyridin-4-yl)quinolin-4-yl)methyl)-2,6-dimethylmorpholine (40)

Prepared according to general procedure C, using (4-(((2S, 6R)-2, 6-d))) dimethylmorpholino)methyl)quinolin-2-yl)(3-(((R)-1-(3-f)))

(trifluoromethyl)benzyl)pyrrolidin-2-yl)methoxy)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (94 mg, 0.10 mmol), 4.0M HCl in dioxane (100 µL, 0.40 mmol), and EtOH (0.25 mL) at 80 °C for 72 hours. The crude material was purified by flash chromatography (silica gel: 2% MeOH in CH₂Cl₂) to provide the title compound as a brown amorphous solid (30 mg, 0.05 mmol, 49% yield). IR v_{max}/cm⁻¹ (film): 3063, 2971, 2930, 2871, 2813, 1629, 1587, 1545, 693, 653, 602, 550, 531, 526; ¹H NMR (400 MHz, CDCl₃) δ: 8.50-8.39 (2H, m), 8.23 (1H, d, J = 8.3 Hz), 8.11 (1H, d, J = 8.4 Hz), 7.85 (1H, s), 7.75 (1H, d, J = 4.8 Hz), 7.71 (1H, m), 7.56 (1H, m), 7.29 (1H, t, J = 7.7 Hz), 6.97-6.87 (2H, m), 4.21-4.06 (2H, m), 4.01 (1H, d, J = 14.16 14.2 Hz), 3.80 (2H, d, J = 1.8 Hz), 3.73-3.61 (2H, m), 3.30 (1H, d, J = 14.2 Hz), 3.08-2.97 (1H, m), 2.91-2.80 (1H, m), 2.79 (2H, d, J = 11.5 Hz), 2.15 (1H, q, J = 6.2 Hz), 2.06-1.94 (1H, m), 1.86 (2H, q, J = 10.6 Hz), 1.78-1.65 (3H, m), 1.14 (6H, d, J = 6.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 159.57 (dq, J = 253.8, 2.1 Hz), 154.01, 152.42, 148.39, 147.22 (d, J = 5.5 Hz), 143.38, 143.23, 136.59, 135.72, 130.16, 129.47, 126.94-126.32 (m, 4C), 124.75, 124.17, 123.30 (d, J =3.3 Hz), 122.97, 122.62 (dq, J = 273.1, 1.0 Hz), 116.89 (d, J = 20.6 Hz), 73.11, 71.67 (d, J = 2.2 Hz), 62.43, 60.13, 59.69 (d, J = 8.4 Hz), 58.86, 54.66, 28.60, 23.29, 19.88 (d, J = 1.1 Hz); ¹⁹F NMR δ : -61.10 (d, J = 12.9 Hz), -114.67- (-)115.23 (m); m/z HRMS (DART) found [M+H]⁺ 609.2839, C₃₄H₃₇F₄N₄O₂⁺ requires 609.2847.

3-(4-Chlorophenyl)-N,N-dimethyl-3-(2'-phenyl-[4,4'-bipyridin]-2-yl)propan-1-amine (4p)

general procedure C using (2-(1-(4-chlorophenyl)-3-Prepared according to (dimethylamino)propyl)pyridin-4-yl)diphenyl(2-phenylpyridin-4-yl)phosphonium trifluoromethanesulfonate (381 mg, 0.50 mmol), trifluoromethanesulfonic acid (134 µL, 1.50 mmol) and EtOH (1.25 mL) at 80 °C for 12 hours. Flash column chromatography (silica gel: 9% MeOH in CH₂Cl₂) afforded the title compound as a light yellow oil (179 mg, 0.42 mmol, 84%) yield). IR v_{max}/cm⁻¹ (film): 3410, 3027, 2940, 2856, 2815, 2766, 2430, 2203, 1590, 1533, 1488, 1467, 1445, 1379, 1261, 1089, 1025, 1014, 907, 829, 775, 756, 727, 694; ¹H NMR (400 MHz, $CDCl_3$) δ : 8.74 (1H, d, J = 4.9 Hz), 8.68 (1H, d, J = 4.9 Hz), 8.01 (2H, d, J = 7.4 Hz), 7.87 (1H, s), 7.49–7.33 (8H, m), 7.25 (2H, d, J = 8.6 Hz), 4.29 (1H, t, J = 7.4 Hz), 2.70–2.34 (10H, m); ¹³C NMR (100 MHz, CDCl₃) δ: 163.01, 158.27, 150.26, 150.06, 146.48, 146.27, 141.11, 138.76, 132.47, 129.21, 129.15, 128.66, 126.88, 120.96, 119.79, 119.49, 118.23, 56.90, 49.98, 44.25, 31.30; *m/z* HRMS (DART) found [M+H]⁺ 428.1921, C₂₇H₂₇ClN₃⁺ requires 428.1894.

Ethyl 4-(4-(2-(4-bromophenyl)pyridin-4-yl)-8-chloro-5,6-dihydro-11Hbenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (4q)

Prepared according to general procedure C using (2-(4-bromophenyl)pyridin-4-yl)(8-chloro-11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (237 mg, 0.25 mmol), trifluoromethanesulfonic acid (44 µL, 0.50 mmol), and EtOH (625 µL). The was reaction was

heated to 80 °C for 30 hrs. Flash column chromatography (basic alumina, gradient elution: 20% EtOAc in hexanes to 40% EtOAc in hexanes) afforded the title compound as a white solid (133 mg, 0.22 mmol, 87% yield). mp 95-98 °C; IR v_{max}/cm^{-1} (film): 3050, 2972, 2922, 1690, 1578, 1473, 1428, 1222, 1008, 826, 729; ¹H NMR (400 MHz, CDCl₃) δ : 8.77 (1H, d, *J* = 5.0 Hz), 8.49 (1H, d, *J* = 5.0 Hz), 7.91 (2H, d, *J* = 8.6 Hz), 7.66-7.58 (3H, m), 7.21-7.14 (3H, m), 7.12 (1H, s) 7.06 (1H, d, *J* = 5.0 Hz), 4.14 (2H, q, *J* = 7.2 Hz), 3.82 (2H, br s), 3.41-3.29 (1H, m), 3.27-3.12 (3H, m), 2.88-2.72 (2H, m), 2.56-2.35 (3H, m), 2.34-2.20 (1H, m), 1.26 (3H, t, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 159.73, 156.58, 155.34, 149.87, 147.81, 147.09, 146.77, 138.50, 137.53, 137.34, 135.89, 134.11, 133.01, 131.90, 131.21, 130.30, 129.60, 128.41, 126.07, 123.84, 122.53, 121.87, 119.70, 61.24, 44.69, 44.57, 32.12, 30.60, 30.51, 27.48, 14.48; *m*/*z* HRMS (DART) found [M+H]⁺ 614.1235, C₃₃H₃₀BrClN₃O₂⁺ requires 614.1204.

2-Chloro-N-(4-chloro-3-(4-(4-methylquinolin-2-yl)pyridin-2-yl)phenyl)-4-(methylsulfonyl)benzamide (4r)

according to general procedure C using (2-(2-chloro-5-(2-chloro-4-Prepared (methylsulfonyl)benzamido)phenyl)pyridin-4-yl)(4-methylguinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (224 mg, 0.25 mmol), 4.0 M HCl in dioxanes (125 µL, 0.50 mmol), and (2,2,2)-Trifluoroethanol (625 µL). The was reaction was heated to 80 °C for 37 hours. Flash column chromatography (silica gel was packed in hexanes and neutralized with NEt₃ then gradient elution: CH₂Cl₂ to 1.5% MeOH in CH₂Cl₂) followed by a second flash column (basic alumina, gradient elution: CH₂Cl₂ to 2% MeOH in CH₂Cl₂) and the resulting solid was washed on a frit with 200 mL of Et₂O and then 25 mL of chilled CH₂Cl₂ (0 °C). The title compound was isolated as a white solid (73 mg, 0.13 mmol, 52% yield). decomp. 270-275 °C; IR v_{max}/cm⁻¹ (film): 3318, 3018, 2992, 2914, 1689, 1539, 1299, 1152, 1030, 816, 751; ¹H NMR (400 MHz, CDCl₃) δ : 10.99, (1H, s), 8.89 (1H, d, J = 5.2 Hz), 8.28 (1H, d, J = 5.2 Hz), 8.21 (1H, s), 8.18-8.07 (4H, m), 8.02 (1H, dd, J = 8.0, 1.5 Hz), 7.94 (1H, d, J = 8.0 Hz), 7.87-7.76 (2H, m), 7.72-7.59 (2H, m), 3.36 (3H, s), 2.79 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ: 163.87, 156.84, 152.95, 150.28, 147.31, 146.12, 146.03, 143.13, 140.84, 139.31, 137.65, 130.97, 130.44, 130.08-129.82 (3C, m), 128.10, 127.60, 127.16, 125.99, 125.91, 124.21, 122.35, 121.81, 125.99, 125.91, 124.21, 122.35, 121.81, 121.07, 120.42, 119.31, 43.09, 18.39; m/z HRMS (ESI + APCI) found $[M+H]^+$ 562.0766, C₂₉H₂₂Cl₂N₃O₃S⁺ requires 562.0753.

5,7-Dichloro-4'-ethoxy-4-(4-fluorophenoxy)-2,2'-biquinoline (4s)

Prepared according to general procedure C, using (5,7-dichloro-4-(4-fluorophenoxy)quinolin-2-yl)(4-ethoxyquinolin-2-yl)diphenylphosphonium

trifluoromethanesulfonate (203 mg, 0.25 mmol), trifluoromethanesulfonic acid (42 µL, 0.50 mmol), and (2,2,2)-Trifluoroethanol (625 µL) at 80 °C for 36 hours. The crude material was suspended in a 5mL CH₂Cl₂ and filtered over a frit with cold CH₂Cl₂ to provide the title compound as a white crystalline solid (69 mg, 0.15 mmol, 58% yield). mp 235-238 °C; IR v_{max} /cm⁻¹ (film): 3065, 2978, 1430, 1296, 1214, 1117, 733; ¹H NMR (400 MHz, CDCl₃) δ : 8.24 (1H, d, *J* = 8.2 Hz), 8.19-8.12 (2H, m), 8.10 (1H, s), 7.97 (1H, d, *J* = 8.4 Hz), 7.67 (1H, t, *J* = 7.3 Hz), 7.60 (1H, d, *J* = 1.8 Hz), 7.51 (1H, t, *J* = 15.0 Hz), 7.24 (4H, m), 4.47 (2H, q, *J* = 7.0 Hz), 1.64 (3H, t, *J* = 7.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 162.60, 162.32, 159.93 (d, *J* = 243.8 Hz), 158.99, 155.89, 151.37, 150.39 (d, *J* = 2.7 Hz), 148.69, 134.94, 130.24, 129.86, 129.67, 129.42, 128.18, 126.26, 122.87 (d, *J* = 8.5 Hz), 121.94, 121.77, 118.42, 116.98 (d, *J* = 23.6 Hz), 105.31, 98.17, 64.38, 14.55; ¹⁹F NMR δ : -117.56 (m); *m*/*z* HRMS (DART) found [M+H]⁺ 479.0709, C₂₆H₁₈Cl₂FN₂O₂⁺ requires 479.0724.

2-(5-Chloro-6'-methyl-3-(4-(methylsulfonyl)phenyl)-[2,3'-bipyridin]-4'-yl)-4methylquinoline (4t)

Prepared according to general procedure C, using (5-chloro-6'-methyl-3-(4-(methylsulfonyl)phenyl)-[2,3'-bipyridin]-4'-yl)(4-methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (83 mg, 0.10 mmol), trifluoromethanesulfonic acid (26 μ L, 0.30 mmol), and EtOH (0.25 mL) at 80 °C for 22 hours. The crude material was purified by flash

chromatography (silica gel gradient elution: 3% MeOH in CH₂Cl₂ to 4% MeOH in CH₂Cl₂) to provide the title compound as a white crystalline solid (40 mg, 0.08 mmol, 80% yield). mp 286-290 °C; IR v_{max} /cm⁻¹ (film): 3034, 2926, 1506, 1264, 1034, 873, 863; ¹H NMR (400 MHz, CDCl₃) δ : 8.69-8.59 (2H, m), 7.96 (1H, d, *J* = 8.0 Hz), 7.68-7.43 (6H, m), 7.35 (1H, s), 6.94-6.81 (3H, m), 3.00 (3H, s), 2.67 (3H, s), 2.61 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 159.16, 154.96, 154.07, 151.54, 147.94, 147.32, 147.11, 145.21, 143.07, 139.47, 136.47, 136.03, 130.77, 130.59, 130.02, 129.61, 129.56, 127.08, 126.92, 126.75, 123.57, 122.81, 120.92, 44.39, 24.42, 18.78; *m/z* HRMS (DART) found [M+H]⁺ 500.1175, C₂₈H₂₃ClN₃O₂S⁺ requires 500.1194.

N-(4-Methyl-3-((4-(4-(4-methylquinolin-2-yl)pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)-4-((4-methylpiperazin-1-yl)methyl)benzamide (4u)

Prepared according to general procedure C using (3-(2-((2-methyl-5-(4-((4methylpiperazin-1-yl)methyl)benzamido)phenyl)amino)pyrimidin-4-yl)pyridin-4-yl)(4methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (97 mg, 0.10 mmol), trifluoromethanesulfonic acid (36 µL, 0.40 mmol) and EtOH (0.25 mL) at 80 °C for 48 hours. Flash column chromatography by three times (silica gel: 30% toluene, 3% MeOH and 1% Et₃N in CH₂Cl₂) afforded the title compound as a colorless oil (26 mg, 0.04 mmol, 41% yield). IR v_{max} /cm⁻¹ (film): 3249, 3036, 2933, 2796, 1663, 1572, 1553, 1525, 1505, 1446, 1406, 1349, 1287, 1204, 1162, 1138, 1010, 906, 816, 758, 730; ¹H NMR (400 MHz, CDCl₃) δ: 9.02 (1H, s), 8.83 (1H, d, J = 5.0 Hz), 8.26 (1H, d, J = 5.1 Hz), 8.09 (1H, s), 7.96–7.87 (5H, m), 7.72 (1H, d, J = 5.0 Hz), 7.66 (1H, t, J = 7.5 Hz), 7.55 (1H, t, J = 7.4 Hz), 7.48–7.44 (3H, m), 7.09–7.06 (2H, m), 6.83 (1H, s), 6.62 (1H, d, J = 5.1 Hz), 3.56 (2H, s), 2.57–2.29 (14H, m), 2.13 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 165.33, 164.51, 160.07, 157.95, 156.20, 150.85, 150.62, 147.78, 147.57, 144.55, 142.50, 137.36, 136.47, 133.86, 132.78, 130.60, 129.99, 129.67, 129.24, 127.14, 127.12, 126.91, 124.53, 123.66, 123.51, 122.41, 115.13, 112.72, 112.53, 62.52, 55.08, 53.12, 45.99, 18.74, 17.32; *m/z* HRMS (ESI + APCI) found [M+H]⁺ 635.3221, C₃₉H₃₉N₈O⁺ requires 635.3247.

Additional Examples: Characterization

2-(Thiophen-3-yl)-3'-(trifluoromethyl)-4,4'-bipyridine

Prepared according to general procedure C using diphenyl(2-(thiophen-3-yl)pyridin-4-yl)(3-(trifluoromethyl)pyridin-4-yl)phosphonium trifluoromethanesulfonate (320 mg, 0.50 mmol), trifluoromethanesulfonic acid (88 µL, 1.00 mmol), and EtOH (1.25 mL). The reaction was heated to 80 °C for 11 hrs. Flash column chromatography (silica gel, gradient elution: 20% EtOAc in hexanes to 30% EtOAc in hexanes) afforded the title compound as a colorless oil (61 mg, 0.20 mmol, 40% yield). IR v_{max}/cm⁻¹ (film): 3047, 1589, 1540, 1329, 1280, 1265, 1133, 1095, 1029, 907, 730; ¹H NMR (400 MHz, CDCl₃) & 9.03 (1H, s), 8.87 (1H, d, *J* = 5.0 Hz), 8.70 (1H, d, *J* = 5.1 Hz), 7.95 (1H, dd, *J* = 3.1, 1.2 Hz), 7.66 (1H, dd, *J* = 5.1, 1.2 Hz), 7.57 (1H, s), 7.41 (1H, dd, *J* = 5.1, 3.1 Hz), 7.32 (1H, d, *J* = 5.0 Hz), 7.14 (1H, dd, *J* = 5.0, 1.2 Hz); ¹³C NMR (100 MHz, CDCl₃) &: 153.57, 153.00, 149.56, 147.51 (q, *J* = 5.6 Hz), 146.54 (q, *J* = 1.9 Hz), 145.53, 141.45, 126.59, 126.04, 125.02, 124.08 (q, *J* = 30.4 Hz), 123.92 (2C), 123.27 (q, *J* = 274.0 Hz), 120.93 (q, *J* = 1.6 Hz); ¹⁹F NMR (365 MHz, CDCl₃) &: -56.8; *m*/z HRMS (DART) found [M+H]⁺ 307.0535, C₁₅H₁₀F₃N₂S⁺ requires 307.0511.

2'-Phenyl-2,4'-bipyridine

Prepared according to general procedure C using diphenyl(2-phenylpyridin-4-yl)(pyridin-2yl)phosphonium trifluoromethanesulfonate (142 mg, 0.25 mmol), 4.0 M HCl in dioxanes (125 μ L, 0.5 mmol), and EtOH (0.5 mL). The was reaction was heated to 80 °C for 24 hours. Flash column chromatography (silica gel was packed in hexanes and neutralized with NEt₃ then gradient elution: 10% EtOAc in hexanes to 25% EtOAc in hexanes) afforded the title compound as a tan oil (42 mg, 0.18 mmol, 73%). The spectroscopic data is in agreement with a previously reported synthesis (*31*).

Ethyl 2-butyl-4-(4-methylquinolin-2-yl)nicotinate

Prepared according to general procedure C using (2-butyl-3-(ethoxycarbonyl)pyridin-4yl)(4-methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (341 mg, 0.50 mmol), trifluoromethanesulfonic acid (89 µL, 1.00 mmol) and EtOH (1.25 mL) at 80 °C for 21 hours. Flash column chromatography (silica gel: 16% EtOAc in toluene) afforded the title compound as a light yellow oil (91 mg, 0.26 mmol, 52% yield). IR v_{max}/cm^{-1} (film): 3060, 2956, 2930, 2870, 1724, 1597, 1576, 1546, 1507, 1447, 1413, 1364, 1256, 1151, 1131, 1093, 1049, 1022, 839, 758; ¹H NMR (400 MHz, CDCl₃) δ : 8.67 (1H, d, *J* = 5.1 Hz), 8.06 (1H, d, *J* = 8.4 Hz), 8.00 (1H, d, *J* = 8.3 Hz), 7.71 (1H, dd, *J* = 8.2, 7.1 Hz), 7.57 (1H, dd, *J* = 8.0, 7.2 Hz), 7.54 (1H, s), 7.47 (1H, d, *J* = 5.1 Hz), 4.22 (2H, q, *J* = 7.2 Hz), 2.94 (2H, t, *J* = 7.9 Hz), 2.74 (3H, s), 1.83-1.75 (2H, m), 1.43 (2H, sext, *J* = 7.5 Hz), 1.07 (3H, t, *J* = 7.2 Hz), 0.94 (3H, t, *J* = 7.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 168.89, 160.31, 154.90, 149.88, 147.42, 146.25, 145.49, 130.09, 129.69, 128.07, 127.34, 126.90, 123.63, 120.46, 120.41, 61.22, 35.94, 31.96, 22.72, 18.87, 13.86, 13.85; *m/z* HRMS (DART) found [M+H]⁺ 349.1960, C₂₂H₂₅N₂O₂⁺ requires 349.1916.

(S)-3'-(1-Methylpyrrolidin-2-yl)-2-phenyl-4,4'-bipyridine

Prepared according to general procedure C using (*S*)-(3-(1-methylpyrrolidin-2-yl)pyridin-4-yl)diphenyl(2-phenylpyridin-4-yl)phosphonium trifluoromethanesulfonate (325 mg, 0.50 mmol), trifluoromethanesulfonic acid (134 µL, 1.50 mmol) and EtOH (1.25 mL) at 80 °C for 12 hours. Flash column chromatography (silica gel: 2.5% MeOH in CH₂Cl₂ to 5% MeOH in CH₂Cl₂) afforded the title compound as a yellow amorphous solid (84 mg, 0.265 mmol, 53% yield). mp 85–88 °C; IR v_{max} /cm⁻¹ (film): 3030, 2960, 2937, 2872, 2831, 2770, 1604, 1585, 1577, 1557, 1532, 1467, 1442, 1408, 1390, 1358, 1217, 1182, 1151, 1062, 1039, 1023, 836, 780, 750, 701; ¹H NMR (400 MHz, CDCl₃) δ : 8.97 (1H, s), 8.75 (1H, d, *J* = 4.9 Hz), 8.54 (1H, d, *J* = 4.9 Hz), 8.02 (2H, d, *J* = 7.4 Hz), 7.62 (1H, s), 7.50-7.40 (3H, m), 7.13 (1H, d, *J* = 4.9 Hz), 7.09 (1H, d, *J* = 4.9 Hz), 3.18-3.12 (2H, m), 2.18-2.03 (5H, m), 1.98-1.86 (1H, m), 1.80-1.66 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 157.40, 150.26, 149.54, 147.57, 147.48, 146.85, 138.74, 136.03, 129.30, 128.81, 126.86, 122.84, 121.89, 120.26, 65.27, 56.64, 40.28, 35.64, 22.79; *m/z* HRMS (DART) found [M+ H]⁺ 316.1827, C₂₁H₂₂N₃⁺ requires 316.1814.

4-Methyl-2-(2-((1-(4-phenoxy)propan-2-yl)oxy)pyridin-4-yl)quinoline

Prepared according to general procedure C using (4-methylquinolin-2-yl)(2-((1-(4-phenoxy)propan-2-yl)oxy)pyridin-4-yl)diphenylphosphonium trifluoromethanesulfonate (80 mg, 0.10 mmol), trifluoromethanesulfonic acid (18 μ L, 0.20 mmol) and EtOH (0.25 mL) at 80 °C for 48 hours. Flash column chromatography (silica gel: 2.5% EtOAc in CH₂Cl₂ to 5% EtOAc in CH₂Cl₂) afforded the title compound as a colorless oil (27 mg, 0.06 mmol, 57% yield). IR v_{max} /cm⁻¹ (film): 3063, 2924, 2870, 1595, 1541, 1502, 1487, 1461, 1418, 1403, 1377, 1345, 1304, 1282, 1265, 1217, 1158, 1134, 1119, 1102, 1072, 1042, 995, 976, 919, 890, 871, 836, 757; ¹H NMR (400 MHz, CDCl₃) δ : 8.31 (1H, d, *J* = 4.9 Hz), 8.18 (1H, d, *J* = 8.4 Hz), 8.01 (1H, d, *J* = 8.3 Hz), 7.76-7.66 (3H, m), 7.59 (1H, t, *J* = 7.6 Hz), 7.51 (1H, s), 7.29 (2H, t, *J* = 7.8 Hz), 7.05-6.94 (7H, m), 5.72-5.65 (1H, m), 4.25 (1H, dd, *J* = 9.9, 5.4 Hz), 4.13 (1H, dd, *J* = 9.8, 4.8 Hz), 2.77 (3H, s), 1.54 (3H, d, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 164.03, 158.47, 155.21, 154.26, 150.23, 149.95, 147.98, 147.35, 145.33, 130.55, 129.61, 129.55, 127.84, 126.79, 123.63, 122.36, 120.74, 119.32, 117.57, 115.77, 115.20, 109,69, 71.07, 69.56, 19.01, 17.06; *m/z* HRMS (DART) found [M+H]⁺ 463.2017, C₃₀H₂₇N₂O₃⁺ requires 463.2022.

(1*R*,4*R*,5*R*)-2-((*R*)-(Benzyloxy)(4'-methyl-[2,2'-biquinolin]-4-yl)methyl)-5-vinylquinuclidine

Prepared according to general procedure C using $(4-((1R)-(benzyloxy))((1R,4R)-5-vinylquinuclidin-2-yl)methyl)quinolin-2-yl)(4-methylquinolin-2-yl)diphenylphosphonium trifluoromethanesulfonate (215 mg, 0.25 mmol), trifluoromethanesulfonic acid (67 µL, 0.75 mmol) and EtOH (625 µL) at 80 °C for 15 hours. Purified by flash column chromatography three rounds (basic Al₂O₃: 33% EtOAc in hexanes) to afford the title compound as a colorless oil (83 mg, 0.16 mmol, 63% yield). IR <math>v_{max}/cm^{-1}$ (film): 3064, 3031, 2927, 2862, 1594, 1548, 1503,

1452, 1422, 1406, 1297, 1263, 1221, 1161, 1084, 1046, 1027, 990, 907, 883, 863, 815, 756, 728, 697; ¹H NMR (400 MHz, CDCl₃) δ : 9.02 (1H, s), 8.69 (1H, s), 8.32 (1H, d, *J* = 8.4 Hz), 8.29-8.23 (2H, m), 8.05 (1H, d, *J* = 8.3 Hz), 7.80–7.74 (2H, m), 7.61-7.59 (2H, m), 7.47-7.32 (5H, m), 5.82-5.74 (1H, m), 5.37 (1H, br s), 4.93 (2H, dd, *J* = 17.2, 10.4 Hz), 4.59 (1H, d, *J* = 11.2 Hz), 4.47 (1H, d, *J* = 11.2 Hz), 3.50-3.44 (1H, m), 3.33 (1H, br s), 3.13-3.07 (1H, m), 2.85 (3H, s), 2.73-2.62 (2H, m), 2.26 (1H, br s), 1.97-1.92 (1H, m), 1.81-1.74 (3H, m), 1.53-1.47 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 156.22, 155.79, 148.49, 147.86, 146.76, 144.71, 142.02, 138.00, 130.88, 130.68, 129.07, 129.03, 128.42, 128.35, 128.20, 127.69, 126.83, 126.68, 126.59, 123.70, 123.46, 119.81, 117.56, 114.06, 81.94, 71.49, 60.75, 57.04, 43.03, 40.12, 27.93, 27.77, 22.95, 18.94; *m/z* HRMS (DART) found [M+H]⁺ 526.2885, C₃₆H₃₆N₃O⁺ requires 526.2858.

13. Thermochemical Data and Absolute Energy Values

To compare Gibbs free energies along the reaction coordinate, a correction for the change in standard state from gas phase at 1 atm to a 1 M solution was applied to all species $(G_{corr}^{1M} = RT \cdot \ln(\frac{V_0}{V}) = +2.36 \text{ kcal/mol})$. For V_0 , we considered the molar volume of an ideal gas at 353.15 K to be 28.98 1 mol⁻¹.

Table S12. Thermochemical data including absolute energies, zero-point energies (ZPE), T·S and Gibbs free energies along the reaction pathway from **Int-III** at the ω B97X-D/6-31+G(d) level. All values include quasi-harmonic corrections.

System	E (hartree)	ZPE (hartree)	$T \cdot S$ (hartree)	G (hartree)
[Int-III]-Py,OMe,ax-a	-1414.803437	0.390381	0.095766	-1414.475791
[Int-III]-Py,OMe,ax-b	-1414.802529	0.389765	0.096565	-1414.476040
[Int-III]-Py,Py,ax-a	-1414.788634	0.390262	0.095984	-1414.461209
[Int-III]-Ph,OMe,ax-a	-1414.801268	0.390497	0.095671	-1414.473414
[Int-III]-Ph,OMe,ax-b	-1414.800387	0.390040	0.095921	-1414.473112
[Int-III]-Py,Ph,ax-a	-1414.786059	0.390239	0.096125	-1414.458766
[Int-III]-Ph,Ph,ax-a	-1414.781281	0.389897	0.096750	-1414.454850
[TS-I]-Py,OMe,ax-a	-1414.752347	0.388220	0.095681	-1414.426872
[TS-I]-Ph,OMe,ax-a	-1414.741220	0.388277	0.095699	-1414.415713
[TS-I]-Py,Ph,ax-a	-1414.747257	0.387285	0.097162	-1414.423702
[Int-IV]-Py,Ph,ax-a	-1414.794151	0.389786	0.096332	-1414.467431
[TS-II]-Py,Ph,ax-a	-1414.793916	0.388976	0.095692	-1414.467943
[Int-V]-Py,OMe,ax-a	-1414.859381	0.389933	0.098695	-1414.534274
[Int-V]-Py,OMe,ax-b	-1414.858316	0.389556	0.099600	-1414.534274
[Int-V]-Ph,OMe,ax-a	-1414.859671	0.389243	0.100234	-1414.536442
[Int-V]-Ph,OMe,ax-b	-1414.858745	0.389953	0.098822	-1414.533744
[Int-V]-Py,Ph,ax-a	-1414.860239	0.389670	0.099092	-1414.535600
BiPy	-495.239050	0.160415	0.054965	-495.120680
Phosph-Ph,Ph,OMe	-919.605000	0.227880	0.070212	-919.427423
PhPy	-479.205617	0.172111	0.055245	-479.075605
Phosph-Py,Ph,OMe	-935.639914	0.216869	0.068537	-935.472293

Table S13. Absolute energies and Gibbs free energies along the reaction pathway from **Int-III** at the DLPNO-CCSD(T)/cc-pV(DT)Z// ω B97X-D/6-31+G(d) level. All values include quasi-harmonic corrections.

System	E (hartree)	G (hartree)	Grel (kcal/mol)
[Int-III]-Py,OMe,ax-a	-1413.318548	-1412.990902	0.1
[Int-III]-Py,OMe,ax-b	-1413.317477	-1412.990987	0.0
[Int-III]-Py,Py,ax-a	-1413.306330	-1412.978904	7.6
[Int-III]-Ph,OMe,ax-a	-1413.315975	-1412.988121	1.8
[Int-III]-Ph,OMe,ax-b	-1413.315659	-1412.988383	1.6
[Int-III]-Py,Ph,ax-a	-1413.304320	-1412.977027	8.8
[Int-III]-Ph,Ph,ax-a	-1413.300163	-1412.973731	10.8
[TS-I]-Py,OMe,ax-a	-1413.267942	-1412.942467	30.4
[TS-I]-Ph,OMe,ax-a	-1413.257852	-1412.932345	36.8
[TS-I]-Py,Ph,ax-a	-1413.263204	-1412.939650	32.2
[Int-IV]-Py,Ph,ax-a	-1413.305916	-1412.979196	7.4
[TS-II]-Py,Ph,ax-a	-1413.304702	-1412.978730	7.7
[Int-V]-Py,OMe,ax-a	-1413.366873	-1413.041765	-31.9
[Int-V]-Py,OMe,ax-b	-1413.365225	-1413.041183	-31.5
[Int-V]-Ph,OMe,ax-a	-1413.366836	-1413.043607	-33.0
[Int-V]-Ph,OMe,ax-b	-1413.365545	-1413.040544	-31.1
[Int-V]-Py,Ph,ax-a	-1413.367564	-1413.042925	-32.6
BiPy	-494.727418	-494.609049	-
Phosph-Ph,Ph,OMe	-918.625005	-918.447428	-
BiPy +	1412 252422	1412 056477	-38.7
Phosph-Ph,Ph,OMe	-1415.552425	-1413.030477	$(_{G_{corr}^{1M}}$ included)
PhPy	-478.692700	-478.562689	-
Phosph-Py,Ph,OMe	-934.660342	-934.492721	-
PhPy +	1412 252042	1412 05541	-38.1
Phosph-Py,Ph,OMe	-1415.555042	-1415.05541	$(_{G_{corr}^{1M}} included)$

Table S14. Absolute energies and Gibbs free energies along the reaction pathway from **Int-III** at the ω B97X-D/def2-QZVPP// ω B97X-D/6-31+G(d) level. All values include quasi-harmonic corrections.

System	E (hartree)	G (hartree)	Grel (kcal/mol)
[Int-III]-Py,OMe,ax-a	-1415.256868	-1414.929222	0.1
[Int-III]-Py,OMe,ax-b	-1415.255945	-1414.929455	0.0
[Int-III]-Py,Py,ax-a	-1415.244831	-1414.917405	7.6
[Int-III]-Ph,OMe,ax-a	-1415.254623	-1414.926769	1.7
[Int-III]-Ph,OMe,ax-b	-1415.253758	-1414.926482	1.9
[Int-III]-Py,Ph,ax-a	-1415.242494	-1414.915201	8.9
[Int-III]-Ph,Ph,ax-a	-1415.237355	-1414.910923	11.6
[TS-I]-Py,OMe,ax-a	-1415.209182	-1414.883708	28.7
[TS-I]-Ph,OMe,ax-a	-1415.198305	-1414.872798	35.6
[TS-I]-Py,Ph,ax-a	-1415.205324	-1414.881770	29.9
[Int-IV]-Py,Ph,ax-a	-1415.248970	-1414.922253	4.5
[TS-II]-Py,Ph,ax-a	-1415.247531	-1414.921559	5.0
[Int-V]-Py,OMe,ax-a	-1415.309483	-1414.984375	-34.5
[Int-V]-Py,OMe,ax-b	-1415.308302	-1414.984260	-34.4
[Int-V]-Ph,OMe,ax-a	-1415.309784	-1414.986554	-35.8
[Int-V]-Ph,OMe,ax-b	-1415.308775	-1414.983775	-34.1
[Int-V]-Py,Ph,ax-a	-1415.309791	-1414.985151	-34.9
BiPy	-495.422409	-495.304039	-
Phosph-Ph,Ph,OMe	-919.872786	-919.695209	-
BiPy +	1415 205105	1414 000248	-41.4
Phosph-Ph,Ph,OMe	-1415.275175	-1414.999240	$(_{G_{corr}^{1M}}$ included)
PhPy	-479.383436	-479.253424	-
Phosph-Py,Ph,OMe	-935.913465	-935.745844	-
PhPy +	1415 206001	1414 000269	-41.4
Phosph-Py,Ph,OMe	-1413.290901	-1414.999208	$(_{G_{corr}^{1M}} included)$

Table S15. Thermochemical data including absolute energies, zero-point energies (ZPE), T·S and Gibbs free energies along the reaction pathway from [Int-III·H]⁺ at the ω B97X-D/6-31+G(d) level. All values include quasi-harmonic corrections.

System	E (hartree)	ZPE (hartree)	$T \cdot S$ (hartree)	G (hartree)
[Int-III·H]+-PyH+,OMe,ax-a	-1415.262121	0.404638	0.095855	-1414.920109
[Int-III·H]+-PyH+,OMe,ax-b	-1415.263469	0.404777	0.095922	-1414.921433
[Int-III·H] ⁺ -Py,OMe,ax-a	-1415.260058	0.404555	0.096047	-1414.918301
[Int-III·H]+-Py,OMe,ax-b	-1415.255477	0.404475	0.095756	-1414.913564
[Int-III·H] ⁺ -Py,OMe,ax-c	-1415.257792	0.405108	0.095342	-1414.914975
[Int-III·H] ⁺ -Py,PyH ⁺ ,ax-a	-1415.248032	0.404674	0.095901	-1414.906052
[Int-III·H] ⁺ -Py,PyH ⁺ ,ax-b	-1415.249944	0.404386	0.096363	-1414.908535
[Int-III·H] ⁺ -Ph,OMe,ax-a	-1415.255391	0.404550	0.095345	-1414.913106
[Int-III·H]+-PyH+,Ph,ax-a	-1415.247341	0.404111	0.096617	-1414.906360
[Int-III·H]+-PyH+,Ph,ax-b	-1415.246798	0.403983	0.096930	-1414.906200
[Int-III·H] ⁺ -Ph,Ph,ax-a	-1415.237385	0.403956	0.097217	-1414.897084
[TS-I·H] ⁺ -Py,OMe,ax-a	-1415.229298	0.402314	0.095970	-1414.889798
[TS-I∙H]⁺-Ph,OMe,ax-a	-1415.218953	0.403480	0.094704	-1414.877465
[TS-I·H] ⁺ -Py,Ph,ax-a	-1415.220149	0.402099	0.096364	-1414.881090
[Int-IV·H]+-Py,OMe,ax-a*	-1415.288257	0.404398	0.096500	-1414.946932
[Int-IV·H] ⁺ -Py,OMe,ax-b	-1415.291214	0.404355	0.096727	-1414.950053
[Int-IV·H] ⁺ -Ph,OMe,ax-a	-1415.282840	0.404072	0.096590	-1414.941851
[Int-IV·H]+-Ph,OMe,ax-b	-1415.285992	0.404052	0.097358	-1414.945697
[Int-IV·H] ⁺ -Py,Ph,ax-a	-1415.288417	0.403684	0.097399	-1414.948300
[TS-II·H]⁺-Py,OMe,ax-a	-1415.282237	0.403121	0.096600	-1414.942537
[TS-II·H] ⁺ -Ph,OMe,ax-a	-1415.279125	0.402521	0.097169	-1414.940420
[TS-II·H] ⁺ -Py,Ph,ax-a	-1415.279596	0.403239	0.095948	-1414.939287
[Int-V·H] ⁺ -Py,OMe,ax-a [*]	-1415.314386	0.403894	0.100227	-1414.976601
[Int-V·H]+-Ph,OMe,ax-a	-1415.314710	0.404168	0.099293	-1414.975817
[Int-V·H] ⁺ -Py,Ph,ax-a [*]	-1415.315627	0.403783	0.099682	-1414.977268
$[BiPy \cdot H]^+$	-495.693964	0.174416	0.055238	-495.561679
Phosph-Ph,Ph,OMe	-919.605000	0.227880	0.070212	-919.427423
[PhPy⋅H] ⁺	-479.662889	0.186174	0.055538	-479.518906
Phosph-Py,Ph,OMe	-935.639914	0.216869	0.068537	-935.472293
*These systems showed $v_i < 35$	cm ⁻¹ . These imagina	ry frequencies were	inverted to their r	espective positive

values before the QHA entropic corrections were computed as seen in previous examples. (97)

System	E (hartree)	G (hartree)	G _{rel} (kcal/mol)
[Int-III·H]+-PyH+,OMe,ax-a	-1413.776342	-1413.434331	0.6
[Int-III·H]+-PyH+,OMe,ax-b	-1413.777378	-1413.435342	0.0
[Int-III·H] ⁺ -Py,OMe,ax-a	-1413.774234	-1413.432478	1.8
[Int-III·H]+-Py,OMe,ax-b	-1413.769657	-1413.427744	4.8
[Int-III·H]+-Py,OMe,ax-c	-1413.771195	-1413.428379	4.4
[Int-III·H]+-Py,PyH+,ax-a	-1413.764070	-1413.422091	8.3
[Int-III·H]+-Py,PyH+,ax-b	-1413.767048	-1413.425639	6.1
[Int-III·H]⁺-Ph,OMe,ax-a	-1413.768895	-1413.426609	5.5
[Int-III·H]+-PyH+,Ph,ax-a	-1413.764661	-1413.423680	7.3
[Int-III·H] ⁺ -PyH ⁺ ,Ph,ax-b	-1413.764384	-1413.423786	7.3
[Int-III·H]+-Ph,Ph,ax-a	-1413.754571	-1413.414270	13.2
[TS-I·H] ⁺ -Py,OMe,ax-a	-1413.743709	-1413.404209	19.5
[TS-I·H] ⁺ -Ph,OMe,ax-a	-1413.734467	-1413.392979	26.6
[TS-I·H] ⁺ -Py,Ph,ax-a	-1413.734881	-1413.395823	24.8
[Int-IV·H] ⁺ -Py,OMe,ax-a [*]	-1413.799816	-1413.458491	-14.5
[Int-IV·H] ⁺ -Py,OMe,ax-b	-1413.802370	-1413.461209	-16.2
[Int-IV·H] ⁺ -Ph,OMe,ax-a	-1413.795050	-1413.454061	-11.7
[Int-IV·H] ⁺ -Ph,OMe,ax-b	-1413.797667	-1413.457372	-13.8
[Int-IV·H] ⁺ -Py,Ph,ax-a	-1413.800840	-1413.460723	-15.9
[TS-II·H] ⁺ -Py,OMe,ax-a	-1413.789622	-1413.449922	-9.1
[TS-II∙H]⁺-Ph,OMe,ax-a	-1413.786764	-1413.448059	-8.0
[TS-II·H]+-Py,Ph,ax-a	-1413.786334	-1413.446025	-6.7
[Int-V·H] ⁺ -Py,OMe,ax-a [*]	-1413.821310	-1413.483525	-30.2
[Int-V·H]+-Ph,OMe,ax-a	-1413.820113	-1413.481220	-28.8
[Int-V·H] ⁺ -Py,Ph,ax-a [*]	-1413.822152	-1413.483793	-30.4
[BiPy·H]⁺	-495.182152	-495.049867	-
Phosph-Ph,Ph,OMe	-918.625005	-918.447428	-
[BiPy ⋅ H] ⁺ +	-1413 807157	-1413 497295	-36.5
Phosph-Ph,Ph,OMe	1112.007107	1110.197290	$(_{G_{corr}^{1M}} included)$
[PhPy·H]⁺	-479.149345	-479.005362	-
Phosph-Py,Ph,OMe	-934.660342	-934.492721	-
[PhPy·H] ⁺ +	-1413 809687	-1413 /08083	-37.0
Phosph-Py,Ph,OMe	1713.007007	-1713,470003	$(_{G_{corr}^{1M}} included)$

Table S16. Absolute energies and Gibbs free energies along the reaction pathway from **[Int-III·H]**+ at the DLPNO-CCSD(T)/cc-pV(DT)Z// ω B97X-D/6-31+G(d) level. All values include quasi-harmonic corrections.

*These systems showed $v_i < 35$ cm⁻¹. These imaginary frequencies were inverted to their respective positive values before the QHA entropic corrections were computed as seen in previous examples (97).

System	E (hartree)	G (hartree)	G _{rel} (kcal/mol)
[Int-III·H]+-PyH+,OMe,ax-a	-1415.720913	-1415.378902	0.8
[Int-III·H]+-PyH+,OMe,ax-b	-1415.722258	-1415.380222	0.0
[Int-III·H]+-Py,OMe,ax-a	-1415.718735	-1415.376979	2.0
[Int-III·H]+-Py,OMe,ax-b	-1415.714218	-1415.372305	5.0
[Int-III·H]⁺-Py,OMe,ax-c	-1415.716455	-1415.373639	4.1
[Int-III·H]+-Py,PyH+,ax-a	-1415.709362	-1415.367383	8.1
[Int-III·H]+-Py,PyH+,ax-b	-1415.711284	-1415.369875	6.5
[Int-III·H] ⁺ -Ph,OMe,ax-a	-1415.714124	-1415.371838	5.3
[Int-III·H]+-PyH+,Ph,ax-a	-1415.708852	-1415.367871	7.8
[Int-III·H] ⁺ -PyH ⁺ ,Ph,ax-b	-1415.708315	-1415.367717	7.8
[Int-III·H]+-Ph,Ph,ax-a	-1415.699327	-1415.359026	13.3
[TS-I·H]⁺-Py,OMe,ax-a	-1415.691404	-1415.351903	17.8
[TS-I·H]⁺-Ph,OMe,ax-a	-1415.681360	-1415.339872	25.3
[TS-I·H]⁺-Py,Ph,ax-a	-1415.683835	-1415.344777	22.2
[Int-IV·H] ⁺ -Py,OMe,ax-a [*]	-1415.749250	-1415.407922	-17.4
[Int-IV·H]⁺-Py,OMe,ax-b	-1415.752260	-1415.411095	-19.4
[Int-IV·H]⁺-Ph,OMe,ax-a	-1415.743890	-1415.402903	-14.2
[Int-IV·H]⁺-Ph,OMe,ax-b	-1415.747130	-1415.406836	-16.7
[Int-IV·H] ⁺ -Py,Ph,ax-a	-1415.749470	-1415.409353	-18.3
[TS-II·H] ⁺ -Py,OMe,ax-a	-1415.739550	-1415.399850	-12.3
[TS-II·H] ⁺ -Ph,OMe,ax-a	-1415.736760	-1415.398055	-11.2
[TS-II·H] ⁺ -Py,Ph,ax-a	-1415.736814	-1415.396505	-10.2
[Int-V·H] ⁺ -Py,OMe,ax-a [*]	-1415.769264	-1415.431479	-32.2
[Int-V·H] ⁺ -Ph,OMe,ax-a	-1415.769772	-1415.430879	-31.8
[Int-V·H] ⁺ -Py,Ph,ax-a [*]	-1415.770107	-1415.431748	-32.3
[BiPy⋅H] ⁺	-495.882458	-495.750173	-
Phosph-Ph,Ph,OMe	-919.872786	-919.695209	-
[BiPy·H] ⁺ +	1415 755244	1415 445382	-38.5
Phosph-Ph,Ph,OMe	-1+15.7552++	-1415.445562	$(_{G_{corr}^{1M}} included)$
[PhPy·H]⁺	-479.845825	-479.701842	-
Phosph-Py,Ph,OMe	-935.913465	-935.745844	-
$[\mathbf{PhPy} \cdot \mathbf{H}]^+ +$	-1/15 75020	-1/15 //7686	-40.0
Phosph-Py,Ph,OMe	-1413./3727	-1413.447000	$(_{G_{corr}^{1M}}$ included)

Table S17. Absolute energies and Gibbs free energies along the reaction pathway from **[Int-III·H]**+ at at the ω B97X-D/def2-QZVPP// ω B97X-D/6-31+G(d) level. All values include quasi-harmonic corrections.

^{*}These systems showed $v_i < 35$ cm⁻¹. These imaginary frequencies were inverted to their respective positive values before the QHA entropic corrections were computed as seen in previous examples (97).

Table S18. Thermochemical data including absolute energies, zero-point energies (ZPE), T·S and Gibbs free energies along the reaction pathway from [Int-III·2H]²⁺ at the ω B97X-D/6-31+G(d) level. All values include quasi-harmonic corrections.

System	E (hartree)	ZPE (hartree)	$T \cdot S$ (hartree)	G (hartree)
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1415.715045	0.419114	0.096169	-1415.358797
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-1415.711031	0.419045	0.095727	-1415.354450
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-c	-1415.713255	0.418916	0.096062	-1415.357040
[Int-III·2H] ²⁺ -PyH ⁺ ,PyH ⁺ ,ax-a	-1415.706212	0.419258	0.095755	-1415.349458
[Int-III·2H] ²⁺ -Ph,OMe,ax-a	-1415.708399	0.419425	0.095324	-1415.351204
[Int-III·2H] ²⁺ -Ph,OMe,ax-b	-1415.706755	0.419581	0.095533	-1415.349573
[Int-III·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1415.698106	0.418680	0.096493	-1415.342438
[Int-III·2H] ²⁺ -PyH ⁺ ,Ph,ax-b	-1415.697383	0.418818	0.096644	-1415.341718
[Int-III·2H] ²⁺ -Ph,Ph,ax-a	-1415.689310	0.418363	0.097117	-1415.334496
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1415.682140	0.417530	0.095393	-1415.326982
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-1415.686916	0.417186	0.096003	-1415.332533
[TS-I·2H] ²⁺ -Ph,OMe,ax-a	-1415.670386	0.417010	0.095543	-1415.315861
[TS-I·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1415.681170	0.416331	0.097009	-1415.328257
[TS-I·2H] ²⁺ -Ph,Ph,ax-a	-1415.661334	0.416101	0.096741	-1415.308530
[Int-IV·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1415.739754	0.418595	0.097298	-1415.384856
[Int-IV·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-1415.742543	0.418177	0.095240	-1415.386770
[Int-IV·2H] ²⁺ -Ph,OMe,ax-a	-1415.730395	0.418574	0.096589	-1415.374822
[Int-IV·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1415.740873	0.418274	0.098334	-1415.387006
[TS-II·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1415.734212	0.417525	0.096379	-1415.379855
[TS-II·2H] ²⁺ -Ph,OMe,ax-a	-1415.727262	0.417335	0.095933	-1415.372721
[TS-II·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1415.731725	0.418091	0.095632	-1415.376324
[Int-V·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1415.765251	0.418693	0.099081	-1415.411556
[Int-V·2H] ²⁺ -Ph,OMe,ax-a	-1415.767800	0.418564	0.098581	-1415.413736
[Int-V·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1415.766283	0.417841	0.099483	-1415.41356
[BiPy·2H] ²⁺	-496.142980	0.188377	0.055558	-495.996855
Phosph-Ph,Ph,OMe	-919.605000	0.227880	0.070212	-919.427423
$[\mathbf{PhPy} \cdot \mathbf{H}]^+$	-479.662889	0.186174	0.055538	-479.518906
Phosph-PyH ⁺ ,Ph,OMe	-936.091213	0.230776	0.069174	-935.910036

System	E (hartree)	G (hartree)	Grel (kcal/mol)	
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1414.223227	-1413.866979	0.0	
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-1414.223209	-1413.866629	0.2	
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-c	-1414.211964	-1413.855749	7.0	
[Int-III·2H] ²⁺ -PyH ⁺ ,PyH ⁺ ,ax-a	-1414.220429	-1413.863674	2.1	
[Int-III·2H] ²⁺ -Ph,OMe,ax-a	-1414.219198	-1413.862003	3.1	
[Int-III·2H] ²⁺ -Ph,OMe,ax-b	-1414.218356	-1413.861174	3.6	
[Int-III·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1414.213688	-1413.858020	5.6	
[Int-III·2H] ²⁺ -PyH ⁺ ,Ph,ax-b	-1414.212305	-1413.856639	6.5	
[Int-III·2H] ²⁺ -Ph,Ph,ax-a	-1414.203378	-1413.848565	11.6	
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1414.194715	-1413.839557	17.2	
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-1414.199208	-1413.844825	13.9	
[TS-I·2H] ²⁺ -Ph,OMe,ax-a	-1414.181410	-1413.826885	25.2	
[TS-I·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1414.192702	-1413.839788	17.1	
[TS-I·2H] ²⁺ -Ph,Ph,ax-a	-1414.173224	-1413.820421	29.2	
[Int-IV·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1414.248486	-1413.893588	-16.7	
[Int-IV·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-1414.251141	-1413.895368	-17.8	
[Int-IV·2H] ²⁺ -Ph,OMe,ax-a	-1414.238513	-1413.882940	-10.0	
[Int-IV·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1414.250426	-1413.896559	-18.6	
[TS-II·2H] ²⁺ -PyH⁺,OMe,ax-a	-1414.238504	-1413.884147	-10.8	
[TS-II·2H] ²⁺ -Ph,OMe,ax-a	-1414.231879	-1413.877338	-6.5	
[TS-II·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1414.235758	-1413.880357	-8.4	
[Int-V·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1414.269254	-1413.915559	-30.5	
[Int-V·2H] ²⁺ -Ph,OMe,ax-a	-1414.272460	-1413.918397	-32.3	
[Int-V·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1414.270115	-1413.917392	-31.6	
[BiPy ·2H] ²⁺	-495.630016	-495.483890	-	
Phosph-Ph,Ph,OMe	-918.625005	-918.447428	-	
[BiPy·2H] ²⁺ +	-1414 255021	-1413 931318	-38.0	
Phosph-Ph,Ph,OMe	1414.255021	1415.751516	30.0	
[PhPy∙H]⁺	-479.149345	-479.005362	-	
Phosph-PyH ⁺ ,Ph,OMe	-935.111488	-934.930311	-	
[PhPy∙H] ⁺ +	-1414 260833	-1413 935673	-40 7	
Phosph-PyH ⁺ ,Ph,OMe	-1717.200033	-1-13.733013	-40./	

Table S19. Absolute energies and Gibbs free energies along the reaction pathway from **[Int-III·2H]**²⁺ at the DLPNO-CCSD(T)/cc-pV(DT)Z// ω B97X-D/6-31+G(d) level. All values include quasi-harmonic corrections.

System	E (hartree)	G (hartree)	Grel (kcal/mol)	
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1416.178948	-1415.822700	0.0	
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-1416.175069	-1415.818489	2.6	
[Int-III·2H] ²⁺ -PyH ⁺ ,OMe,ax-c	-1416.177246	-1415.821031	1.0	
[Int-III·2H] ²⁺ -PyH ⁺ ,PyH ⁺ ,ax-a	-1416.172628	-1415.815873	4.3	
[Int-III·2H] ²⁺ -Ph,OMe,ax-a	-1416.172269	-1415.815074	4.8	
[Int-III·2H] ²⁺ -Ph,OMe,ax-b	-1416.170770	-1415.813588	5.7	
[Int-III·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1416.164642	-1415.808974	8.6	
[Int-III·2H] ²⁺ -PyH ⁺ ,Ph,ax-b	-1416.163978	-1415.808312	9.0	
[Int-III·2H] ²⁺ -Ph,Ph,ax-a	-1416.156198	-1415.801385	13.4	
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1416.149376	-1415.794218	17.9	
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-1416.154105	-1415.799722	14.4	
[TS-I·2H] ²⁺ -Ph,OMe,ax-a	-1416.137733	-1415.783208	24.8	
[TS-I·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1416.149430	-1415.796516	16.4	
[TS-I·2H] ²⁺ -Ph,Ph,ax-a	-1416.130386	-1415.777583	28.3	
[Int-IV·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1416.205900	-1415.851003	-17.8	
[Int-IV·2H] ²⁺ -PyH ⁺ ,OMe,ax-b	-1416.208740	-1415.852962	-19.0	
[Int-IV·2H] ²⁺ -Ph,OMe,ax-a	-1416.196260	-1415.840681	-11.3	
[Int-IV·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1416.207000	-1415.853131	-19.1	
[TS-II·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1416.196888	-1415.842531	-12.4	
[TS-II·2H] ²⁺ -Ph,OMe,ax-a	-1416.190437	-1415.835897	-8.3	
[TS-II·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1416.194030	-1415.838630	-10.0	
[Int-V·2H] ²⁺ -PyH ⁺ ,OMe,ax-a	-1416.224969	-1415.871275	-30.5	
[Int-V·2H] ²⁺ -Ph,OMe,ax-a	-1416.227757	-1415.873694	-32.0	
[Int-V·2H] ²⁺ -PyH ⁺ ,Ph,ax-a	-1416.225502	-1415.872779	-31.4	
[BiPy ·2H] ²⁺	-496.336457	-496.190331	-	
Phosph-Ph,Ph,OMe	-919.872786	-919.695209	-	
[BiPy·2H] ²⁺ +	-1416 209243	-1/15 8855/	-37 1	
Phosph-Ph,Ph,OMe	-1410.209243	-1415.00554	-57.1	
[PhPy⋅H]⁺	-479.845825	-479.701842	-	
Phosph-PyH ⁺ ,Ph,OMe	-936.369964	-936.188787	-	
[PhPy⋅H] ⁺ +	-1/16 215780	-1/15 800620	-40.3	
Phosph-PyH ⁺ ,Ph,OMe	-1410.213/07	-1413.090029	-40.3	

Table S20. Absolute energies and Gibbs free energies along the reaction pathway from **[Int-III·2H]**²⁺ at the ω B97X-D/def2-QZVPP// ω B97X-D/6-31+G(d) level. All values include quasi-harmonic corrections.

Table S21. Thermochemical data including absolute energies, zero-point energies (ZPE), T·S and Gibbs free energies of MeO-Py couplings in $[TS-I\cdot 2H]^{2+}$ at the $\omega B97X-D/6-31+G(d)$ level. All values include quasi-harmonic corrections.

System	E (hartree)	ZPE (hartree)	$T \cdot S$ (hartree)	G (hartree)
[TS-I·2H] ²⁺ -Ph,OMe,ax-MeOPyH ⁺	-1415.689234	0.416703	0.096262	-1415.335433
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-MeOPyH ⁺	-1415.690099	0.416664	0.096017	-1415.336133

Table S22. Absolute energies and Gibbs free energies of MeO-Py couplings in $[TS-I\cdot 2H]^{2+}$ at the DLPNO-CCSD(T)/cc-pV(DT)Z// ω B97X-D/6-31+G(d) level. All values include quasi-harmonic corrections.

System	E (hartree)	G (hartree)	Grel (kcal/mol)
[TS-I·2H] ²⁺ -Ph,OMe,ax-MeOPyH ⁺	-1414.191043	-1413.837243	18.7
[TS-I·2H] ²⁺ -PyH ⁺ ,OMe,ax-MeOPyH ⁺	-1414.192949	-1413.838983	17.6

14. Cartesian Coordinates

Pathway Int-III

[Int-III]-Ph,OMe,ax-a

С	2.315747	-3.417517	-1.115310
С	1.440619	-2.344070	-1.268153
С	1.282964	-1.401310	-0.245374
С	2.040581	-1.546387	0.923994
С	2.944378	-2.596978	1.060555
Η	2.409980	-4.148771	-1.913493
Η	0.889607	-2.238012	-2.195396
Η	1.929633	-0.842839	1.743166
Η	3.535904	-2.679936	1.968110
Р	0.103553	0.015200	-0.425152
С	0.797043	1.718886	-0.282781
С	0.131824	2.804624	-0.852873
С	2.014516	1.961707	0.350028
С	0.693003	4.071806	-0.738183
Η	-0.804460	2.684519	-1.388656
С	2.502326	3.264709	0.392182
Η	2.591944	1.166153	0.809297
Η	0.181518	4.931944	-1.163249
Η	3.455038	3.470747	0.874086
С	-0.463581	-0.078578	1.423789
С	-0.497817	1.000784	2.310738
С	-0.981181	-1.303552	1.876946
С	-1.014133	0.863610	3.604123
Η	-0.127338	1.977097	2.012236
С	-1.495534	-1.450693	3.160581
Η	-0.983283	-2.168409	1.214802
С	-1.512602	-0.361156	4.035118
Η	-1.024238	1.722849	4.270440

Η	-1.884624	-2.414332	3.480248
Η	-1.913300	-0.469674	5.039681
С	3.075982	-3.543191	0.045612
Η	3.768879	-4.372712	0.158371
0	0.392176	0.098425	-2.197727
С	-1.662043	-0.231739	-0.940527
С	-2.063466	-1.332623	-1.696403
С	-2.648482	0.666434	-0.530024
С	-3.413772	-1.486498	-1.996127
Η	-1.356386	-2.073861	-2.050402
С	-3.966569	0.441733	-0.911939
Η	-2.415883	1.530015	0.085700
Η	-3.745620	-2.349535	-2.568472
Η	-4.743073	1.143719	-0.617917
Ν	-4.362260	-0.618230	-1.626882
С	1.656341	0.420409	-2.738894
Η	1.772961	-0.113523	-3.689780
Η	1.739225	1.499483	-2.932265
Η	2.489239	0.127041	-2.084061
Ν	1.860360	4.315399	-0.129664

[Int-III]-Ph,OMe,ax-b

С	-1.655786	-1.441348	3.080806
С	-1.098831	-1.296519	1.814272
С	-0.475761	-0.103184	1.412843
С	-0.450491	0.949062	2.332521
С	-1.008312	0.814050	3.608292
Η	-2.127844	-2.380288	3.359672
Η	-1.157082	-2.137873	1.124791
Η	-0.000212	1.901642	2.069296
Η	-0.970091	1.651461	4.300905
Р	0.120136	0.027334	-0.425527
С	1.138544	-1.529096	-0.286793
С	1.878955	-1.807940	0.863866
С	1.192470	-2.463300	-1.321805
С	2.639809	-2.971409	0.918334
Η	1.870630	-1.148047	1.724577
С	1.951826	-3.618189	-1.156129
Η	0.664387	-2.302764	-2.253906
Η	3.237631	-3.186928	1.800369
Η	1.983162	-4.363592	-1.947033
С	0.987554	1.635847	-0.220801
С	2.158091	1.739137	0.534123
С	0.484804	2.771196	-0.864056
С	2.815069	2.963359	0.648655
Η	2.570951	0.872376	1.040904
С	1.127552	3.999458	-0.725633
Η	-0.405080	2.705119	-1.483666
С	2.296194	4.098366	0.028596
Η	3.730940	3.027050	1.229856
Η	0.718957	4.877014	-1.219294
Η	2.803032	5.054435	0.127446
С	-1.610189	-0.380997	3.988982
Η	-2.043574	-0.487888	4.980060
0	0.430132	0.088733	-2.193216
С	-1.658472	0.000818	-0.951131
---	-----------	-----------	-----------
С	-2.191942	-1.040811	-1.709197
С	-2.525386	1.015258	-0.541136
С	-3.550227	-1.024406	-2.012076
Η	-1.581141	-1.864182	-2.061816
С	-3.860392	0.956158	-0.925145
Η	-2.186980	1.843228	0.074691
Η	-3.986035	-1.838245	-2.586749
Η	-4.543890	1.749284	-0.631866
Ν	-4.383741	-0.045276	-1.642895
С	1.727756	0.291944	-2.712007
Η	1.817456	-0.263891	-3.653357
Η	1.907392	1.356986	-2.915165
Η	2.520193	-0.061484	-2.036480
Ν			2.677613

-3.878727

-0.063806

[Int-III]-Ph,Ph,ax-a

Ċ	-1.325289	2.897121	-2.172103
С	-1.079356	1.648364	-1.600273
С	-0.342619	1.579541	-0.408380
С	0.069193	2.783977	0.177633
С	-0.263150	3.990160	-0.443030
Η	-1.867526	2.967350	-3.113062
Η	-1.474196	0.759171	-2.082365
Η	0.641302	2.798450	1.101338
Η	0.030308	4.935309	0.009900
Р	0.003468	-0.023882	0.494490
С	-1.902143	-0.387529	0.462558
С	-2.758176	0.562795	1.043801
С	-2.493089	-1.502361	-0.138098
С	-4.140452	0.409184	1.027844
Н	-2.339461	1.448046	1.520692
С	-3.882867	-1.663660	-0.163989
Η	-1.883761	-2.273826	-0.599098
Н	-4.773883	1.163875	1.487770
Н	-4.311300	-2.541174	-0.642329
С	1.900688	0.407138	0.623832
С	2.539569	0.869463	-0.538400
С	2.708199	0.164917	1.742288
С	3.914166	1.090012	-0.583801
Н	1.961354	1.065101	-1.439229
С	4.088382	0.384755	1.707040
Н	2.262843	-0.202332	2.660279
Н	4.372042	1.451504	-1.501462
Н	4.684359	0.189787	2.595711
0	0.051777	-0.188779	2.140977
С	0.453284	-1.486926	-0.544166
С	0.521137	-1.491713	-1.939052
С	0.782749	-2.668201	0.130810
С	0.905934	-2.662872	-2.588892
Η	0.290177	-0.612142	-2.529941
С	1.149742	-3.788849	-0.609577
Η	0.759468	-2.731394	1.215578
Η	0.967343	-2.683963	-3.674817
Η	1.403067	-4.716703	-0.101381
С	-0.832750	-0.915831	2.996303
Η	-0.222548	-1.226243	3.849056
Η	-1.647490	-0.275937	3.345091
Η	-1.246314	-1.801709	2.508785
Ν	-0.936907	4.063710	-1.611221
Ν	1.215094	-3.804475	-1.951239
С	4.698705	0.849253	0.544998
Η	5.771685	1.021215	0.516144
С	-4.711770	-0.709953	0.417408
Η	-5.791509	-0.833278	0.396867

[Int-III]-Py,OMe,ax-a

Ċ	3.388156	-1.685919	-1.935969
С	2.045705	-1.417462	-1.672534
С	1.687543	-0.322439	-0.880950
С	2.692639	0.503716	-0.366074
С	4.031175	0.255015	-0.661335
Η	3.652290	-2.550879	-2.538517
Н	1.287341	-2.072969	-2.085863
Н	2.442852	1.346589	0.272717
Н	4.798172	0.917351	-0.269165
Р	-0.080329	0.013633	-0.457375
С	0.394446	-0.076592	1.435516
С	0.859988	-1.299687	1.939423
С	0.398908	0.990748	2.333134
С	1.278549	-1.401477	3.257575
Н	0.900258	-2.185954	1.309317
С	0.840519	0.798424	3.643547
Н	0.072577	1.985349	2.045770
Η	1.635996	-2.352057	3.647333
Н	0.842880	1.633095	4.341794
С	-1.329126	-1.342776	-0.273929
С	-2.138215	-1.419188	0.866957
С	-1.488316	-2.309288	-1.274402
С	-3.090525	-2.426909	0.998667
Η	-2.033685	-0.694143	1.668083
С	-2.413554	-3.340134	-1.124873
Н	-0.901156	-2.254218	-2.183725
С	-3.222744	-3.398214	0.008110
Η	-3.720377	-2.455967	1.883474
Η	-2.508702	-4.090749	-1.904734
Η	-3.954202	-4.194376	0.117605
С	4.383794	-0.846109	-1.440094
Н	5.428948	-1.049979	-1.656692
0	-0.332988	0.079967	-2.226774
С	-0.686116	1.751566	-0.345319
С	-1.927993	2.061930	0.205941
С	0.076846	2.799303	-0.861463
С	-2.341858	3.390773	0.225332
Η	-2.580800	1.299506	0.618262
С	-0.418539	4.096076	-0.777580
Η	1.040163	2.627003	-1.331324
Н	-3.311146	3.649690	0.644543
Η	0.168216	4.926684	-1.162238
Ν	-1.607981	4.404453	-0.246114
С	-1.575096	0.442944	-2.792935
Η	-1.621269	1.525029	-2.981440
Η	-1.684747	-0.082209	-3.749329
Η	-2.430840	0.170095	-2.159187
Ν	1.274977	-0.371159	4.118635

[Int-III]-Py,OMe,ax-b

	,		
С	-0.118078	4.150337	-0.720723
С	0.232478	2.807317	-0.840690
Ĉ	-0 566596	1 815648	-0.262973
c	-1 73/352	2 183309	0.202979
C	2 005811	2.185509	0.408878
	-2.095611	5.520251	1 1 6 4 2 5 9
Н	0.517222	4.912137	-1.104358
Н	1.12/550	2.539109	-1.394991
Н	-2.374612	1.432787	0.862093
Н	-3.012024	3.797493	1.025025
Р	-0.082297	0.053227	-0.458960
С	-1.422063	-1.241686	-0.349895
С	-1.625763	-2.165645	-1.375779
С	-2.263401	-1.328250	0.761198
С	-2.622764	-3.127021	-1.237361
Η	-1.033877	-2.143299	-2.282602
С	-3.258509	-2.300226	0.788779
Ĥ	-2.161884	-0.663965	1.612573
Н	-2.774225	-3 865911	-2.020361
н	-3 933012	-2 360433	1 639202
C	0.361578	-0 203724	1 /27081
C	0.715347	1 401104	1.427001
C	0.715547	-1.491104	2 286502
C	1 1 1 9 9 6 4	0.003094	2.360302
	1.118804	-1./0/955	5.105497
Н	0.682410	-2.339179	1.174912
C	0.877399	0.495585	3.682076
H	0.225605	1.838202	2.155279
Η	1.389380	-2.708075	3.497054
Η	0.951797	1.283493	4.428997
С	-1.284646	4.513370	-0.048414
Η	-1.562744	5.560360	0.036581
0	-0.326214	0.176598	-2.223836
С	1.667254	-0.362958	-0.881840
С	2.703980	0.399708	-0.332653
С	1.981173	-1.451640	-1.699941
С	4.032342	0.093397	-0.618451
Н	2.485736	1.237955	0.323743
С	3 312631	-1 777569	-1 955537
н	1 196976	-2 057292	-2 140523
н	1.120270	0.706658	_0 199///
и П	3 542374	2 636743	2 580030
n C	1 529025	-2.030743	-2.360039
	-1.338023	0.033988	-2.708243
Н	-1.491300	1.740908	-2.93/0/4
H	-1./05329	0.158103	-3./30923
H	-2.407987	0.450590	-2.127860
С	4.341207	-1.002029	-1.423849
Η	5.378002	-1.250716	-1.633684
Ν	1.203272	-0.734803	4.086364
Ν	-3.441111	-3.201389	-0.182431

[Int-III]-Py,Ph,ax-a

Ċ	0.136943	4.007863	-0.435808
С	0.330311	2.760870	0.156775
С	-0.239177	1.613440	-0.401705
С	-1.011447	1.733358	-1.562060
С	-1.167399	2.971767	-2.180235
Η	0.570443	4.893654	0.020484
Η	0.927356	2.690589	1.062548
Η	-1.508423	0.865451	-1.985952
Η	-1.748718	3.046095	-3.095308
Р	-0.028219	-0.009151	0.479076
С	0.361665	-1.490099	-0.558736
С	0.338062	-1.517663	-1.951981
С	0.720352	-2.661497	0.111025
С	0.672051	-2.701065	-2.603814
Н	0.074280	-0.645401	-2.540469
С	1.024594	-3.795919	-0.633024
Н	0.766392	-2.705515	1.196056
Н	0.667070	-2.740330	-3.690526
Н	1.297112	-4.719947	-0.128778
С	-1.941422	-0.300113	0.444111
C	-2.768339	0.716701	0.949676
C	-2.565575	-1.449194	-0.049911
C	-4.154207	0.595822	0.959913
Η	-2.323365	1.628140	1.346015
С	-3.958633	-1.577859	-0.050466
Н	-1.979425	-2.273845	-0.444442
С	-4.758365	-0.557094	0.453188
Н	-4.764582	1.402063	1.359493
Н	-4.412839	-2.482511	-0.447574
Η	-5.840933	-0.654967	0.452486
С	-0.599120	4.113334	-1.614493
Η	-0.736521	5.082101	-2.087364
0	0.023360	-0.178365	2.124082
С	1.913082	0.289658	0.626184
С	2.617531	0.610301	-0.542852
С	2.693689	0.119681	1.772141
С	3.999211	0.743414	-0.519380
Η	2.101890	0.762914	-1.488295
С	4.078246	0.275666	1.705020
Η	2.243183	-0.132754	2.725044
Н	4.540057	0.992621	-1.429974
Н	4.682149	0.145889	2.601205
N	4.741934	0.582490	0.586028
C	-0.915195	-0.818037	2.991625
H	-0.347736	-1.068582	3.891995
Н	-1.733683	-0.143013	3.253985
Н	-1.319493	-1.734378	2.554919
N	1.006787	-3.831648	-1.971099
- •		2.22.10.0	

[Int-III]-Py,Py,ax-a

Ċ	-1.204604	2.937772	-2.189234
С	-1.028056	1.704357	-1.566951
С	-0.231894	1.596003	-0.421158
С	0.338999	2.751526	0.119318
С	0.126290	3.993420	-0.477495
Η	-1.804535	3.002141	-3.092965
Н	-1.528442	0.831950	-1.977369
Н	0.952788	2.692222	1.014565
Η	0.562639	4.884716	-0.034869
Р	0.004584	-0.017209	0.472668
С	-1.931172	-0.273062	0.471654
С	-2.749570	0.737574	0.995005
С	-2.594000	-1.391240	-0.034814
С	-4.129861	0.595068	0.988841
Н	-2.320215	1.647344	1.409364
С	-3.988052	-1.447078	-0.006981
Η	-2.054946	-2.233643	-0.456805
Η	-4.763771	1.379353	1.396961
Н	-4.503784	-2.317022	-0.408705
С	1.934401	0.300056	0.607877
С	2.719407	0.184220	1.757203
С	2.630496	0.588085	-0.574537
С	4.101478	0.358112	1.680060
Η	2.274885	-0.038953	2.720127
С	4.009840	0.742052	-0.560102
Η	2.108793	0.698215	-1.522496
Η	4.709369	0.271025	2.578688
Η	4.544896	0.965404	-1.480752
С	-0.632903	4.086750	-1.642221
Η	-0.785728	5.051468	-2.118585
0	0.054200	-0.188337	2.116879
С	0.348200	-1.514998	-0.541685
С	0.299717	-1.543463	-1.937304
С	0.686699	-2.678368	0.157854
С	0.584879	-2.723131	-2.623584
Η	0.048983	-0.651657	-2.503169
С	0.961059	-3.858566	-0.530337
Η	0.741120	-2.670877	1.244269
Η	0.550255	-2.732155	-3.709772
Η	1.217523	-4.757108	0.024464
С	-0.874730	-0.843437	2.983696
Η	-0.296619	-1.115486	3.870788
Η	-1.686197	-0.170307	3.271766
Η	-1.288595	-1.749669	2.534511
С	0.910422	-3.883935	-1.923475
Η	1.127620	-4.802878	-2.461229
Ν	4.757641	0.633018	0.548578
Ν	-4.762022	-0.479526	0.492333

[T	S-I]-Ph,O	Me,ax-a	$(v_i = -513.72 \text{ cm}^{-1})$
Ĉ	-3.754887	1.199015	1.167711
Ċ	-2.455609	1.241611	0.670706
C	-1.978697	0.204970	-0.140394
Ĉ	-2.836859	-0.849360	-0.482370
Č	-4.134487	-0.886423	0.021416
H	-4 109775	2.007280	1 800473
н	-1 833229	2.092998	0.919587
н	-2 517129	-1 645375	-1 144720
н	-4 785608	-1 713768	-0.245136
Р	-0 324515	0 287115	-0.869618
C	0.645633	-1 191595	-0.860898
C	1 983961	-1.065350	-1 394332
C	0 141460	-2 545958	-0.917128
c	2 764957	-2 191995	-1 532909
н	2.764739	-0.094033	-1 610740
\hat{C}	1 027337	-3 5815/11	-1 088376
н	-0.89/3/8	-2 775422	-0.703025
н	3 801630	-2.773+22	-1.8/6586
ц	0.647861	4 601244	1.035601
C	0.642330	-4.001244	1 11//36
C	1 023257	-0.748900	1.1144.30
C	0.277765	1 310145	2 003545
C	-0.277703	-1.510145	2.005545
с u	2.273031	-0.081700	0.800872
II C	2.072900	-0.004402	3 330783
с u	1 276004	-1.555717	1 660403
и П	3 277870	-1.383437	3 260068
и П	0.674002	1 061681	1 018873
II C	-0.074992	-1.901081	4.018823
с и	-4.393322	0.131200	1 247840
\cap	-5.005490	0.098802	2 410044
C	0.617121	1 702255	0 427853
C	0.608000	2 206108	-0.427655
C	1 280106	2.290198	1 440275
C	1.280190	2.467006	-1.440275
с u	0.227852	1 801603	1.095058
C	1.007671	3 63/1/0	1.712044
с u	1.997071	2 155259	-1.10/138
п u	1.233000	2.133330	-2.471001
п п	2 522280	J.872000 4 179515	1 000000
II C	2.333360	4.176313	-1.000202
с u	-1.201401	-0.134695	-3.340312
и П	-2.300433	-0.138331	-3.103012
11 U	-1.002033	1 152160	-+.340400
п N	-0.004900	-1.133100	-3.201909
	2.349071	-3.400011	-1.334073
с u	1.55/142	1 202572	1 842056
11 N	2 071557	-1.372373	+.042030 0 121722
ΤN	2.0/1337	+. 12/102	0.131/33

ſT	S-I]-Pv.O	Me.ax-a	$(v_i = -506.35 \text{ cm}^{-1})$
C	-4.112573	-0.852588	-0.465694
Č	-2.811696	-0.649864	-0.917767
Ċ	-1.725860	-0.909059	-0.070499
Č	-1.954313	-1.413267	1.213013
č	-3.256670	-1.625716	1.654753
Н	-4.948642	-0.639564	-1.125264
Н	-2.651485	-0.302792	-1.934517
Н	-1.131383	-1.642848	1.878527
Н	-3.424982	-2.017158	2.653751
Р	-0.074295	-0.624376	-0.747385
С	1.288893	-1.469167	0.104446
С	2.212948	-2.137984	-0.711621
Ċ	1.465791	-1.485685	1.493918
С	3.294924	-2.807263	-0.146159
Н	2.096955	-2.134043	-1.790571
С	2.541178	-2.167889	2.053743
Н	0.789837	-0.952091	2.150374
Н	4.007739	-3.312514	-0.791275
Н	2.665095	-2.174080	3.132697
С	0.159769	1.309537	0.820695
С	1.348661	1.679281	1.445141
С	-1.017970	1.797669	1.388413
С	1.316868	2.456796	2.598496
Η	2.313034	1.373807	1.041091
С	-0.959549	2.575166	2.541695
Η	-1.991794	1.590657	0.948289
Η	2.242499	2.737099	3.098386
Η	-1.874859	2.950232	2.996498
С	-4.336599	-1.335245	0.822336
Η	-5.352090	-1.494904	1.173913
0	-0.144022	-1.389799	-2.188476
С	0.310746	1.043991	-1.188543
С	-0.666239	1.942955	-1.752787
С	1.667031	1.350688	-1.573240
С	-0.245260	3.154381	-2.250145
Η	-1.728075	1.733561	-1.693827
С	1.951263	2.597894	-2.082692
Η	2.475605	0.650262	-1.389530
Η	-0.995446	3.867433	-2.589847
Η	2.990004	2.854561	-2.287854
С	-0.593806	-2.747680	-2.322307
Η	-1.681402	-2.764679	-2.434306
Η	-0.121813	-3.143226	-3.223302
Η	-0.303080	-3.357086	-1.460874
Ν	0.184105	2.905340	3.158332
Ν	1.040904	3.542870	-2.396128
С	3.458368	-2.827454	1.236846
Η	4.300387	-3.353038	1.678547

[T]	S-I]-Py,Pł	1,ax-a (v	$r_i = -420.54 \text{ cm}^{-1}$
С	4.565217	0.633785	0.467208
С	3.190821	0.801820	0.595559
С	2.316038	-0.230838	0.226829
С	2.835787	-1.429310	-0.275480
С	4.214471	-1.591669	-0.406880
Н	5.236538	1.437665	0.755464
Н	2.799660	1.739516	0.983584
Н	2.174689	-2.239255	-0.568056
Н	4.610546	-2.523052	-0.801293
Р	0.520029	0.006149	0.410440
С	-0.354877	-1.305757	-0.400419
С	-0.461155	-2.575419	0.254366
С	-0.513946	-1.342295	-1.821278
С	-0.989592	-3.639488	-0.442585
Η	-0.205148	-2.689277	1.303232
С	-1.046642	-2.476135	-2.398652
Η	-0.294281	-0.478993	-2.440216
Н	-1.136569	-4.587088	0.073381
Н	-1.240565	-2.478590	-3.470272
С	0.217351	1.669289	-0.209187
Ċ	0.682169	2.030929	-1.477508
Ċ	-0.445655	2.603245	0.592227
Ċ	0.450837	3.318861	-1.955245
H	1.226856	1.319522	-2.093017
С	-0.655748	3.893407	0.116175
H	-0.803953	2.323213	1.578088
C	-0.216436	4.248821	-1.159640
H	0.801233	3.595672	-2.945315
Н	-1.168556	4.619868	0.739931
Н	-0.389295	5.254959	-1.531528
С	5.077800	-0.563625	-0.035510
Η	6.151715	-0.692269	-0.139742
0	0.230018	-0.017705	1.984669
С	-2.028112	-0.169862	0.351366
C	-2.716115	-0.631621	1.473124
С	-2.792189	0.495681	-0.607397
С	-4.083796	-0.395847	1.599351
Н	-2.205230	-1.185638	2.260421
С	-4.155381	0.689201	-0.405585
Н	-2.339937	0.869290	-1.527284
Н	-4.624976	-0.745934	2.477650
Н	-4.754923	1.214686	-1.147883
Ν	-4.811945	0.258465	0.682999
С	1.146944	-0.551654	2.963690
Н	1.969011	0.148199	3.128651
Н	0.556751	-0.657116	3.874434
Н	1.531481	-1.526182	2.655279
Ν	-1.325537	-3.624022	-1.749662

[Int-IV]-Py,Ph,ax-a

Ċ	-0.713544	3.345354	-1.814735
С	-0.000283	2.278447	-1.273699
С	-0.458343	1.660220	-0.104294
С	-1.628980	2.111348	0.519276
С	-2.329783	3.183150	-0.023935
Н	-0.356402	3.825131	-2.721268
Н	0.908741	1.936839	-1.760828
Н	-1.995805	1.628960	1.420407
Η	-3.234647	3.534756	0.463193
Р	0.380628	0.199565	0.528817
С	-1.859197	-1.213564	-0.030744
С	-2.375796	-1.463193	1.244140
С	-2.765528	-0.795564	-1.005480
С	-3.731790	-1.273432	1.482900
Η	-1.745246	-1.799435	2.060359
С	-4.105714	-0.633070	-0.669860
Η	-2.450316	-0.590359	-2.022319
Η	-4.139407	-1.461985	2.473263
Η	-4.815727	-0.300120	-1.423273
С	2.158886	0.408466	0.308872
С	2.999912	-0.572721	-0.225290
С	2.699595	1.614213	0.782854
С	4.371769	-0.338980	-0.294766
Η	2.606795	-1.512374	-0.594972
С	4.069939	1.836925	0.711895
Η	2.054037	2.380034	1.205476
С	4.906706	0.860283	0.170594
Η	5.021358	-1.101045	-0.715519
Η	4.482874	2.772784	1.076751
Η	5.977326	1.036076	0.112213
С	-1.875476	3.797445	-1.191194
Η	-2.427991	4.631618	-1.614644
0	0.088249	0.297057	2.112089
С	-0.357580	-1.364076	-0.329444
С	0.220069	-2.645358	0.210476
С	0.014995	-1.248023	-1.781889
С	1.018441	-3.452690	-0.544346
Η	-0.020256	-2.941827	1.226644
С	0.845593	-2.148279	-2.388865
Η	-0.359716	-0.410159	-2.362265
Η	1.392643	-4.366683	-0.080934
Η	1.086715	-1.979419	-3.439556
Ν	1.407569	-3.255930	-1.836933
С	0.761291	-0.550007	3.066380
Η	0.602332	-0.080775	4.037512
Η	0.324542	-1.550497	3.057954
Η	1.832377	-0.602905	2.850600
Ν	-4.600531	-0.858345	0.552526

[T]	S-II]-Py,P	h,ax-a	$(v_i = -141.39 \text{ cm}^{-1})$
С	-0.956398	3.203774	-1.856514
С	-0.165043	2.202625	-1.298211
С	-0.537643	1.620270	-0.080560
С	-1.701954	2.044448	0.573102
С	-2.481253	3.051212	0.012552
Η	-0.664550	3.654670	-2.800606
Н	0.739166	1.884468	-1.809903
Н	-2.004519	1.588446	1.510986
Н	-3.381344	3.380459	0.523761
Р	0.380842	0.210838	0.561551
C	-1.806246	-1.286974	-0.059168
C	-2.319883	-1.509463	1.221960
C	-2.711294	-0.870639	-1.036209
c	-3 670774	-1 292658	1 465378
н	-1 688717	-1 841346	2 039634
C	-4 046134	-0.678828	-0 694918
н	-2 399931	-0 686742	-2 058248
н	-4 075669	-1 458819	2.050210
н	-4 754497	-0 3/1/166	-1 4/9221
$\hat{\Gamma}$	2 1//85/	0 521383	0.31/207
C	2.144054	0.321303	0.105104
C	2 628807	1 705525	0.648771
C	2.020097	0.199340	0.048771
с u	4.393310	1 467204	-0.203473
п	2.062036	-1.407204	-0.500188
с u	3.900309	2.070933	0.000112
п	1.940332	2.373903	0.963961
С П	4.8/0900	1.0/9000	0.119215
п	3.078483	-0.902074	-0.338043
H H	4.357402	3.039833	0.8004/3
п	3.952450	1.297293	0.058108
U U	-2.112047	3.02/05/	-1.203233
П	-2.720982	4.409577	-1.041082
0	0.102248	0.330325	2.154420
C	-0.314872	-1.458281	-0.55/01/
C	0.268166	-2./13/91	0.194818
C	0.089427	-1.313318	-1./80806
U U	1.172305	-3.456374	-0.509504
H	-0.0238//	-3.041255	1.18/853
U U	1.025799	-2.140361	-2.346857
H	-0.318226	-0.505462	-2.378217
H	1.569696	-4.356098	-0.038346
H	1.311898	-1.946943	-3.381559
N	1.629390	-3.207843	-1.768207
C	0.779441	-0.538477	3.083846
H	0.528946	-0.160171	4.075222
H	0.426336	-1.566678	2.977417
Η	1.862420	-0.492844	2.933086
Ν	-4.537464	-0.876186	0.533658

[Int-V]-Ph,OMe,ax-a

Ċ	-5.038904	0.165013	0.572451
С	-3.663563	0.311461	0.722801
С	-2.840544	0.452385	-0.403278
С	-3.415246	0.444203	-1.677441
С	-4.794587	0.286092	-1.829354
Η	-5.671660	0.058145	1.449604
Η	-3.227224	0.314609	1.719351
Η	-2.786544	0.562811	-2.557592
Η	-5.232370	0.277293	-2.823905
Р	-1.018408	0.667845	-0.269244
С	2.675382	0.936262	-0.321576
С	2.567161	1.315494	1.021022
С	2.872458	1.965041	-1.250576
С	2.656379	2.659755	1.362704
Η	2.396595	0.581994	1.801966
С	2.951474	3.280491	-0.809142
Η	2.987262	1.754258	-2.309373
Η	2.563099	2.960635	2.403590
Η	3.111415	4.083317	-1.525095
С	2.583667	-0.485927	-0.740713
С	3.028032	-1.512198	0.103732
С	2.040135	-0.830019	-1.985856
С	2.937824	-2.844919	-0.289155
Η	3.464896	-1.272445	1.069366
С	1.950206	-2.163044	-2.378654
Η	1.661942	-0.055222	-2.647147
Η	3.289125	-3.626462	0.379087
Η	1.517215	-2.410239	-3.344334
С	-5.605334	0.148678	-0.705352
Η	-6.679476	0.029887	-0.820784
0	-0.885525	1.780271	0.964079
С	-0.612172	-0.829699	0.712539
С	-0.742228	-2.083679	0.108934
С	-0.119583	-0.787391	2.016653
C	-0.382884	-3.218364	0.825100
Н	-1.114109	-2.187757	-0.907502
C	0.214087	-1.982761	2.648335
H	0.006584	0.152852	2.542203
H	-0.474688	-4.201334	0.369490
Н	0.599070	-1.969034	3.665511
C	-0.778255	3.147327	0.561754
H	-1.739186	3.516175	0.182503
H	-0.500181	3.717257	1.450845
H	-0.009098	3.274588	-0.209133
N	2.848264	3.643915	0.4/5/49
U	2.399477	-3.1/5522	-1.552153
H	2.324868	-4.216195	-1.836027
IN	0.091008	-3.186351	2.078074

[Int-V]-Ph,OMe,ax-b

Ċ	-4 828339	-0 918902	-0.081358
c	-3 543346	-0 570044	0 324380
c	-2 753823	0.278384	-0.465639
c	-3 279602	0.270304	-1 669060
C	4 567678	0.705072	2 076340
с u	-4.307078	1 576654	0 530628
н ц	-3.430020	-1.370034	1 260146
п	-3.130043	-0.904403	2 206054
п	-2.0///24	1.4190/3	-2.290934
п	-4.901343	0.800891	-3.013803
r C	-1.037039	0.830743	-0.028912
C	2.378030	1.00/390	-0.332443
C	2.394349	1.318280	0.778432
C	2.515550	2.081805	-1.555185
C II	2.519900	2.877425	1.058641
H	2.636518	0.810357	1.599380
C	2.446560	3.416299	-1.154131
H	2.522337	1.831206	-2.591588
H	2.514321	3.217829	2.091485
H	2.393928	4.194631	-1.911902
C	2.598624	-0.355126	-0.903750
C	3.278436	-1.282816	-0.103467
С	1.915153	-0.818265	-2.036548
С	3.280195	-2.636181	-0.431293
Η	3.824913	-0.947550	0.773921
С	1.917709	-2.171736	-2.364052
Η	1.355411	-0.121886	-2.655166
Η	3.814266	-3.340886	0.200417
Η	1.374196	-2.513032	-3.241116
С	-5.342249	-0.425024	-1.282111
Η	-6.344936	-0.701042	-1.597724
0	-1.282109	1.992150	1.144375
С	-0.454401	-0.605058	0.945936
С	-0.478401	-1.890573	0.396513
С	0.178513	-0.447034	2.179907
С	0.109739	-2.937446	1.095856
Η	-0.945809	-2.087604	-0.564670
С	0.735477	-1.559829	2.803314
Η	0.247617	0.524827	2.659479
Η	0.098384	-3.942474	0.681090
Η	1.227449	-1.452323	3.767367
С	-2.269015	1.872273	2.173586
Η	-2.216716	0.900054	2.675174
Η	-2.059238	2.663767	2.896745
Н	-3.271903	2.014478	1.757841
Ν	2.442196	3.829086	0.120177
С	2.600921	-3.085699	-1.563113
Н	2.599660	-4.142660	-1.815570
Ν	0.709737	-2.792797	2.284957

[Int-V]-Py,OMe,ax-a

		-)	
С	0.423761	-1.650182	2.682169
С	-0.106699	-0.611322	1.915987
С	-0.473916	-0.834580	0.586604
С	-0.304767	-2.111563	0.036191
Č	0.216199	-3.149407	0.803599
Н	0 711843	-1 463593	3 713683
н	-0 224123	0 374718	2 354580
н	-0 573466	-2 297837	-1.002381
н	0.347261	-4 133837	0.362380
D	1 13/663	0 472040	0.502500
C	-2 93/865	0.972747	-0.430504
c	3 617270	0.084055	1 610650
C	-3.017270	-0.160701	0.782408
C	-3.030070	0.004321	1 600047
с u	-4.960765	-0.469293	-1.000047
пС	-3.064600	-0.102007	-2.306433
	-4.99/839	-0.224045	0.802132
п	-5.1150//	0.275890	1.714520
н	-5.501785	-0.703726	-2.529428
Н	-5.536275	-0.235535	1.746222
C	2.729024	-0.230023	-0.662953
C	2.266988	-0.701094	-1.896132
C	3.383765	-1.148218	0.162860
C	2.477728	-2.031154	-2.238514
Н	1.723835	-0.059195	-2.582123
С	3.541914	-2.460067	-0.269224
Η	3.784063	-0.857917	1.128915
Η	2.117065	-2.408542	-3.192301
Η	4.047877	-3.182316	0.366848
С	0.586824	-2.918988	2.129460
Η	1.005786	-3.725037	2.726095
0	-1.014554	1.753904	0.547734
С	2.514974	1.178772	-0.242231
С	2.422787	1.530747	1.107468
С	2.379675	2.209590	-1.177770
С	2.197994	2.858392	1.451443
Η	2.495562	0.786824	1.893547
С	2.161157	3.508300	-0.732737
Н	2.458144	2.022616	-2.244077
Н	2.112947	3.139640	2.498308
Н	2.057080	4.317086	-1.451984
С	-1.374528	3.030953	0.023995
Ĥ	-2.456062	3.088621	-0.153657
Н	-1.095258	3.771908	0.775960
Н	-0.841767	3.243233	-0.911329
N	3.104861	-2.912818	-1.450291
N	2.067915	3.846907	0.558742
C	-5 670824	-0 505488	-0 390291
й	-6 733085	-0 734728	-0 372600
**	0.755005	0., 54,20	0.572077

[Int-V]-Py,OMe,ax-b

Ċ	4.606564	0.574220	-2.014765
С	3.299621	0.867371	-1.624281
С	2.756709	0.306562	-0.461125
С	3.549268	-0.560359	0.304869
С	4.853107	-0.855542	-0.083927
Н	5.013170	1.014926	-2.921018
Н	2.695896	1.536474	-2.234256
Н	3.148079	-1.011748	1.208467
Н	5.457124	-1.528766	0.518681
Р	1.036113	0.803796	-0.033600
С	0.457795	-0.664801	0.913485
С	-0.161808	-0.531830	2.159828
С	0.498533	-1.929718	0.310894
С	-0.712700	-1.642283	2.800579
Η	-0.220440	0.442639	2.637814
С	-0.054910	-3.037014	0.947427
Η	0.964327	-2.055860	-0.664429
Η	-1.186449	-1.522301	3.771575
Η	-0.017722	-4.009838	0.464500
С	-2.590672	-0.334576	-0.913680
С	-3.234717	-1.309284	-0.147201
С	-1.915521	-0.764871	-2.060182
С	-3.181233	-2.637253	-0.555440
Η	-3.786145	-1.049093	0.751017
С	-1.921834	-2.116378	-2.383861
Η	-1.368114	-0.068554	-2.687788
Η	-3.679025	-3.405177	0.031640
Η	-1.396147	-2.464387	-3.269825
С	5.383846	-0.287873	-1.244027
Η	6.401201	-0.521518	-1.546746
0	1.231737	1.953846	1.155710
С	-2.598115	1.096232	-0.518905
С	-2.562775	2.117593	-1.472875
С	-2.610978	1.477742	0.825370
С	-2.525925	3.440672	-1.048838
Η	-2.572307	1.898515	-2.536197
С	-2.563715	2.828879	1.148120
Н	-2.628988	0.740300	1.620785
Η	-2.498933	4.244747	-1.780320
Η	-2.555023	3.137334	2.190698
С	2.219205	1.842596	2.184265
Η	3.215849	2.046235	1.778576
H	1.972082	2.596673	2.935466
Η	2.212305	0.851835	2.650846
Ν	-2.543143	-3.052537	-1.656240
Ν	-2.519043	3.809651	0.238383
С	-0.662016	-2.896639	2.196337
Η	-1.097401	-3.760620	2.691427

[Int-V]-Py,Ph,ax-a

L			
С	-0.962812	-1.353586	2.717852
С	-0.072042	-1.095700	1.675255
С	-0.332006	-1.571050	0.385925
C	-1 507355	-2.301806	0 157703
č	-2 387616	-2 572338	1 201224
ч	0.747778	0.074873	3 713765
и П	-0.747778	-0.974073	1 877720
п	0.820030	-0.519224	1.0///30
н	-1.740373	-2.001902	-0.842069
H	-3.292821	-3.142013	1.008667
P	0.729887	-1.194750	-1.063569
С	-2.155403	1.390310	-0.3/1867
С	-2.443032	0.807749	-1.610145
С	-3.039266	1.126997	0.677988
С	-3.575563	0.012954	-1.739611
Η	-1.789620	0.946237	-2.465474
С	-4.146373	0.318338	0.446551
Η	-2.888735	1.553647	1.664769
Η	-3.806350	-0.450427	-2.695835
Η	-4.841978	0.108369	1.255319
С	2.291499	-0.658874	-0.263181
С	2.678978	0.676045	-0.406855
С	3.103210	-1.533221	0.471796
С	3.846165	1.143896	0.198623
Н	2.065872	1.357779	-0.993080
С	4.276776	-1.072264	1.061492
Ĥ	2.813360	-2.575015	0.586336
С	4.645950	0.269270	0.930932
Н	4 131048	2 187094	0.090739
н	4 902522	-1 756028	1 629226
н	5 559409	0.628686	1 397545
C	-2 118570	-2 095247	2 /8/9/2
н	-2.110570	-2.095247	3 207511
$\hat{\mathbf{\Omega}}$	1 071507	2.270231	1 465847
C	0.061294	-2.101903	-1.403047
C	-0.901364	2.232037	-0.179330
C	-0.43/333	2.042010	-1.210/09
C	-0.298078	2.310338	1.049/43
C	0.651445	3.8490/1	-0.980135
H	-0.92/010	3.062418	-2.195341
C	0.807438	3.148527	1.183857
Н	-0.617976	1.718438	1.896553
Н	1.045800	4.475937	-1.776207
Η	1.336533	3.197867	2.132411
Ν	1.286045	3.914933	0.196658
С	1.741735	-2.977844	-2.712077
Η	1.782197	-4.055228	-2.888017
Η	1.195534	-2.495821	-3.532745
Η	2.764397	-2.581996	-2.673930
Ν	-4.428538	-0.235913	-0.738219

Pathway [Int-III·H]⁺

[Iı	[Int-III·H] ⁺ -Ph,OMe,ax-a				
С	-2.015260	0.324709	3.206934		
С	-1.539885	0.497267	1.912042		
С	-0.424321	-0.211756	1.435903		
С	0.186907	-1.114638	2.309274		
С	-0.285720	-1.296272	3.613826		
Н	-2.879159	0.891229	3.545279		
Η	-2.052448	1.203402	1.260036		
Η	1.041222	-1.708341	1.998258		
Н	0.212295	-2.006615	4.269174		
Р	0.051381	0.058446	-0.412929		
С	1.586310	-0.981852	-0.299232		
С	2.755647	-0.476444	0.274797		

~	01121021	0.211/00	11.002.00
С	0.186907	-1.114638	2.309274
С	-0.285720	-1.296272	3.613826
Η	-2.879159	0.891229	3.545279
Η	-2.052448	1.203402	1.260036
Η	1.041222	-1.708341	1.998258
Η	0.212295	-2.006615	4.269174
Р	0.051381	0.058446	-0.412929
С	1.586310	-0.981852	-0.299232
С	2.755647	-0.476444	0.274797
С	1.603619	-2.267625	-0.850646
С	3.896856	-1.251849	0.288134
H	2.798839	0.512980	0.715493
C	2.761788	-3.012968	-0.798171
H	0.734056	-2.697076	-1.334488
н	4 839961	-0.925817	0 708254
н	2 849964	-4 016545	-1 194710
C	0.259626	1 884599	-0.223810
c	-0.120278	2 759986	-1 2/18961
c	0.804540	2.757760	0.950824
c	0.004540	1 136038	1 000774
с u	0.010392	4.130938	-1.090774
п	-0.316410	2.371112	-2.1/0/00
	0.9//4/8	5.795590	1.091934
н С	1.095487	1./09559	1.//0300
C II	0.572498	4.65/4/3	0.076323
H	-0.302920	4.801323	-1.888/62
H	1.41/00/	4.18/158	2.004162
H	0.690900	5.731235	0.193556
C	-1.385258	-0.577217	4.068437
Н	-1.753339	-0.717061	5.081418
0 ĩ	0.361487	0.129834	-2.173417
С	-1.567562	-0.688064	-0.931115
С	-1.926919	-1.960814	-0.486660
С	-2.481224	0.004322	-1.724800
С	-3.153546	-2.489173	-0.874730
Η	-1.278653	-2.544802	0.159947
С	-3.699662	-0.597351	-2.025351
Η	-2.274742	0.998035	-2.104669
Η	-3.438348	-3.488712	-0.555673
Η	-4.433175	-0.063048	-2.624197
Ν	-4.041749	-1.827079	-1.624606
С	1.578556	0.593007	-2.727263
Η	2.248956	-0.248086	-2.953431
Η	1.353744	1.120051	-3.661643
Н	2.111927	1.290236	-2.066694
Ν	3.863938	-2.486817	-0.236687
Н	4.714204	-3.047675	-0.214176

[Int-III·H]+-Ph,Ph,ax-a

Ċ	-1.453349	2.873058	-2.183898
С	-1.173336	1.640021	-1.603863
С	-0.445528	1.606483	-0.415476
С	-0.073909	2.821583	0.156785
С	-0.441370	4.004539	-0.477899
Η	-1.994040	2.920395	-3.125850
Η	-1.536411	0.733831	-2.079127
Η	0.492037	2.863845	1.082970
Н	-0.180432	4.962991	-0.036021
Р	-0.045404	0.035315	0.503519
С	-1.904883	-0.485082	0.425297
С	-2.855389	0.432952	0.903219
С	-2.380740	-1.693896	-0.090247
С	-4.217916	0.158368	0.868930
Н	-2.529256	1.387188	1.313651
С	-3.750324	-1.976772	-0.133978
Η	-1.700238	-2.450079	-0.469406
Η	-4.926112	0.890599	1.248570
Η	-4.088058	-2.925192	-0.544292
С	1.839291	0.509517	0.624972
С	2.473164	0.962376	-0.542408
С	2.641993	0.304976	1.754153
С	3.842641	1.212883	-0.583002
Η	1.896248	1.129486	-1.450018
С	4.016818	0.552383	1.722252
Η	2.196920	-0.052203	2.676440
Η	4.298825	1.568405	-1.503662
Η	4.611627	0.387416	2.617545
0	-0.023614	-0.027447	2.148760
С	0.526379	-1.435865	-0.495974
С	0.573327	-1.482423	-1.892272
С	0.988563	-2.538310	0.234842
С	1.082129	-2.602551	-2.515655
Η	0.229626	-0.660385	-2.508770
C	1.477852	-3.639762	-0.431569
H	0.976954	-2.549023	1.320321
H	1.158951	-2.709637	-3.590374
H	1.848788	-4.528618	0.063058
C	-0.916211	-0.687390	3.051173
H	-0.318486	-0.903327	3.940566
H	-1.747282	-0.031118	3.320125
H	-1.302262	-1.622509	2.639881
N	-1.106/21	4.044868	-1.63/581
N	1.512976	-3.637760	-1.775551
U	4.023845	1.008480	0.534/39
H	5.093023	1.202612	0.529318
	-4.0/343/	-1.053453	0.344438
H II	-3./3/081	-1.2/1302	0.310090
п	1.003/04	-4.4339/1	-2.233921

[Int-III·H]+-Py,OMe,ax-a

L			••
С	-3.174512	-2.570094	0.754661
С	-2.340498	-1.458802	0.652652
С	-1.277794	-1.455524	-0.254753
С	-1.057217	-2.581571	-1.054333
С	-1.871497	-3.704814	-0.927008
Н	-4.006899	-2.552897	1.452713
Н	-2.530139	-0.600836	1.289496
Н	-0.255709	-2.584812	-1.787709
Н	-1.680285	-4.578813	-1.543441
Р	-0.189143	0.016634	-0.432217
С	1.595835	-0.175962	-0.936694
С	2.315702	0.909403	-1.448940
Ċ	2.257109	-1.395623	-0.749435
Ċ	3.651257	0.755886	-1.753348
H	1.855825	1.876625	-1.612891
С	3.588644	-1.506542	-1.084722
H	1.753830	-2.261485	-0.333489
Н	4.272561	1.550407	-2.147103
Н	4.162343	-2.418068	-0.975036
C	0.483089	-0.045156	1.398528
Ċ	0.440169	-1.175108	2.217396
C	1.215544	1.042666	1.892701
C	1 086358	-1 163267	3 453239
Н	-0.083933	-2.077814	1.920136
C	1 828304	0.965474	3 136460
Н	1.319495	1.960720	1.318781
Н	1 048110	-2.042140	4 093334
н	2 391958	1 812353	3 521538
C	-2 935585	-3 699375	-0.026582
н	-3 579615	-4 569959	0.062368
0	-0 424797	0.037077	-2 183831
Č	-0.952759	1 685874	-0.218802
C	-1 621324	2.020506	0.966045
C	-0.877079	2.620300	-1 241072
c	-2 218787	3 269046	1 1 1 4 7 7 1
н	-1 678475	1 316953	1 790299
C	-1 441973	3 902089	-1 076344
н	-0 378192	2 397519	-2 172756
н	-2 749077	3 502721	2.172750
н	-1 356747	4 634734	-1 874097
C	-1 713147	0.048158	-2 771973
н	-2 498290	0.351800	-2.066618
н	-1 712235	0.759179	-3 606408
н	-1 965242	-0.948507	-3 156144
C	-2 122369	4 217341	0.097635
й	-2 574943	5 197494	0 220737
N	1 772866	-0 118059	3 924003
N	4 242602	-0.436344	-1 568007
Н	5 228051	-0 533250	-1 805342
11	5.220051	0.000200	1.0000042

[Int-III·H]⁺-Py,OMe,ax-b

L			
С	2.862120	3.063058	-0.559659
С	2.194321	1.847885	-0.692762
С	0.885920	1.707970	-0.218438
С	0.245560	2.805694	0.360742
С	0.909305	4.026524	0.473378
Η	3.882356	3.155786	-0.921618
Η	2.699176	1.015520	-1.174960
Η	-0.771727	2.727649	0.730618
Η	0.397446	4.874507	0.919849
Р	0.045123	0.092238	-0.453987
С	-1.841441	0.043140	-0.467336
С	-2.522814	-0.594722	-1.507915
С	-2.592113	0.619047	0.563267
С	-3.901605	-0.661070	-1.488287
Η	-1.996899	-1.031605	-2.345922
С	-3.970293	0.563782	0.524788
Η	-2.127831	1.104267	1.413177
Η	-4.490486	-1.154306	-2.251192
Н	-4.610887	1.003761	1.278525
С	0.011963	-0.384188	1.435431
С	-0.614776	-1.583123	1.803582
С	0.619767	0.330042	2.467000
С	-0.618417	-1.990911	3.129738
Η	-1.101489	-2.216349	1.063485
С	0.568672	-0.157906	3.773745
Η	1.146502	1.261257	2.285099
Η	-1.106557	-2.919837	3.415968
Η	1.043221	0.399344	4.578716
С	2.221048	4.156069	0.022038
Η	2.740028	5.105783	0.117850
0	0.016641	0.336128	-2.208166
С	1.095015	-1.387560	-0.797794
С	2.275989	-1.555504	-0.064838
С	0.736469	-2.353545	-1.742238
С	3.094828	-2.659010	-0.289539
Η	2.571891	-0.825027	0.683120
С	1.538695	-3.477103	-1.937297
Η	-0.166014	-2.244458	-2.332315
Η	4.018884	-2.763281	0.272319
Η	1.237809	-4.228869	-2.661801
С	-0.522939	1.509482	-2.784117
Η	0.248547	2.283803	-2.890600
Η	-0.907277	1.254341	-3.778198
Η	-1.352187	1.935114	-2.200320
С	2.722778	-3.629361	-1.218919
Η	3.353060	-4.499223	-1.382517
Ν	-0.039072	-1.295338	4.120244
Ν	-4.576868	-0.078370	-0.485927
Η	-5.594278	-0.126957	-0.491793

[Int-III·H]⁺-Py,OMe,ax-c

		v /	
С	-3.762729	0.558232	-1.982109
С	-2.399048	0.700994	-1.732341
С	-1.750490	-0.165540	-0.847013
С	-2.485146	-1.184084	-0.229362
С	-3.839252	-1.348879	-0.511326
Н	-4.257424	1.251173	-2.657183
Н	-1.854768	1.495533	-2.229660
Н	-2.010172	-1.858541	0.477905
Н	-4.390448	-2.156619	-0.037886
Р	0.042095	0.031955	-0.445995
С	1.113672	-1.478257	-0.324811
С	2.428789	-1.396263	0.141086
С	0.630180	-2.714191	-0.768246
C	3.215321	-2.529683	0.163315
Η	2.857361	-0.465115	0.492410
С	1.447420	-3.822491	-0.715046
Η	-0.372389	-2.830058	-1.163924
Н	4.241951	-2.542050	0.506542
Н	1.141904	-4.811645	-1.031987
С	-0.382506	0.013950	1.453510
Ċ	-1.187244	1.051727	1.944572
Ċ	-0.017654	-0.964248	2.377567
C	-1.566386	1.071128	3.278263
H	-1.526570	1.854523	1.293179
C	-0.447197	-0.865036	3.702566
Н	0.592756	-1.820182	2.107521
Н	-2.188466	1.877893	3.659108
Н	-0.161401	-1.629266	4.422296
C	-4 484436	-0 471358	-1 380823
Н	-5.544851	-0.588062	-1.587297
0	0.309067	-0.039176	-2.204994
Č	0.866242	1.683401	-0.315969
C	1.645865	2.012009	0.800390
C	0 722389	2.628792	-1 338491
C	2.272914	3 252410	0.888038
Н	1.775002	1.305849	1.614614
C	1.317078	3.883707	-1.231411
Н	0.155642	2.387081	-2.230112
Н	2.887229	3.481690	1.754207
Н	1.176896	4.611453	-2.025803
C	1 596795	-0.011599	-2.790771
Н	1.951880	-1.031323	-2.995684
Н	1.531777	0.532665	-3.739813
Н	2.343348	0.493852	-2.162762
C	2.098752	4.197323	-0.121226
Ĥ	2.572834	5.171974	-0.044332
N	-1.207408	0.129226	4.165138
N	2.704111	-3.698206	-0.254453
H	3.297059	-4.526151	-0.228398

[Int-III·H]⁺-Py,PyH⁺,ax-a

		J J J J -	
С	-1.237121	2.895498	-2.191783
С	-1.028034	1.669288	-1.565877
С	-0.215759	1.585418	-0.429169
С	0.341427	2.754016	0.098018
С	0.097669	3.986860	-0.504679
Н	-1.848647	2.942854	-3.088601
Н	-1.512854	0.784474	-1.968750
Н	0.968579	2.711624	0.984833
Н	0.524623	4.888812	-0.075080
Р	0.069872	-0.009272	0.469702
С	-1.903394	-0.272243	0.478648
С	-2.706604	0.742687	1.027424
Ċ	-2.562394	-1.383355	-0.058734
Ċ	-4.078099	0.635522	1.031189
H	-2.264331	1.636261	1.457983
С	-3.942354	-1.456734	-0.046644
H	-2.019843	-2.213570	-0.496101
Н	-4.746237	1.382010	1.442398
Н	-4.505875	-2.288416	-0.451468
C	1.979923	0.316447	0.594904
C	2 762039	0 191126	1 744430
C	2.671517	0.616297	-0 586396
C	4 143411	0.369586	1 668117
н	2 316858	-0.042686	2 704472
C	4 050639	0 773754	-0 569494
н	2 148928	0 732392	-1 532908
н	4 751992	0.75889	2 565371
н	4 585484	1 006452	-1 487738
C	-0 679777	4 057886	-1 658950
н	-0.856282	5 016301	-2 139608
0	0.088701	-0.158225	2.107580
c	0.383807	-1 517512	-0 530804
C	0.347215	-1 544528	-1 927198
C	0.697491	-2 685060	0.173590
C	0.615680	-2 730093	-2 609533
н	0.120332	-0 648484	-2 496068
C	0.956674	-3 869923	-0.512285
н	0.746555	-2 678287	1 260038
н	0.740335	-2.070207	-3 695854
н	1 195650	-4 771625	0.044926
C	-0.824872	-0.8/0368	2 972786
н	-0.324872	-0.840308 -1.130717	3 844226
н	-1.632376	-0.174713	3 288104
н Ц	1 240211	1 738/22	2 508618
C	0.01/871	3 805520	1 005535
Ч	1 120227	-1 818516	-2 1/0789
N	1.120327	0.656678	0 538574
N	-1 65/7/0	-0.4550628	0.000074
Н	-5 669902	-0 526309	0.496797
	2.00//04	0.020000	0.120121

[Int-III·H]⁺-Py,PyH⁺,ax-b

L			
С	1.164100	3.025138	-2.160211
С	1.022728	1.771135	-1.571224
С	0.265018	1.621041	-0.405013
С	-0.306241	2.750502	0.188334
С	-0.130014	4.011354	-0.378812
Н	1.735931	3.125391	-3.078552
Н	1.518567	0.916726	-2.022784
Н	-0.886050	2.657838	1.103385
Н	-0.563718	4.883366	0.102729
Р	0.073303	-0.009841	0.446828
С	-1.893800	0.296129	0.575403
С	-2.580293	0.587570	-0.616563
С	-2.670854	0.147428	1.731899
С	-3.949015	0.720525	-0.633738
Η	-2.048819	0.715889	-1.554778
С	-4.043979	0.289657	1.681229
H	-2.215058	-0.079937	2.686914
Н	-4.526642	0.945438	-1.521782
Н	-4.693082	0.190275	2.542688
C	1.989851	-0.289929	0.422923
Ċ	2.837747	0.727486	0.880940
Ċ	2.615986	-1.455099	-0.020747
C	4 213965	0 545489	0.873149
Н	2.438003	1.670050	1.247902
C	4 007835	-1 547798	0.001194
Н	2.049929	-2.306337	-0.385281
н	4 872374	1 334158	1 230394
н	4 496481	-2.454025	-0 350494
C	0 593045	4 148490	-1 562183
н	0.719300	5 128875	-2.013417
0	0.002759	-0 129522	2.013117
c	-0.325192	-1 515948	-0 530594
c	-0.230226	-1 593942	-1 921939
c	-0 752834	-2 632252	0.196761
C	-0 565708	-2 777024	-2 578277
н	0.100893	-0 741184	-2 506129
C	-1 072732	-3 817487	-0.462034
н	-0.839955	-2 583/3/	1 280096
н	-0.495522	-2 826578	-3 661484
н	-1 395713	-4 681564	0 112182
C	0.936/17	-0.75/8/9	2 972687
н	1 769584	-0.086187	3 200909
н	0 369304	-0.955721	3 884741
н	1 313808	-1 696916	2 568078
C	-0.987496	-3 891402	-1 851416
н	-1 236588	-4 813836	-7 366367
N	4 811073	-0 573413	0.436820
N	-4 641285	0.5691/0	0.511030
Н	-5 653007	0.509140	0.211939
	5.055007	0.074150	0.10///+

[Int-III·H]⁺-PyH⁺,OMe,ax-a

Ċ	-1.368591	3.940951	-0.642092
С	-0.647976	2.761409	-0.815421
С	-1.107391	1.567178	-0.250636
С	-2.309753	1.561211	0.459941
С	-3.039240	2.739283	0.613218
Η	-0.996547	4.864788	-1.076269
Н	0.267557	2.779565	-1.400193
Н	-2.694964	0.646315	0.898690
Н	-3.977621	2.720004	1.160487
Р	-0.142298	0.031411	-0.523167
С	-1.020598	-1.599096	-0.329415
С	-0.989003	-2.552651	-1.347806
С	-1.732458	-1.922508	0.827696
С	-1.636061	-3.770344	-1.157575
Н	-0.483174	-2.361626	-2.286497
С	-2.378345	-3.152374	0.907057
Η	-1.796704	-1.247754	1.674655
Η	-1.599220	-4.529703	-1.934627
Н	-2.953287	-3.405624	1.794102
С	0.459112	-0.082104	1.373244
С	1.203087	-1.212407	1.756551
С	0.292023	0.921460	2.334243
С	1.726107	-1.320741	3.023540
Η	1.387771	-2.026454	1.061380
С	0.832708	0.783035	3.598688
Η	-0.252862	1.833538	2.119956
Η	2.303672	-2.167405	3.373267
Η	0.735391	1.526311	4.380678
С	-2.566303	3.932809	0.071765
Η	-3.131935	4.851696	0.199131
0	-0.474127	0.066948	-2.246366
С	1.641483	0.146847	-0.978707
С	2.429186	1.171354	-0.441727
С	2.231203	-0.798044	-1.823514
С	3.781104	1.261953	-0.764012
Η	1.999232	1.909079	0.230307
С	3.591848	-0.723530	-2.117009
Н	1.641003	-1.597997	-2.256952
Н	4.375619	2.074413	-0.355405
Н	4.040927	-1.472294	-2.763769
C	-1.794195	0.175934	-2.746376
H	-2.083413	1.229215	-2.858617
H	-1.822604	-0.305295	-3.730030
H	-2.536169	-0.317960	-2.104048
C	4.368323	0.309691	-1.595653
H	5.426113	0.372779	-1.835853
IN N	1.524953	-0.323593	3.90/085
N II	-2.530184	-4.0//480	-0.05/056
Н	1.91//02	-0.410/26	4.841826

[Int-III·H]⁺-PyH⁺,OMe,ax-b

		•/ / / -	/
Ċ	-3.639417	0.027374	-2.064320
С	-2.346560	0.427563	-1.740288
С	-1.523846	-0.457778	-1.044476
С	-2.044243	-1.710742	-0.717307
С	-3.339956	-2.024273	-1.113442
Н	-4.300745	0.710386	-2.591944
Н	-2.010432	1.417241	-2.028335
Н	-1.469017	-2.444884	-0.161389
Η	-3.754377	-3.002768	-0.883569
Р	0.178978	0.035696	-0.509954
С	0.640000	1.804944	-0.233136
С	0.451275	2.747706	-1.251044
С	1.187187	2.231018	0.984401
С	0.783494	4.085467	-1.049734
Η	0.050405	2.438891	-2.209728
С	1.552269	3.561414	1.172307
Н	1.332140	1.536179	1.805508
Н	0.613814	4.804213	-1.846492
Н	1.991301	3.867428	2.117644
С	1.469971	-1.241875	-0.245612
С	2.566750	-1.006053	0.586875
С	1.375477	-2.458158	-0.929119
С	3.552487	-1.979465	0.741000
Н	2.668929	-0.066632	1.120947
С	2.347971	-3.439751	-0.751940
Н	0.550840	-2.644478	-1.611087
Н	4.407041	-1.779172	1.381364
Н	2.256979	-4.385655	-1.278595
0	0.529269	0.112836	-2.226426
С	-0.528460	-0.115324	1.346683
С	-1.498967	0.813397	1.762955
С	-0.227588	-1.156185	2.232523
С	-2.103876	0.703044	2.993290
Н	-1.796619	1.640210	1.124502
С	-0.852900	-1.238418	3.461972
Η	0.494360	-1.926068	1.986095
Η	-2.853267	1.389839	3.366681
Η	-0.656529	-2.018251	4.187065
С	1.844532	0.322154	-2.708673
Η	2.340761	-0.636457	-2.908638
Η	1.778007	0.887766	-3.644591
Η	2.467343	0.893200	-2.007013
С	3.439869	-3.202033	0.081798
Η	4.203953	-3.963751	0.210484
С	1.342394	4.494973	0.158807
Η	1.613802	5.536077	0.310760
Ν	-4.141305	-1.177098	-1.769521
Ν	-1.761865	-0.314377	3.807112
Η	-2.212500	-0.385100	4.716798

[Int-III·H]+-PyH+,Ph,ax-a

L			
С	1.072453	3.051448	-2.171410
С	0.971669	1.795003	-1.578970
С	0.246911	1.631048	-0.394355
С	-0.333466	2.747936	0.213263
С	-0.196636	4.011895	-0.357648
Η	1.618769	3.163429	-3.103852
Н	1.473301	0.949332	-2.040552
Η	-0.889199	2.642500	1.141890
Н	-0.635698	4.875340	0.134403
Р	0.105168	-0.005567	0.453601
С	-1.880386	0.261859	0.593648
С	-2.648790	0.078968	1.751287
С	-2.579505	0.562240	-0.588665
С	-4.024589	0.195924	1.710669
Н	-2.183784	-0.155182	2.700179
С	-3.950917	0.669714	-0.596402
Н	-2.056971	0.719341	-1.527660
Н	-4.666722	0.069273	2.573771
Н	-4.537451	0.899895	-1.477240
С	2.002712	-0.289046	0.399368
C	2.607674	-1.480837	-0.012399
C	2.844364	0.753352	0.820936
Ċ	3.998138	-1.625663	-0.016175
H	2.007681	-2.326166	-0.335596
C	4.228936	0.615711	0.826337
H	2.414617	1.695868	1.155217
C	4.813851	-0.578825	0.401691
H	4.438095	-2.562980	-0.347613
Н	4.852594	1.441759	1.158840
Н	5.895064	-0.689630	0.398112
C	0.493862	4.163035	-1.558858
Н	0.589048	5.145687	-2.012803
0	0.027628	-0.124714	2.091709
Č	-0.313859	-1 505258	-0 541791
C	-0.732613	-2.637226	0.159871
C	-0.252450	-1.581383	-1.931733
C	-1.060268	-3.785126	-0.553372
Н	-0.806622	-2.640444	1 244160
C	-0.618285	-2.772881	-2.551210
Н	0.067507	-0 743109	-2.541153
Н	-1 378154	-4 680996	-0.025711
Н	-0 587536	-2.850966	-3 635217
N	-1 013186	-3 865969	-1 888431
C	0.995645	-0.672135	2 994326
Н	0.445573	-0.853445	3 920905
Н	1.405940	-1.615139	2.626313
Н	1 803866	0.038079	3 182455
N	-4 633667	0 484372	0 549564
H	-5.647201	0.571427	0.535089

[Int-III·H]⁺-PyH⁺,Ph,ax-b

L			
С	0.552342	-2.818791	-2.553168
С	0.206673	-1.632422	-1.908212
С	0.311392	-1.536766	-0.518704
С	0.757773	-2.639343	0.218172
С	1.085742	-3.828828	-0.428771
Н	0.475473	-2.881601	-3.635227
Н	-0.138950	-0.791426	-2.500855
Н	0.851905	-2.575915	1.300125
Н	1.422038	-4.682515	0.153279
Р	-0.094859	-0.027912	0.452248
C	1.879269	0.281286	0.589674
Ĉ	2.572516	0.541832	-0.605481
C	2.649388	0.175611	1.755539
C	3 940211	0.686442	-0.617475
н	2.048299	0.636152	-1 551974
C	4 021715	0 327827	1 710091
н	2 188696	-0.025467	2 714005
н	4 522171	0.889090	-1 508042
н	4.665262	0.000000	2 578821
C	-1 999/02	-0.258171	0.409123
c	-2 629204	-1 /3/359	-0.009596
c	2 816055	0.708257	0.842126
C	4.022326	1 540805	0.042120
с u	-4.022320	-1.549695	-0.010200
C	4 204225	-2.207413	-0.339720
с ц	-4.204223	1 728488	1 185405
n C	-2.307087	0.480000	0.417637
с u	-4.014020	-0.489099	0.417037
п	-4.403100	-2.473203	-0.547021
п	-4.809/15	1.525500	1.191555
п	-3.898140	-0.377047	1.816504
	0.980941	-3.919637	-1.810304
П	1.24/99/	-4.843210	-2.322049
0	-0.016352	-0.145041	2.091262
C	-0.239323	1.609568	-0.426570
C	0.310343	2.745950	0.164808
C	-0.941979	1.773500	-1.620089
C II	0.141338	3.979760	-0.45/30/
H	0.859290	2.693839	1.100802
C	-1.019024	3.042236	-2.185204
H	-1.441353	0.943810	-2.109670
H	0.544336	4.8/95/3	0.000/0/
H	-1.53/126	3.185128	-3.130161
N	-0.496397	4.138179	-1.621749
C	-0.977419	-0.725948	2.980931
H	-0.427652	-0.912694	3.906613
H	-1.799843	-0.034572	3.177617
H	-1.368379	-1.670322	2.595409
N	4.625283	0.576310	0.536974
Η	5.636304	0.689033	0.519095

 $[\textbf{TS-I-H}]^+ - \textbf{Ph,OMe,ax-a} \qquad (v_i = -481.02 \text{ cm}^{-1})$

С	3.588336	-1.675086	1.149831
С	2.278469	-1.526965	0.704579
С	1.942271	-0.470450	-0.148763
С	2.941487	0.414590	-0.574161
С	4.248701	0.265384	-0.116778
Η	3.835324	-2.499312	1.812537
Η	1.536385	-2.246111	1.028490
Η	2.725631	1.221707	-1.265037
Н	5.011514	0.963892	-0.447945
Р	0.261291	-0.297174	-0.806378
С	-0.429157	1.330412	-0.828500
С	-1.773135	1.457247	-1.339129
С	0.301618	2.567953	-0.696030
С	-2.371097	2.678804	-1.388625
Н	-2.339422	0.590372	-1.658561
С	-0.359226	3.751807	-0.769088
Η	1.356774	2.583134	-0.461508
Н	-3.392953	2.818193	-1.720806
Η	0.134134	4.704980	-0.623137
С	-0.495115	0.645562	1.149352
С	-1.818885	0.526496	1.572053
С	0.470181	1.047960	2.075329
С	-2.171606	0.748735	2.901615
Η	-2.598997	0.257682	0.860957
С	0.126418	1.272122	3.409349
Η	1.505596	1.189079	1.775026
Η	-3.208003	0.641287	3.212334
Η	0.893858	1.568446	4.120307
С	4.574129	-0.774649	0.749875
Η	5.594191	-0.889441	1.105282
0	0.486796	-0.721375	-2.389381
С	-0.891375	-1.692834	-0.494293
С	-1.020164	-2.309712	0.751352
С	-1.671361	-2.177270	-1.545211
С	-1.896011	-3.381551	0.881124
Η	-0.478356	-1.970085	1.625580
С	-2.541671	-3.237226	-1.301460
Η	-1.618328	-1.749320	-2.538703
Η	-1.996636	-3.881996	1.840355
Η	-3.169611	-3.614474	-2.104256
С	1.206702	0.086099	-3.321937
Η	2.281289	-0.104740	-3.239947
Η	0.862654	-0.207075	-4.316046
Η	1.005239	1.152747	-3.174750
Ν	-1.688139	3.802166	-1.059779
Η	-2.145693	4.703614	-1.134238
С	-1.195052	1.118113	3.827858
Η	-1.464566	1.296103	4.865591
Ν	-2.656219	-3.844069	-0.117487

ſT	S-I·H1+-P	v.OMe.ax.	$a (v_i =$	$-491 \ 12 \ \mathrm{cm}^{-1}$
C	-3 936541	-1 624936	-0.499020	191112 em)
c	-2 686744	-1 183820	-0.925818	
c	-1 61/230	-1 125934	-0.025563	
C	1 804416	-1.125954	1 207035	
C	-1.804410	1 002022	1.297955	
с u	-3.040703	-1.550000	1.713033	
п	-4.705542	-1.032622	-1.202499	
п	-2.334133	-0.884972	-1.901575	
н	-1.000000	-1.480247	2.021124	
п	-3.182708	-2.319292	2.741815	
P	-0.028/9/	-0.548154	-0.695486	
C	1.514129	-1.254029	-0.0366/1	
C	2.523243	-1.524282	-0.9/1540	
C	1.731749	-1.555/91	1.312/45	
С	3.734199	-2.073619	-0.558108	
Н	2.370119	-1.307/19	-2.024064	
С	2.933431	-2.127617	1.716317	
Н	0.985781	-1.332926	2.065107	
Н	4.512362	-2.265435	-1.290980	
Η	3.085710	-2.363799	2.765387	
С	0.055611	1.141567	0.941791	
С	1.262823	1.521389	1.523037	
С	-1.111205	1.540906	1.589105	
С	1.255918	2.218897	2.727359	
Η	2.217942	1.288727	1.056919	
С	-1.024044	2.237994	2.791335	
Η	-2.095371	1.325789	1.179170	
Η	2.193562	2.507403	3.198061	
Η	-1.929016	2.541182	3.313949	
С	-4.118235	-2.036657	0.819156	
Η	-5.091151	-2.388701	1.150425	
0	-0.063158	-1.248846	-2.187014	
С	0.039050	1.150731	-1.162914	
С	-1.150606	1.880927	-1.516877	
С	1.286577	1.747352	-1.564340	
С	-1.048821	3.173206	-1.927416	
Η	-2.134972	1.441652	-1.414324	
С	1.311940	3.044453	-1.972914	
Η	2.219137	1.199607	-1.505991	
Η	-1.912572	3.784122	-2.160444	
Η	2.227443	3.557931	-2.241122	
С	-0.176364	-2.664754	-2.381847	
Η	-1.209221	-2.911185	-2.644180	
Н	0.487780	-2.932730	-3.206516	
Н	0.113928	-3.227362	-1.488438	
Ν	0.135716	2.574230	3.370106	
Ν	0.164483	3.758209	-2.102934	
Н	0.209859	4.713568	-2.439132	
С	3.938911	-2.382190	0.784444	
Н	4.879958	-2.819653	1.105821	

С	0.923629	1.919981	-1.500356
С	0.353664	1.649936	-0.252810
Ċ	-0.227174	2.677068	0.495944
Ċ	-0 247701	3 972077	-0.011898
н	1 302002	3 420066	-2 991689
н	1.302002	1 132279	-2 070555
н	-0.667470	2 468125	1 466551
н	-0.007470	4 772107	0.572036
D	-0.092202	4.772107	0.372930
r C	1.027864	-0.021743	0.420407
C	-1.937004	0.030970	1 564220
C	-2.045525	-0.377434	1.304239
C	-2.039033	0.734722	-0.520781
	-3.99/304	-0.069207	1.080323
Н	-2.162239	-0.951433	2.352930
C	-4.010120	1.018/30	-0.317792
H	-2.189365	1.106557	-1.438580
H	-4.555358	-0.390957	2.564076
Н	-4.578856	1.574951	-1.060903
С	2.228681	-0.383220	0.267728
С	2.682245	-1.575723	-0.304517
С	3.166454	0.563712	0.705950
С	4.050112	-1.821702	-0.431291
Η	1.980394	-2.323990	-0.660968
С	4.529106	0.315941	0.583762
Η	2.832321	1.501895	1.143714
С	4.973030	-0.879158	0.013761
Η	4.390121	-2.750617	-0.880516
Η	5.245739	1.055942	0.928848
Н	6.037949	-1.070991	-0.085861
С	0.291273	4.238333	-1.271168
Н	0.263031	5.248599	-1.669813
0	0.192265	-0.059448	2.011015
С	-0.415153	-1.318267	-0.438636
С	-0.665460	-2.556495	0.230383
C	-0.669292	-1.267666	-1.842001
Ċ	-1.329815	-3.548895	-0.426123
H	-0.370222	-2.707470	1.262521
C	-1 338804	-2 297766	-2 435767
н	-0 375424	-0.416478	-2 443837
н	-1 581907	-4 496870	0.033205
н	-1 5963/3	-2 305532	-3 /8779/
N	1 680075	3 306/10	1 725125
C	1 007676	0 637761	2 075506
с и	0.406002	-0.037701	2.713390
п U	0.470073	-0.772820	2.0/2/90
п	1.4/820/	-1.002082	2.055004
H N	1.922022	0.048033	5.1/5801
IN LT	-4.68/293	0.620770	0.768917
Н	-2.166638	-4.15/800	-2.196514

[Int-IV·H]+-Ph,OMe,ax-a

L			
С	1.998384	-3.602744	-0.191212
С	1.123224	-2.583881	-0.558756
С	1.499088	-1.264216	-0.306501
С	2.744465	-1.025786	0.283263
С	3.541913	-2.117949	0.607617
Η	1.727428	-4.639332	-0.371950
Η	0.181335	-2.838613	-1.031536
Н	3.104022	-0.024503	0.491715
Η	4.512789	-1.960894	1.069397
Р	0.414948	0.119420	-0.755584
С	0.068851	1.370304	0.640963
С	-0.662685	2.479592	-0.082221
С	1.357876	1.917715	1.214446
С	-0.058484	3.631694	-0.425440
Н	-1.682034	2.316185	-0.412344
С	1.868770	3.102670	0.838673
Η	1.882886	1.339413	1.965537
Н	-0.573767	4.401136	-0.989792
Н	2.796412	3.483524	1.251481
С	-0.760140	0.629434	1.696915
C	-2.109163	0.927674	1.908536
C	-0.174406	-0.388360	2.462101
Ċ	-2.858899	0.214145	2.842601
H	-2.594293	1.720683	1.350067
C	-0.923376	-1.104240	3.392411
H	0.875177	-0.639111	2.340831
Н	-3.906770	0.462606	2.987794
Н	-0.447718	-1.892302	3.969779
0	1.065185	0.914483	-1.973788
Č	-1.146038	-0.473263	-1.417738
C	-1.973804	-1.296517	-0.640709
Č	-1.557347	-0.057599	-2.689349
Ċ	-3.204944	-1.703229	-1.143245
Н	-1.663271	-1.631436	0.344402
C	-2.794221	-0.467773	-3 180026
Н	-0.920919	0.581247	-3.292391
Н	-3.842150	-2.345011	-0.542241
Н	-3.113102	-0.144352	-4.166462
C	2.475381	1.148554	-2.185403
Н	2.976663	0.203119	-2.405076
Н	2.524359	1 808658	-3 050831
Н	2.920651	1.634642	-1.315925
C	-3.616727	-1.287462	-2.409343
н	-4 580733	-1 605445	-2.796315
N	1 237011	3 922508	-0.068946
Н	1.598094	4.852116	-0.230162
N	3.184269	-3.387148	0.385074
C	-2.272807	-0.810126	3.582198
H	-2.859178	-1.368842	4.306488
	-		-

[Int-IV·H]⁺-Ph,OMe,ax-b

L	-• - •1		
С	2.821010	-2.945920	-0.251773
С	1.669960	-2.208110	-0.514766
С	1.746939	-0.817913	-0.443591
С	2.977816	-0.228777	-0.137627
С	4.064763	-1.061001	0.107897
Η	2.789596	-4.031005	-0.298224
Н	0.754441	-2.728442	-0.771779
Н	3.106073	0.847767	-0.096352
Н	5.032317	-0.631084	0.351944
Р	0.330850	0.275462	-0.722654
С	-0.201733	1.300329	0.788028
С	-1.235270	2.250594	0.227681
С	0.976253	2.086556	1.314341
С	-0.970407	3.550951	0.004286
Η	-2.201620	1.864073	-0.074811
С	1.142703	3.396276	1.058017
Η	1.716833	1.577423	1.920049
Н	-1.705171	4.215643	-0.436497
Н	1.995612	3.949223	1.435955
С	-0.739202	0.290409	1.809882
C	-2.100197	0.218540	2.119947
C	0.136079	-0.608048	2.435147
Ċ	-2.577331	-0.737935	3.015123
H	-2.806635	0.908183	1.671386
C	-0.340168	-1.566225	3.326396
H	1.202981	-0.573579	2.234774
Н	-3.639899	-0.775989	3.239394
Н	0.357671	-2.254722	3.795014
0	0.803827	1.392767	-1.756140
Č	-1.088990	-0.592080	-1.400496
C	-1.675882	-1.665696	-0.713865
Č	-1.673483	-0.106006	-2.576958
Ĉ	-2.826069	-2.260107	-1.222094
Н	-1.249215	-2.039911	0.212157
C	-2.825121	-0.708355	-3.075504
H	-1.242246	0.740455	-3.102396
Н	-3.276639	-3.093157	-0.690935
Н	-3 274557	-0 331449	-3 989319
C	1 540185	1 074085	-2.962625
н	1 222012	0.115734	-3 380212
н	1 318543	1 879463	-3 662585
н	2 607205	1.073265	-2 732910
C	-3 399077	-1 784653	-2 401400
н	-4 298160	-2 252017	-2 792920
N	0 230545	4 127805	0 335077
н	0 347220	5 127293	0 247401
N	3 998172	-2 395756	0.061070
C	-1 701957	-1 639791	3 615311
й	-2.075681	-2.388311	4.308616
	_	 50511	

[Int-IV·H]+-Py,OMe,ax-a

L			
С	2.696558	-3.118611	-0.333102
С	1.634076	-2.274990	-0.645441
С	1.724495	-0.906070	-0.361985
С	2.895107	-0.387656	0.214394
С	3.951328	-1.238208	0.519269
Η	2.618998	-4.179491	-0.551508
Η	0.745739	-2.691062	-1.109093
Η	2.992102	0.672159	0.424040
Η	4.853926	-0.831995	0.965778
Р	0.356562	0.193734	-0.765922
С	-0.235355	1.344611	0.630086
С	-1.266729	2.217929	-0.051456
С	0.903947	2.212104	1.122165
С	-0.991922	3.474721	-0.443402
Η	-2.231035	1.796724	-0.311368
С	1.079908	3.475063	0.697395
Η	1.596687	1.801884	1.847320
Η	-1.716975	4.077491	-0.979151
Н	1.906275	4.085598	1.044490
С	-0.793438	0.457819	1.746236
С	-2.152662	0.421558	2.055971
С	0.049581	-0.368412	2.496285
С	-2.601245	-0.435143	3.056963
Н	-2.875850	1.042367	1.540654
С	-0.494511	-1.191102	3.475130
Н	1.121971	-0.390908	2.333853
Н	-3.660366	-0.473651	3.299551
Н	0.153596	-1.841855	4.056786
С	3.851189	-2.603631	0.252018
Η	4.677761	-3.265194	0.495195
0	0.758797	1.151221	-1.977351
С	-1.061178	-0.723994	-1.382262
С	-1.671095	-1.699708	-0.580124
С	-1.589853	-0.414832	-2.640383
С	-2.802801	-2.361842	-1.043465
Η	-1.264629	-1.957728	0.393798
С	-2.724792	-1.082951	-3.093231
Η	-1.122135	0.341195	-3.262339
Η	-3.270264	-3.120852	-0.423292
Η	-3.134064	-0.842641	-4.070031
С	2.096473	1.603848	-2.281199
Η	2.722883	0.752675	-2.557212
Η	1.981046	2.276124	-3.130876
Η	2.521575	2.141039	-1.431721
С	-3.330994	-2.052787	-2.296969
Η	-4.216181	-2.571635	-2.654019
Ν	-1.801191	-1.242651	3.760691
Ν	0.210491	4.086405	-0.177290
Η	0.318508	5.071408	-0.374379

[Int-IV·H]⁺-Py,OMe,ax-b

L			
С	-4.111513	-0.881723	0.155697
С	-2.977325	-0.135772	-0.144419
С	-1.766888	-0.790081	-0.424254
С	-1.709824	-2.188449	-0.426979
С	-2.851047	-2.925461	-0.123864
Η	-5.046685	-0.373482	0.371023
Η	-3.040303	0.947952	-0.172161
Н	-0.790941	-2.711385	-0.668988
Η	-2.803455	-4.010307	-0.125895
Р	-0.324561	0.230069	-0.754255
С	1.084296	-0.722100	-1.341800
С	1.698433	-0.339710	-2.540912
С	1.631355	-1.759937	-0.571329
С	2.840888	-1.006422	-2.975688
Н	1.297391	0.477524	-3.132496
С	2.772947	-2.418465	-1.015199
Н	1.179386	-2.056813	0.370973
Н	3.313461	-0.708924	-3.907072
Н	3.192718	-3.222430	-0.418044
С	0.727185	0.382862	1.783717
С	2.072641	0.294003	2.138610
С	-0.165351	-0.455674	2.459635
C	2.461139	-0.622454	3.111332
Η	2.829651	0.918527	1.678948
С	0.321180	-1.339965	3.415129
Η	-1.231505	-0.442781	2.256961
Н	3.509092	-0.702420	3.389661
Н	-0.364326	-2.001179	3.939254
С	-4.047025	-2.275069	0.174486
Н	-4.934476	-2.855002	0.411676
0	-0.717107	1.312102	-1.859230
С	0.234708	1.334968	0.689541
С	-0.919035	2.188318	1.164585
С	1.308538	2.217689	0.094946
С	-1.039898	3.484828	0.829532
Н	-1.678143	1.738637	1.794065
С	1.088347	3.510215	-0.205998
Н	2.265558	1.781978	-0.168664
Η	-1.877304	4.086121	1.166068
Η	1.849341	4.125315	-0.673441
С	-1.487880	0.969551	-3.036367
Η	-2.550525	0.980990	-2.786060
Η	-1.262451	1.745469	-3.767641
Η	-1.199500	-0.009280	-3.426832
Ν	1.614469	-1.440784	3.744566
Ν	-0.099051	4.141906	0.072475
С	3.376371	-2.044599	-2.215909
Η	4.268849	-2.561577	-2.557023
Η	-0.181943	5.138049	-0.072893

[Int-IV·H]⁺-Py,Ph,ax-a

		v /)	
С	-1.513768	3.022570	-1.742693
С	-0.569117	2.115268	-1.273462
С	-0.696207	1.591472	0.019229
С	-1.763645	1.976633	0.838443
С	-2.702523	2.884725	0.358977
Н	-1.414731	3.430964	-2.743992
Н	0.259162	1.821013	-1.912273
Н	-1.868884	1.567022	1.837989
Н	-3.532346	3.183034	0.992798
Р	0.407136	0.282432	0.556744
С	-1.698934	-1.296754	-0.080088
С	-2.316706	-1.516955	1.153773
С	-2.527241	-0.972882	-1.155145
С	-3.697882	-1.392888	1.256070
Н	-1.749061	-1.768921	2.042906
С	-3.899161	-0.870385	-0.950644
Н	-2.134533	-0.791366	-2.148975
Н	-4.186122	-1.558168	2.213391
Н	-4.550732	-0.611355	-1.781594
С	2.114002	0.698235	0.179466
C	3.090545	-0.293399	0.011574
C	2.476345	2.052676	0.143151
Ĉ	4.413400	0.072749	-0.211261
H	2.833882	-1.345478	0.061467
C	3.802951	2.408150	-0.079295
H	1.732821	2.830987	0.286830
С	4.769321	1.420283	-0.260790
H	5.166815	-0.697695	-0.344681
Н	4.078722	3.457882	-0.110878
Н	5.803854	1.700793	-0.437462
С	-2.580990	3.403260	-0.929796
Η	-3.319432	4.108026	-1.301526
0	0.193123	0.180671	2.138722
С	-0.165455	-1.351012	-0.222368
С	0.418672	-2.525573	0.539097
C	0.313115	-1.379385	-1.659069
С	1.229127	-3.431823	-0.032939
Н	0.152728	-2.657182	1.581372
С	1.142530	-2.326539	-2.129037
Н	-0.004475	-0.596400	-2.338187
Н	1.614955	-4.280564	0.520872
Н	1.475178	-2.329579	-3.161052
Ν	1.629270	-3.345052	-1.345293
С	1.254095	-0.183788	3.054023
Н	0.763121	-0.331257	4.015564
Н	1.743757	-1.106260	2.735894
Н	1.976021	0.633587	3.117448
Ν	-4.494083	-1.069363	0.230975
Н	2.206109	-4.067858	-1.749938

 $[\textbf{TS-I-H}]^+ - \textbf{Ph,OMe,ax-a} \qquad (v_i = -255.96 \text{ cm}^{-1})$

С	3.068855	-2.772227	0.665464	
С	1.930295	-2.203240	0.100958	
С	1.894229	-0.819556	-0.069923	
С	3.006091	-0.071388	0.334253	
С	4.094183	-0.740352	0.883035	
Η	3.123453	-3.848727	0.805622	
Η	1.108301	-2.843301	-0.201547	
Η	3.037949	1.008444	0.220088	
Η	4.971683	-0.183311	1.200924	
Р	0.453472	0.103605	-0.684437	
С	-0.531337	1.713872	0.614575	
С	-1.400508	2.322883	-0.379964	
С	0.545987	2.587543	1.056346	
С	-1.057127	3.483135	-0.996148	
Η	-2.297506	1.812803	-0.711154	
С	0.827244	3.743543	0.403882	
Η	1.161668	2.308181	1.903259	
Η	-1.659028	3.929283	-1.778915	
Η	1.641203	4.396923	0.695042	
С	-1.125434	0.771297	1.631672	
С	-2.507749	0.584312	1.719251	
С	-0.293368	0.047440	2.498395	
С	-3.045570	-0.318472	2.637041	
Η	-3.183538	1.144304	1.081206	
С	-0.829750	-0.852567	3.412453	
Η	0.785914	0.165730	2.452925	
Η	-4.122756	-0.451790	2.686135	
Η	-0.166456	-1.409224	4.068765	
0	0.992018	0.998547	-1.919786	
С	-0.786524	-1.036799	-1.334178	
С	-1.398525	-1.952700	-0.464187	
С	-1.264666	-0.895350	-2.642874	
С	-2.449082	-2.744693	-0.916932	
Η	-1.063938	-2.047202	0.566225	
С	-2.319748	-1.689780	-3.086570	
Η	-0.822172	-0.167651	-3.316715	
Η	-2.913969	-3.456261	-0.240525	
Η	-2.682595	-1.580257	-4.104613	
С	1.885584	0.472589	-2.923175	
Η	1.647738	-0.567362	-3.163613	
Η	1.751414	1.098268	-3.806778	
Η	2.915690	0.546240	-2.565299	
С	-2.909056	-2.616342	-2.227806	
Η	-3.732685	-3.233028	-2.576738	
Ν	0.060975	4.170013	-0.638127	
Η	0.272887	5.051557	-1.089071	
N	4.135919	-2.067012	1.055909	
C	-2.210656	-1.044156	3.481583	
Н	-2.629937	-1.751040	4.192241	
[T]	S-II∙H]⁺-I	Py,OMe,ax	x-a $(v_i = $	-245.55 cm ⁻¹)
--------------	------------------------	----------------------------	----------------------	----------------------------
С	3.927798	-1.229217	1.140910	
С	2.614527	-1.265463	0.682371	
С	2.097094	-0.189423	-0.053679	
С	2.906563	0.919245	-0.326996	
С	4.218499	0.952340	0.140668	
Н	4.324281	-2.065434	1.709653	
Н	1.995140	-2.133376	0.896286	
Н	2.523374	1.753901	-0.906592	
Н	4.843461	1.814560	-0.074006	
Р	0 385498	-0 337352	-0.633452	
C	-0.168027	1.273514	-1.234490	
C	-0.802779	1 388581	-2.477065	
c	-0 124389	2 378712	-0.371000	
c	-1 357886	2.606980	-2 864504	
н	-0.864059	0.533467	-3 144394	
C	-0.680567	3 591530	-0 764472	
н	0.342074	2 296107	0.608197	
н	-1 8/1/23	2.290107	-3 833/92	
н	0.638068	<i>1 1 1 1 1 1 1 1 1 1</i>	0.003512	
C	-0.038008 -1.376474	-0.1899/0	1 6271/13	
C	2 302667	0.761303	1.027143	
C	0.342661	0.701323	2 565602	
C	2 320747	1 752407	2.505002	
с и	-2.320747	0.754685	2.081711	
C	0.362164	0.025344	3 501176	
н	0.488677	-0 796978	2 566067	
н	-3 103354	2 504586	2.500007	
н	0.440615	1 010110	1 229220	
C	1 728576	-0.118353	0.873889	
н	5 752359	-0.088/19	1 236397	
$\hat{0}$	0.404308	-1 3/5668	-1 906979	
c	-1 371906	-1 258561	0 564198	
c	-0.970577	-2 597712	0.958/157	
c	-2 398502	-1 233658	-0.461255	
c	-1 344280	-3 682280	0.233672	
н	-0 333255	-2 746263	1 822197	
C	-2 723394	-2 358038	-1 152006	
н	-2 865834	-0.300870	-0 753548	
Н	-1 034466	-4 689864	0.483972	
н	-3 443956	-2 358398	-1 961403	
C	1 429700	-1 260182	-2 915373	
н	2 372270	-1 649359	-2 520426	
Н	1 088477	-1 881499	-3 744762	
Н	1.563640	-0 228767	-3 255125	
N	-1 328096	1 852212	3 569568	
N	-2.176668	-3 561147	-0 837457	
C	-1 295661	3 707857	-2.011845	
н	-1.730255	4.656044	-2.316095	
Н	-2.463660	-4.389304	-1.345180	

$[TS-II·H]^+-Py,Ph,ax-a (v_i = -252.59 \text{ cm}^{-1})$ C -1.496168 2.880512 -1.868123

С	-0.541913	2.044219	-1.294874
С	-0.724530	1.565759	0.009817
С	-1.869779	1.928024	0.730287
С	-2.817100	2.767481	0.151015
Η	-1.347784	3.251253	-2.878342
Η	0.341713	1.771529	-1.865828
Η	-2.027281	1.552021	1.736321
Η	-3.702740	3.046184	0.715006
Р	0.384504	0.302232	0.659184
С	-1.689032	-1.440087	-0.142348
С	-2.217269	-1.592293	1.143444
С	-2.570441	-1.049592	-1.151044
С	-3.564121	-1.332069	1.360002
Η	-1.597526	-1.884727	1.985354
С	-3.903414	-0.808429	-0.830773
Η	-2.251412	-0.925821	-2.179817
Η	-3.982369	-1.439524	2.357621
Η	-4.595094	-0.491350	-1.607253
С	2.090748	0.819618	0.330150
С	3.079060	-0.167599	0.235762
С	2.445725	2.172043	0.231667
С	4.408685	0.192209	0.030670
Η	2.816877	-1.216606	0.332036
С	3.775873	2.526179	0.025972
Η	1.690226	2.948277	0.315290
С	4.755591	1.537850	-0.078802
Η	5.171116	-0.577929	-0.043504
Η	4.047668	3.574980	-0.052409
Η	5.792346	1.818825	-0.242499
С	-2.634836	3.240454	-1.148194
Η	-3.379535	3.890511	-1.599129
0	0.131561	0.435662	2.266273
С	-0.219464	-1.660183	-0.409673
С	0.384706	-2.821156	0.236651
С	0.291861	-1.420282	-1.751960
C	1.459044	-3.449050	-0.297989
Н	-0.017782	-3.193447	1.171074
C	1.386902	-2.073472	-2.216320
H	-0.152066	-0.660166	-2.383538
Н	1.929567	-4.304191	0.172410
Н	1.814648	-1.871838	-3.191322
N	1.992347	-3.051101	-1.489143
C	0.812178	-0.481510	3.141977
H	0.439676	-0.269431	4.144694
H	0.585968	-1.517424	2.875191
H	1.892889	-0.309998	3.106236
N	-4.409815	-0.938605	0.399303
Н	2.779294	-3.553708	-1.880523

[Int-V·H]+-Ph,OMe,ax-a

		, .,	
Ċ	-4.778680	-1.128326	-0.152476
С	-3.510362	-0.757626	0.281566
С	-2.770145	0.148910	-0.482378
С	-3.355726	0.633892	-1.653473
С	-4.633525	0.203019	-2.004416
Н	-5.370439	-1.831462	0.428578
Н	-3.116872	-1.179206	1.201595
Н	-2.830859	1.336227	-2.296125
Η	-5.103801	0.568289	-2.914109
Р	-1.085618	0.783427	-0.051161
С	2.490978	1.125416	-0.574431
С	2.521585	1.552945	0.762934
С	2.299511	2.098332	-1.569379
С	2.333275	2.881819	1.067031
Η	2.656867	0.852697	1.577727
С	2.120574	3.417051	-1.219834
Η	2.295758	1.837743	-2.621196
Η	2.324473	3.270806	2.077262
Н	1.966008	4.212855	-1.937282
С	2.624941	-0.305902	-0.918836
С	3.393884	-1.164253	-0.121397
С	1.959981	-0.828621	-2.037137
С	3.500666	-2.514304	-0.440383
Η	3.930050	-0.778058	0.740731
С	2.062261	-2.180794	-2.348298
Η	1.332555	-0.188589	-2.650893
Η	4.105162	-3.167000	0.183005
Н	1.530046	-2.575437	-3.209220
0	-1.404673	1.963823	1.074156
С	-0.433563	-0.601680	0.967360
С	-0.380742	-1.892065	0.422569
С	0.156695	-0.368492	2.213101
С	0.235305	-2.928733	1.118016
Η	-0.821613	-2.094046	-0.551748
С	0.772634	-1.407957	2.910667
Η	0.142795	0.628578	2.645852
Η	0.268271	-3.923880	0.682766
Η	1.223181	-1.212273	3.880293
С	-2.394792	1.814200	2.098457
Η	-2.319672	0.842702	2.597790
Η	-2.212487	2.609576	2.824762
Η	-3.397380	1.930746	1.674177
С	0.813780	-2.689349	2.365292
Η	1.298142	-3.498202	2.905747
Ν	2.134540	3.770346	0.077781
Η	1.995714	4.749184	0.319877
Ν	-5.343205	-0.664106	-1.275213
С	2.833843	-3.026535	-1.552499
Η	2.912119	-4.082590	-1.795745

[Int-V·H]⁺-Py,OMe,ax-a

Ċ	-/ 197082	-0 5/11386	-2 257752
c	-2 962541	-0.886103	-1 706198
c	-2 609474	-0.461688	-0.419055
C	-3 520068	0.318490	0.309410
C	-4.753646	0.659792	-0.237448
Н	-4.454953	-0.874040	-3.259579
Н	-2.267281	-1.489896	-2.286337
Н	-3.264700	0.667710	1.306353
Н	-5.451055	1.263074	0.337665
Р	-0.968309	-1.009887	0.200863
С	-0.431853	0.438071	1.202784
С	0.308377	0.228284	2.372926
С	-0.593137	1.748511	0.734174
С	0.861605	1.303313	3.067191
Н	0.453486	-0.781313	2.750579
С	-0.033739	2.822351	1.423185
Η	-1.155406	1.940007	-0.176375
Η	1.426213	1.122454	3.978274
Η	-0.165979	3.831826	1.043165
С	2.315623	0.632506	-1.073622
С	2.995128	1.653960	-0.406819
С	1.374178	0.997588	-2.039666
С	2.709755	2.974640	-0.735101
Η	3.747525	1.440224	0.345766
С	1.159768	2.347937	-2.290244
Η	0.788298	0.254433	-2.571856
Η	3.229633	3.783734	-0.228792
Η	0.424347	2.652119	-3.030500
С	-5.093378	0.230921	-1.522405
Η	-6.055562	0.502226	-1.948789
0	-1.314303	-2.148977	1.366711
С	2.562158	-0.793766	-0.755876
С	2.487511	-1.774131	-1.754652
С	2.848207	-1.196898	0.555792
С	2.671450	-3.099199	-1.427378
Η	2.294927	-1.514939	-2.789187
С	3.021694	-2.534099	0.837269
Η	2.908660	-0.482445	1.368139
Η	2.625072	-3.908357	-2.145384
Η	3.227421	-2.918232	1.828364
С	-2.305207	-1.950235	2.378081
Η	-3.309893	-2.013007	1.946818
Η	-2.172723	-2.754180	3.106172
Η	-2.181209	-0.984263	2.879553
Ν	1.811569	3.331644	-1.660022
Ν	2.923938	-3.438648	-0.151905
С	0.694931	2.603413	2.592132
Η	1.131729	3.441866	3.128098
Η	3.050387	-4.423494	0.074337

[Int-V·H]⁺-Py,Ph,ax-a

- L			
С	-1.115654	-1.319967	2.722471
С	-0.187492	-1.157901	1.692924
С	-0.474862	-1.608898	0.401105
С	-1.714482	-2.219750	0.157627
С	-2.633139	-2.396593	1.187705
Н	-0.878547	-0.961107	3.720718
Н	0.761827	-0.675937	1.907654
Н	-1.968098	-2.557214	-0.845284
Н	-3.587711	-2.873933	0.983361
Р	0.633681	-1.385362	-1.044573
С	-2.036219	1.506075	-0.421328
С	-2.316287	0.952794	-1.673269
С	-2.967797	1.312288	0.600624
С	-3.499614	0.243485	-1.842731
Н	-1.623217	1.043332	-2.503490
С	-4.126016	0.593760	0.324729
H	-2.818160	1.725338	1.593026
Н	-3.730987	-0.203156	-2.806270
Н	-4.865932	0.438256	1.105474
C	2.189229	-0.786517	-0.275974
Ċ	2.626434	0.501363	-0.598570
C	2.965073	-1.575527	0.584103
C	3 802998	1 010946	-0.047824
Н	2.047250	1.111165	-1.289215
C	4 146149	-1 073976	1 123876
н	2 642544	-2.583368	0.834174
C	4 563246	0.223070	0.813618
Н	4 128971	2.016118	-0 302421
Н	4 742384	-1 692406	1 789621
Н	5 484531	0.613166	1 238151
C	-2.336294	-1 943003	2.473914
Н	-3.058145	-2.069713	3.276413
0	0.967315	-3.014421	-1.275972
C	-0 790123	2 270974	-0 179631
C	-0 227984	3 073396	-1 182654
Č	-0 148086	2 212510	1 064478
C	0 924386	3 783738	-0.924321
Н	-0.690276	3 172023	-2.157907
C	1 007773	2.932044	1 274536
Н	-0 533183	1 598708	1 869158
н	1 406819	4 429733	-1 646884
н	1.560311	2 923277	2 205310
N	1 503183	3 693761	0.285127
C	1 690219	-3 332490	-2 465577
й	1 722985	-4 422235	-2.533151
Н	1.188385	-2.928200	-3.353835
Н	2,715769	-2.945094	-2.418649
N	-4 402663	0.063981	-0.871705
Н	2 356350	4 221926	0 457480
**	2.550550		0.127100

Pathway [Int-V·2H]²⁺

[Int-III·2H] ²⁺ -Ph,OMe,ax-a			
Ċ	-0.463949	4.166219	-0.884291
С	-0.201589	2.816933	-1.107856
С	-0.455996	1.868035	-0.109865
С	-0.997437	2.297766	1.109274
С	-1.292195	3.642078	1.317561
Н	-0.244278	4.890073	-1.663885
Н	0.199358	2.506803	-2.066128
Н	-1.191341	1.590699	1.909550
Н	-1.726920	3.954309	2.262789
Р	-0.099662	0.084080	-0.403556
С	-1.575694	-1.051405	-0.343313
С	-1.564133	-2.258479	-1.049087
С	-2.727346	-0.690824	0.360256
С	-2.673596	-3.076626	-1.015327
Н	-0.709848	-2.571270	-1.638450
С	-3.821759	-1.531419	0.349224
Н	-2.797163	0.233792	0.920465
Н	-2.735559	-4.028145	-1.527787
Н	-4.749878	-1.316014	0.863707
С	0.430656	-0.297096	1.405687
С	-0.017378	-1.390052	2.153362
С	1.443282	0.502349	1.961993
С	0.508428	-1.664474	3.419702
Н	-0.780317	-2.060261	1.768171
С	1.969421	0.236834	3.221406
Η	1.831043	1.354505	1.405968
С	1.499739	-0.851762	3.959412
Η	0.137442	-2.519319	3.979350
Η	2.746320	0.879092	3.628080
Η	1.907340	-1.063006	4.944386
С	-1.017042	4.581352	0.325122
Η	-1.233467	5.632607	0.494194
0	-0.334558	0.201273	-2.150021
С	1.607655	-0.461798	-0.936629
С	2.518232	0.456084	-1.469259
С	2.015999	-1.786598	-0.746600
С	3.792832	0.038621	-1.789948
Η	2.259091	1.494897	-1.633005
С	3.291521	-2.163755	-1.106412
Η	1.358900	-2.530836	-0.309621
Η	4.554747	0.692733	-2.194907
Η	3.673335	-3.171249	-1.000350
Ν	4.136510	-1.246958	-1.607674
С	-1.568700	0.553059	-2.756300
Η	-1.356069	1.192206	-3.619848
Η	-2.094900	-0.345546	-3.103431
Η	-2.232333	1.105186	-2.077682
Ν	-3.758815	-2.690673	-0.324293
Η	5.080778	-1.538173	-1.854631
Η	-4.574457	-3.301310	-0.318320

[Int-III·2H]²⁺-Ph,OMe,ax-b

С	0.650653	4 153409	-0 691192
C	0.660430	2 775267	-0.891580
C	-0 152937	1 943809	-0 113564
c	-0.996668	2 512133	0.844600
C	-1 030137	3 893674	1 018282
н	1 298975	4 786799	-1 290003
н	1 300351	2 353414	-1 661016
н	-1 631178	1 893032	1.001010
н	-1 701080	4 323905	1.756375
P	-0.097240	0.132850	-0.407815
C	-1.739978	-0 785969	-0.3/09/1
c	-2 156178	-1 587758	-1 /06582
C	-2.130178	-0.680976	0.778834
C	3 363775	2 254263	1 333364
н	-1 560671	-1 694475	-2 303787
C	3 785/30	1 335001	0.796576
н	-2 292006	-0.108832	1 65/1826
ц	3 742621	2 8088/3	2 116403
и Ц	-3.742021	1 282623	1 620605
C	0.346073	0.401335	1 388459
C	0.235751	1 750806	1.300437
C	0.233731	0.454275	2 32/1530
C	0.937517	2 2/10/1	2.324339
н	-0.190/196	-2.241941	1.015310
C	1 375/159	-0.022186	3 562111
н	1.07138/	1 508597	2 102012
н	0.568216	-3 298702	3 188177
и П	1 823722	0.667105	1 273087
C	0 100553	4 716058	4.275087
н	-0.199333	5 792354	0.259100
$\hat{0}$	-0.200/19	0.339660	-2 1/7228
c	1 515671	-0.647364	-2.147220
C	2 723908	-0.029078	-0 585475
C	1 552062	-0.027076	-0.505475
C	3 915998	-0.630312	-0.925810
н	2 756487	0.911219	-0.046237
C	2.750407	-2 449633	-1 896359
н	0.651477	-2 402185	-1 888193
н	4 887114	-0.206206	-0.703695
н	2 876375	-3 399970	-2 403952
C	-1 3/3288	1 103226	-2.403732
н	-0.959726	2.065309	-3.072039
н	-1.764060	0.548249	-3 557975
н	-2 153089	1 305996	-1 9977//
N	-4 137868	-2 100/89	-0.249056
н	5 03/880	2 583755	0.249030
C	1 2/0804	1 370161	3 881782
с ц	1.240004	1 7/11/2	1 8/7/20
N	3 90//03	-1.741145	-1 561/116
ц	J. 704403	2 250195	1 706/77
11	4.774120	-2.230103	-1./204//

[Int-III·2H]²⁺-Ph,Ph,ax-a

Ċ	-1.540576	2.772477	-2.167264
С	-1.184870	1.565842	-1.602266
С	-0.465524	1.551621	-0.404096
С	-0.163573	2.766271	0.216826
С	-0.575320	3.949699	-0.361724
Η	-2.076559	2.866553	-3.103120
Н	-1.485415	0.651901	-2.102446
Н	0.388741	2.807416	1.149583
Η	-0.392953	4.927295	0.066634
Р	-0.005151	-0.039218	0.517276
С	-1.867109	-0.518952	0.448514
С	-2.791753	0.377610	1.009533
С	-2.366308	-1.680475	-0.146080
С	-4.159074	0.126376	0.975826
Η	-2.444474	1.291620	1.489340
С	-3.740448	-1.937463	-0.187948
Η	-1.700650	-2.416083	-0.587507
Η	-4.849578	0.838337	1.420551
Η	-4.100061	-2.848639	-0.659136
С	1.838954	0.540510	0.613121
С	2.428858	0.985753	-0.579576
С	2.653644	0.465104	1.749309
С	3.772113	1.347470	-0.640874
Η	1.841504	1.057151	-1.492944
С	4.001412	0.828812	1.696430
Η	2.240167	0.121332	2.690396
Η	4.196174	1.688563	-1.581875
Η	4.607982	0.765458	2.596472
0	0.063522	-0.221214	2.148009
С	0.573985	-1.492489	-0.497147
С	0.617833	-1.549130	-1.893353
С	1.049819	-2.584054	0.240265
С	1.129821	-2.671723	-2.509859
Η	0.272876	-0.735180	-2.519153
С	1.543207	-3.688346	-0.420449
Η	1.049464	-2.587754	1.325421
Η	1.202495	-2.786648	-3.584005
Η	1.923503	-4.569772	0.080248
С	-0.807821	-0.958436	3.015099
Η	-0.192650	-1.221954	3.878902
Η	-1.645684	-0.336512	3.337468
Η	-1.181345	-1.870111	2.544006
Ν	-1.233790	3.916073	-1.531193
Ν	1.568860	-3.698127	-1.763509
С	4.566673	1.271423	0.503019
Η	5.615488	1.553515	0.462248
С	-4.640822	-1.036004	0.370039
Η	-5.708751	-1.234668	0.336759
Η	-1.519354	4.797539	-1.954851
Η	1.943950	-4.518370	-2.237344

[Iı	nt-III·2H] ²	²⁺ -PyH ⁺ ,O	Me,ax-a
С	1.888390	0.993557	3.054643
С	1.299232	1.022218	1.811269
С	0.485462	-0.036744	1.373676
С	0.327075	-1.119842	2.245778
С	0.932555	-1.116449	3.488122
Н	2.516977	1.783213	3.447031
Н	1.480658	1.891099	1.185388
Н	-0.265899	-1.987343	1.979960
Н	0.839501	-1.922363	4.205836
Р	-0.199753	0.013038	-0.490641
С	-0.884677	1.711024	-0.261779
С	-1.504997	2.085864	0.937737
Ċ	-0.799005	2.648537	-1.298033
Ċ	-2.043682	3.360248	1.088406
H	-1.574367	1.395541	1.772424
С	-1.306766	3.935124	-1.132475
H	-0.338208	2.376767	-2.240942
Н	-2.537776	3.625680	2.018664
Н	-1 216059	4 654024	-1 941867
C	-1.334204	-1.410131	-0.253596
C	-2.429969	-1 320853	0.609184
c	-1 127193	-2 586178	-0.982010
c	-3 304577	-2 396593	0.745715
н	-2 615385	-0.417156	1 181243
C	-1 987058	-3 670271	-0.821661
н	-0.303416	-2 660944	-1 686590
н	-4 159964	-2 310273	1 409774
н	-1 808841	-4 583372	-1 382674
0	-0 443481	0.020191	-2 216756
C	1 579675	-0 264831	-0.969651
C	2 210736	-1 481198	-0.688649
C	2.210730	0.756130	-0.000049
C	3 532370	-1 657601	-1 039020
н	1 692838	-2.296725	-0.196513
C	3 6/1057	0.540036	1 802157
н	1 879302	1 718101	-1.872137
н	1.072502	-2 574075	-0.867108
н	4.002000	1 281308	2 360940
C	-1 738208	0.047557	-2.300740
ч	2 054826	0.047337	3 072150
н	2 402402	0.77130	2 126314
н	1 6010/10	0.663573	3 702204
n C	3 070000	3 576801	0.030651
с u	3 756577	-3.370801	0.059051
II C	1 037778	4.418309	0.154451
ч	2 345566	5 201276	0.050905
N	1 68/085	-0.068742	3 855810
N	1.004703	-0.000742	-1 622128
Н	+.202793 5 180087	-0.050509	-1.022120
н	2 120/13/	-0 077872	4 776210
11	2.120707	0.011012	T. / / UZIJ

[Ir	nt-III·2H] ²	²⁺ -PyH ⁺ ,O	Me,ax-b
С	2.967781	2.989854	-0.480016
С	2.250724	1.811572	-0.673151
С	0.941844	1.698400	-0.192036
С	0.349879	2.786869	0.452910
С	1.064110	3.971459	0.625520
Н	3.987231	3.062161	-0.848387
Н	2.717799	0.989051	-1.207250
Н	-0.667989	2.732986	0.824709
Н	0.589764	4.813825	1.121076
Р	0.041423	0.134492	-0.516216
С	-1.839765	0.144502	-0.455780
Ċ	-2.572187	-0.416981	-1.505480
Ċ	-2.538270	0.696081	0.623437
Ċ	-3.951802	-0.431798	-1.448706
H	-2.086262	-0.832420	-2.378405
C	-3.918368	0.694244	0.621976
Н	-2.036157	1.128344	1.480486
Н	-4.579487	-0.864644	-2.217311
Н	-4 520088	1 121774	1 413825
C	0.031493	-0.443001	1.383706
C	-0.627643	-1 646225	1 691075
c	0.681845	0.213091	2 433553
c	-0.635786	-2 139804	2 974854
н	-1 141064	-2 219840	0.923706
C	0.656495	-0 311684	3 712376
н	1 228028	1 136534	2 281057
н	-1 127860	-3.058056	3 270444
н	1.127000	0.151077	4 562540
C	2 376188	4 072983	0.168431
н	2.970100	4 994684	0.310663
$\hat{0}$	-0.011039	0.444023	-2 231875
c	1 021946	-1 375863	-0.902/19
c	2 213684	-1 605726	-0.204790
C	0 502240	2 308012	1 851231
C	2 072534	2 7/3388	0.465802
н	2.572534	-0.897368	0 539387
C	1 336655	-3 463409	-2 083388
н	-0.319591	-2 1/6526	-2 /1/528
н	3 906285	-2 898436	0.067289
н	0.983678	-4 188652	-2 811226
C	-0.513530	1 663932	-2.311220
н	0.287544	2 409504	-2.730740
н	-0.915329	1 462563	-3 7/9129
н Ц	1 310407	2 000384	2 136826
C	2 529905	-3 681182	-1 397608
н	3 11/0/1	-4 576817	_1 590230
N	0.002146	-1 458620	3 945885
N	-4 575871	0 1268020	-0 4007/0
H	-0.006713	-1 833503	4 897413
н	-5.594484	0.121057	-0.380383

[Int-III·2H]²⁺-PyH⁺,OMe,ax-c

С	2.548854	-3.228431	-0.680524
С	1.456028	-2.395118	-0.790458
С	1.531781	-1.089265	-0.293734
С	2.727380	-0.654427	0.285998
С	3.799876	-1.520189	0.361367
Η	2.563598	-4.250746	-1.036218
Η	0.564996	-2.775418	-1.276453
Η	2.848185	0.348173	0.678873
Η	4.757634	-1.253317	0.790028
Р	0.088247	0.055039	-0.506813
С	0.394151	1.859753	-0.268292
С	0.064265	2.762677	-1.286666
С	0.962984	2.352729	0.912915
С	0.270617	4.128906	-1.113696
Н	-0.343730	2.403853	-2.224505
С	1.202564	3.715279	1.069498
Н	1.229217	1.684806	1.726519
Н	-0.008209	4.815999	-1.907454
Н	1.660642	4.076295	1.985877
С	-0.454367	-0.142230	1.391631
С	-1.540089	0.640718	1.822977
С	0.088496	-1.039798	2.317102
C	-2.031152	0.525261	3.101762
Η	-2.018123	1.354500	1.158357
С	-0.431102	-1.132720	3.595467
Η	0.917088	-1.695241	2.074815
Н	-2.861831	1.102342	3.488365
Н	-0.052130	-1.809622	4.351372
0	0.443661	0.113989	-2.218251
C	-1.560700	-0.621497	-0.980400
С	-1.999059	-1.838862	-0.447979
C	-2.400926	0.092255	-1.840547
С	-3.250445	-2.346049	-0.789846
Н	-1.372822	-2.405380	0.236050
С	-3.666568	-0.400691	-2.150926
Η	-2.083843	1.037150	-2.267549
Н	-3.570019	-3.301886	-0.384340
Н	-4.317210	0.172243	-2.805720
С	1.703806	0.506226	-2.737164
Н	2.334009	-0.373765	-2.922090
Н	1.531799	1.022106	-3.687493
Н	2.244748	1.189968	-2.070165
С	-4.091349	-1.623454	-1.634173
H	-5.074069	-2.011242	-1.887817
N	-1.463464	-0.354981	3.949412
Н	-1.835167	-0.432988	4.893837
N	3.676829	-2.769441	-0.112876
C	0.845341	4.608573	0.061558
Ĥ	1.018439	5.673475	0.190079
Н	4.477941	-3.395711	-0.047138

[Int-III·2H]²⁺-PyH⁺,Ph,ax-a

Ċ	1.067258	3.045096	-2.221882
С	0.976690	1.799695	-1.605273
С	0.257146	1.655074	-0.415148
С	-0.330012	2.779002	0.173510
С	-0.203432	4.031758	-0.422797
Н	1.610507	3.142817	-3.157586
Н	1.482872	0.949178	-2.052294
Н	-0.881940	2.688434	1.105791
Н	-0.646915	4.901588	0.053473
Р	0.123700	0.041222	0.469380
С	-1.862078	0.284404	0.603507
С	-2.622874	0.117531	1.767968
С	-2.564187	0.567521	-0.580171
С	-3.998736	0.237255	1.731834
Η	-2.153596	-0.101626	2.718201
С	-3.936112	0.677910	-0.582321
Η	-2.045771	0.715716	-1.522967
Η	-4.636864	0.125728	2.599911
Η	-4.526231	0.899064	-1.463041
С	2.006725	-0.292078	0.391250
С	2.574944	-1.528729	0.066081
С	2.880392	0.756198	0.723167
С	3.960461	-1.710969	0.057977
Н	1.954606	-2.383968	-0.183558
С	4.260623	0.581067	0.722836
Η	2.481481	1.732117	0.991246
С	4.808252	-0.657465	0.384890
Η	4.371207	-2.682629	-0.204231
Н	4.909471	1.412952	0.984373
Η	5.885884	-0.797684	0.378081
С	0.482630	4.163796	-1.628922
Η	0.569800	5.138019	-2.102023
0	0.054953	-0.026045	2.104002
С	-0.315247	-1.489505	-0.502990
С	-0.746313	-2.595760	0.238646
С	-0.255303	-1.585105	-1.895239
С	-1.097127	-3.756851	-0.415629
Η	-0.811902	-2.565644	1.321693
С	-0.632262	-2.763242	-2.507309
Η	0.076705	-0.762759	-2.517270
Η	-1.431083	-4.655809	0.087101
Η	-0.620720	-2.914896	-3.579194
Ν	-1.033337	-3.802370	-1.757018
С	1.066355	-0.417172	3.042013
Η	0.529858	-0.578577	3.979719
Η	1.562871	-1.341837	2.741687
Η	1.802204	0.378892	3.173102
Ν	-4.612084	0.510577	0.569433
Η	-5.625586	0.602464	0.559682
Η	-1.300774	-4.665549	-2.227501

[Int-III·2H]²⁺-PyH⁺,Ph,ax-b

Ċ	0.577375	-2.910716	-2.521348
С	0.215174	-1.719559	-1.895243
С	0.345716	-1.591701	-0.510227
С	0.835273	-2.666836	0.240650
С	1.179260	-3.861299	-0.388191
Η	0.479038	-2.999048	-3.599753
Η	-0.164829	-0.903790	-2.501385
Η	0.951917	-2.579164	1.318496
Η	1.548824	-4.693124	0.204956
Р	-0.076482	-0.088309	0.459423
С	1.873361	0.298436	0.576056
С	2.547183	0.547759	-0.631295
С	2.646463	0.277439	1.743569
С	3.907101	0.756773	-0.653776
Η	2.018091	0.577147	-1.579509
С	4.009948	0.492862	1.685885
Η	2.197312	0.091801	2.710377
Η	4.477302	0.950271	-1.553897
Η	4.658216	0.488890	2.553673
С	-1.977998	-0.301808	0.414654
С	-2.611781	-1.460662	-0.044487
С	-2.788466	0.743557	0.886041
С	-4.005107	-1.567772	-0.048610
Η	-2.030488	-2.305304	-0.401201
С	-4.176242	0.641831	0.889169
Η	-2.336437	1.656525	1.269512
С	-4.791866	-0.517601	0.414874
Η	-4.470913	-2.479079	-0.414853
Η	-4.777437	1.467184	1.261814
Η	-5.875466	-0.600313	0.410960
С	1.054015	-3.984571	-1.770890
Η	1.326945	-4.914076	-2.262755
0	0.012843	-0.225940	2.090660
С	-0.262631	1.570011	-0.418668
С	0.195764	2.712661	0.242677
С	-0.909929	1.715180	-1.648207
С	0.009329	3.954120	-0.330693
Η	0.692452	2.657205	1.205607
С	-1.041103	2.971273	-2.203141
Η	-1.333221	0.870149	-2.177728
Η	0.322264	4.883716	0.127728
Η	-1.511129	3.161566	-3.159881
Ν	-0.584799	4.041634	-1.531097
С	-0.939099	-0.836909	2.973109
Η	-0.379493	-1.046602	3.887467
Η	-1.761143	-0.152903	3.193988
Η	-1.328531	-1.771071	2.562582
Ν	4.597588	0.723268	0.501119
Η	5.602996	0.879788	0.474782
Η	-0.701749	4.963248	-1.949197

[Iı	nt-III·2H] ²	²⁺ -PyH ⁺ ,Py	yH⁺,ax-a
С	-1.235041	2.941397	-2.168301
С	-1.050299	1.705480	-1.554484
С	-0.252689	1.600986	-0.409308
С	0.315836	2.754451	0.138685
С	0.097488	3.996167	-0.454751
Н	-1.836660	3.007760	-3.070385
Н	-1.541578	0.830972	-1.971649
Н	0.927048	2.695588	1.035795
Н	0.530849	4.887816	-0.010689
Р	-0.000160	-0.005888	0.460551
С	-1.951457	-0.289239	0.456228
C	-2.772189	0.718772	0.989758
Ċ	-2.585871	-1.418044	-0.071732
Ċ	-4.142012	0.587242	0.987753
H	-2.347419	1.623777	1.413471
C	-3 964694	-1 514930	-0.064677
Н	-2.026888	-2.243374	-0.497026
Н	-4 825114	1 326662	1 386792
н	-4 511765	-2 360940	-0.462161
C	1 942771	0.311221	0.583751
c	2 714062	0.138168	1 739773
c	2 629148	0.628917	-0.600606
c	4 087318	0.020917	1 695/16/
н	2 255844	-0.110315	2 688143
C	3 998337	0.763506	-0.609826
н	2 101796	0.76172	-1 537903
н	1 733867	0.165225	2 556411
н	4.753007	1.007548	1 /01306
C II	4.577900	1.007348	1 616674
с u	-0.000171	4.069290	2 088511
\cap	-0.824283	0.132075	2.000311
C	0.044290	-0.132073	2.091978
C	0.302009	-1.505255	1 030202
C	0.331100	-1.527592	-1.930202
C	0.704632	-2.001010	0.175771
С U	0.030939	-2.704049	-2.011332
п	1.000206	-0.037490	-2.497604
С	0.744205	-3.630616	-0.312084
п	0.744293	-2.033908	1.200003
п	1.250202	-2.714210	-3.09/822
П	1.259898	-4./329/3	0.044057
U U	-0.803103	-0.80/841	2.9/30/3
Н	-0.267401	-1.069110	3.850351
H	-1.6/8923	-0.144/46	3.270308
H	-1.263183	-1./20855	2.525691
U	0.966/45	-3.800364	-1.906191
H	1.200267	-4.//6///3	-2.441427
N	4.686450	0.58/9/8	0.534068
N	-4.695922	-0.520181	0.459134
H	5.698446	0.694075	0.51/158
н	-5./10090	-0.607804	0.459145

 $[TS-I-2H]^{2+}$ -Ph,OMe,ax-a $(v_i = -523.12 \text{ cm}^{-1})$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	916237 013996 351586 802915 160621 977764 074530 863217 727852 .171447 .047627 031021 .684889 .014215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	013996 351586 802915 160621 977764 074530 863217 727852 .171447 .047627 031021 .684889 .014215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	351586 802915 160621 977764 074530 863217 727852 .171447 .047627 031021 .684889 .014215
$\begin{array}{llllllllllllllllllllllllllllllllllll$	802915 160621 977764 074530 863217 727852 .171447 .047627 031021 .684889 .014215
H 1.606303 4.856678 -1.1 H 0.835316 2.670575 -1.9 H -0.090643 1.504559 2.0 H 0.600836 3.716172 2.8 P -0.253483 0.357099 -0.7 C -1.900522 -0.253133 -0.7 C -2.623485 -1.067818 -1.9 C -2.623485 -1.067818 -1.9 C -2.623485 -1.067818 -1.9 C -2.486094 0.144460 1.0 C -3.884581 -1.499358 -0.9 H -2.232565 -1.364208 -2.2 C -3.756825 -0.295814 1.3 H -4.500089 -2.141447 -1.1 H -4.577893 -0.029852 2.7 C 0.731983 -0.853537 0.9 C 0.015839 -1.923738 1.4 C 1.829510 -0.357285 1.6 C 0.346987 -2.443253 2.7 H -0.806918 -2.379739 0.7 C 2.168778 -0.870926 2.9 H 2.438501 0.439835 1.2 H -0.229109 -3.267925 3.7 H 3.020979 -0.463727 3.4 C 1.47936 4.433050 0.9 H 1.476234 5.403861 1.2 O -0.703258 0.827739 -2.7 C 0.990094 -0.824714 -1.6 <	160621 977764 074530 863217 727852 .171447 .047627 031021 .684889 .014215
H 0.835316 2.670575 -1.9 H -0.090643 1.504559 2.6 H 0.600836 3.716172 2.8 P -0.253483 0.357099 -0.7 C -1.900522 -0.253133 -0.7 C -2.623485 -1.067818 -1.9 C -2.623485 -1.067818 -1.9 C -2.623485 -1.067818 -1.9 C -2.623485 -1.067818 -1.9 C -2.486094 0.144460 1.6 C -3.884581 -1.499358 -0.9 H -2.232565 -1.364208 -2.2 C -3.756825 -0.295814 1.7 H -4.500089 -2.141447 -1.1 H -4.577893 -0.029852 2.7 C 0.731983 -0.853537 0.9 C 0.015839 -1.923738 1.4 C 1.829510 -0.357285 1.6 C 0.346987 -2.443253 2.7 H -0.806918 -2.379739 0.7 C 2.168778 -0.870926 2.9 H 2.438501 0.439835 1.2 H -0.229109 -3.267925 3.7 H 3.020979 -0.463727 3.4 C 1.476234 5.403861 1.2 O -0.703258 0.827739 -2.7 C 0.990094 -0.824714 -1.6 O -0.703258 0.827739 -2.7	977764 074530 863217 727852 .171447 .047627 031021 .684889 .014215
H -0.090643 1.504559 2.0 H 0.600836 3.716172 2.8 P -0.253483 0.357099 -0.7 C -1.900522 -0.253133 -0.7 C -2.623485 -1.067818 -1.4 C -2.623485 -1.067818 -1.4 C -2.486094 0.144460 1.0 C -3.884581 -1.499358 -0.7 H -2.232565 -1.364208 -2.7 C -3.756825 -0.295814 1.7 H -4.277893 -0.029852 2.7 C 0.731983 -0.853537 0.9 C 0.015839 -1.923738 1.4 C 1.829510 -0.357285 1.6 C 0.346987 -2.443253 2.7 H -0.806918 -2.379739 0.9 C 2.168778 -0.870926 2.9 H 2.438501 0.439835 1.2 H -0.229109 -3.267925 3.7 H 3.020979 -0.463727 3.4727 C 0.990094 -0.824714 -1.6 O -0.703258 0.827739 -2.757367 C 0.708584 -2.167595 -1.37367 C 0.708584 -2.167595 -1.575767 C 3.306587 -1.237367 -1.67595 H 2.592767 0.695871 -1.5759676 C 1.736353 -2.994806 -1.8759666	074530 863217 727852 .171447 .047627 031021 .684889 .014215
H 0.600836 3.716172 2.8 P -0.253483 0.357099 -0.7 C -1.900522 -0.253133 -0.7 C -2.623485 -1.067818 -1.4 C -2.623485 -1.067818 -1.4 C -2.486094 0.144460 1.0 C -3.884581 -1.499358 -0.6 H -2.232565 -1.364208 -2.2 C -3.756825 -0.295814 1.7 H -4.232565 -1.364208 -2.2 C -3.756825 -0.295814 1.7 H -4.500089 -2.141447 -1.1 H -4.577893 -0.029852 2.7 C 0.731983 -0.853537 0.9 C 0.015839 -1.923738 1.4 C 1.829510 -0.357285 1.6 C 0.346987 -2.443253 2.7 H -0.806918 -2.379739 0.9 C 2.168778 -0.870926 2.9 H 2.438501 0.439835 1.2 H -0.229109 -3.267925 3.6 H 1.476234 5.403861 1.2 O -0.703258 0.827739 -2.7 C 0.990094 -0.824714 -1.6 O 2.332848 -0.350597 -1.367595 C 3.306587 -1.237367 -1.6 H 2.592767 0.695871 -1.367595 C 1.736353 -2.994806 -1.8	863217 727852 .171447 .047627 031021 .684889 .014215
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	727852 .171447 .047627 031021 .684889 .014215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.171447 .047627 031021 .684889 .014215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.047627 031021 .684889 .014215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	031021 .684889 .014215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.684889 .014215
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.014215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.341082
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	743075
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.301787
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.251987
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	947324
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	490256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	653196
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	741091
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.943477
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	902752
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	231854
H 3.020979 -0.463727 3.4 C 1.145936 4.433050 0.9 H 1.476234 5.403861 1.2 O -0.703258 0.827739 -2.2 C 0.990094 -0.824714 -1.0 C 2.332848 -0.350597 -1.2 C 0.708584 -2.167595 -1.4 C 3.306587 -1.237367 -1.0 H 2.592767 0.695871 -1.2 C 1.736353 -2.994806 -1.3 H 0.299319 2.550306 1	.152967
C 1.145936 4.433050 0.9 H 1.476234 5.403861 1.2 O -0.703258 0.827739 -2.2 C 0.990094 -0.824714 -1.0 C 2.332848 -0.350597 -1.2 C 0.708584 -2.167595 -1.2 C 3.306587 -1.237367 -1.0 H 2.592767 0.695871 -1.2 C 1.736353 -2.994806 -1.3 H 0.299319 2.550306 1	440890
H 1.476234 5.403861 1.2 O -0.703258 0.827739 -2.2 C 0.990094 -0.824714 -1.0 C 2.332848 -0.350597 -1.2 C 0.708584 -2.167595 -1.2 C 3.306587 -1.237367 -1.0 H 2.592767 0.695871 -1.2 C 1.736353 -2.994806 -1.3 H 0.299319 2.559306 1	903063
O -0.703258 0.827739 -2.3 C 0.990094 -0.824714 -1.0 C 2.332848 -0.350597 -1.3 C 0.708584 -2.167595 -1.3 C 3.306587 -1.237367 -1.0 H 2.592767 0.695871 -1.3 C 1.736353 -2.994806 -1.3	261520
C 0.990094 -0.824714 -1.0 C 2.332848 -0.350597 -1.3 C 0.708584 -2.167595 -1.3 C 3.306587 -1.237367 -1.0 H 2.592767 0.695871 -1.3 C 1.736353 -2.994806 -1.3 H 0.299319 -2.550306 1	.239148
C 2.332848 -0.350597 -1.3 C 0.708584 -2.167595 -1.3 C 3.306587 -1.237367 -1.4 H 2.592767 0.695871 -1.3 C 1.736353 -2.994806 -1.3 H 0.299319 -2.550306 1	093365
C 0.708584 -2.167595 -1.5 C 3.306587 -1.237367 -1.0 H 2.592767 0.695871 -1.2 C 1.736353 -2.994806 -1.3 H 0.299319 -2.559306 -1	353554
C 3.306587 -1.237367 -1.0 H 2.592767 0.695871 -1.2 C 1.736353 -2.994806 -1.3 H 0.299319 -2.550306 -1	548432
H 2.592767 0.695871 -1.7 C 1.736353 -2.994806 -1.8 H 0.299319 -2.559306 1	684830
C 1.736353 -2.994806 -1.8	249012
Н 0.200310 2.550306 1	870467
11 -0.477317 -4.337370 -1.	.579829
Н 4.336977 -0.942077 -1.3	.842574
Н 1.585029 -4.027127 -2.	.162104
C -1.775260 1.746953 -2.5	502588
Н -1.446145 2.405414 -3	.308781
Н -2.656907 1.183911 -2.3	.821844
Н -2.024738 2.349710 -1.0	.623319
N -4.403012 -1.103708 0.4	486438
Н -5.339919 -1.422299 0.	
C 1.421830 -1.912767 3.4	733110
	.733110 454306
Н 1.686870 -2.319906 4.4	.733110 454306 426371
H 1.686870 -2.319906 4.4 N 3.022023 -2.552070 -1.5	.733110 454306 426371 .879154

[']	ГS-I·2H] ²⁺ -	Ph,Ph,ax-	a $(v_i = -456.04 \text{ cm}^{-1})$
С	-0.674614	3.210633	-1.989003
С	-0.773384	1.912441	-1.526058
С	-0.311702	1.618632	-0.243241
С	0.192891	2.636280	0.568142
С	0.246209	3.920914	0.069663
Η	-0.990816	3.522925	-2.976153
Η	-1.211478	1.157063	-2.169364
Н	0.554672	2.441942	1.571274
Η	0.620004	4.769360	0.628537
Р	-0.425846	-0.080652	0.434563
С	-2.226952	-0.366924	0.242692
С	-3.145584	0.610236	0.654493
С	-2.698828	-1.551349	-0.333247
С	-4.511129	0.400222	0.499197
Η	-2.798765	1.538667	1.103584
С	-4.069315	-1.758571	-0.490369
Η	-2.009185	-2.322047	-0.664843
Н	-5.214936	1.161143	0.824100
Н	-4.425620	-2.681157	-0.939608
С	1.896126	0.000282	0.389013
Ċ	2.577271	0.668149	-0.629034
Ċ	2.592697	-0.347004	1.546844
C	3.917128	1.027037	-0.480623
Н	2.070309	0.918793	-1.560987
C	3 935229	0.004659	1 703329
Н	2.095513	-0.897605	2.342141
Н	4 428932	1 556405	-1 281030
Н	4 462095	-0 265185	2.615795
0	-0.208531	-0.067814	2 015725
Č	0.415251	-1 394871	-0.391236
C	0.628822	-1 436958	-1 807295
C	0.663573	-2.605467	0 340105
C	1 296999	-2.495065	-2.346748
Н	0 306491	-0.635796	-2.459936
С	1 324375	-3 627203	-0.267922
Н	0.372324	-2.705381	1.379023
Н	1.528898	-2.566760	-3.402512
Н	1.578012	-4.549896	0.239650
C	-1.138410	-0.605570	2.985594
Н	-0.548147	-0.731546	3.893515
Н	-1 948636	0 104957	3 157209
Н	1.7 10050	0.101/07	0.660517
N	-1.534440	-1.569391	2.660517
N	-1.534440	-1.569391 4.159469	2.660517
C	-1.534440 -0.173603 1.675740	-1.569391 4.159469 -3.545175	2.660517 -1.184501 -1.577646
\sim	-1.534440 -0.173603 1.675740 4.599804	-1.569391 4.159469 -3.545175 0.698389	2.660517 -1.184501 -1.577646 0.691637
H	-1.534440 -0.173603 1.675740 4.599804 5.645066	-1.569391 4.159469 -3.545175 0.698389 0.971531	2.660517 -1.184501 -1.577646 0.691637 0.810886
H C	-1.534440 -0.173603 1.675740 4.599804 5.645066 -4.974329	-1.569391 4.159469 -3.545175 0.698389 0.971531 -0.785636	2.660517 -1.184501 -1.577646 0.691637 0.810886 -0.074497
H C H	-1.534440 -0.173603 1.675740 4.599804 5.645066 -4.974329 -6.041516	-1.569391 4.159469 -3.545175 0.698389 0.971531 -0.785636 -0.947807	2.660517 -1.184501 -1.577646 0.691637 0.810886 -0.074497 -0.198324
H C H H	-1.534440 -0.173603 1.675740 4.599804 5.645066 -4.974329 -6.041516 -0.118489	-1.569391 4.159469 -3.545175 0.698389 0.971531 -0.785636 -0.947807 5.113529	2.660517 -1.184501 -1.577646 0.691637 0.810886 -0.074497 -0.198324 -1.539428

$[TS-I-2H]^{2+}-PyH^+,OMe,ax-a (v_i = -397.29 \text{ cm}^{-1})$ C -3.719513 1.106176 1.356007

С	-2.425300	1.206909	0.855155
С	-1.989312	0.327190	-0.142970
С	-2.880395	-0.622047	-0.663645
С	-4.172241	-0.718298	-0.153624
Η	-4.045179	1.792089	2.132354
Η	-1.775063	1.980744	1.244554
Η	-2.595122	-1.283352	-1.474638
Η	-4.851909	-1.461058	-0.560530
Р	-0.337109	0.491520	-0.854790
С	0.585513	-1.027574	-1.072586
С	1.943458	-0.879352	-1.505822
С	0.029388	-2.344311	-1.183731
С	2.702387	-1.983363	-1.767834
Η	2.404465	0.096394	-1.601308
С	0.842550	-3.402178	-1.457329
Η	-1.013160	-2.543581	-0.978794
Η	3.744044	-1.924703	-2.059045
Η	0.480823	-4.421782	-1.504202
С	0.541030	-0.820114	1.080328
С	1.848027	-0.728152	1.568397
С	-0.403783	-1.484500	1.871847
С	2.174412	-1.243160	2.803683
Η	2.634100	-0.248309	0.989545
С	-0.045538	-1.990585	3.104449
Η	-1.432330	-1.618361	1.549885
Η	3.162757	-1.193888	3.244444
Η	-0.728750	-2.499627	3.773720
С	-4.591017	0.137278	0.862633
Η	-5.599117	0.058645	1.259428
0	-0.599840	1.085802	-2.348534
С	0.664812	1.871564	-0.235483
С	0.761374	2.191306	1.125399
С	1.360883	2.645473	-1.174999
С	1.534924	3.271671	1.535572
Η	0.245216	1.606469	1.877740
С	2.148409	3.713631	-0.754341
Η	1.293924	2.417491	-2.232658
Η	1.593516	3.514086	2.592500
Η	2.690653	4.298547	-1.491358
С	-1.274928	0.356716	-3.383422
Η	-2.356075	0.390660	-3.223100
Η	-1.027934	0.863502	-4.317377
Η	-0.929024	-0.680682	-3.430464
С	2.234064	4.031252	0.598862
Η	2.843474	4.869770	0.923937
Ν	1.221527	-1.852152	3.535402
Ν	2.162935	-3.220833	-1.709269
H	1.470193	-2.229174	4.447071
Η	2.739406	-4.025374	-1.933785

$[TS-I-2H]^{2+}-PvH^+.OMe.ax-b (v_i = -437.02 \text{ cm}^{-1})$			
	1 050510	1 205060	0.422995
C	4.038348	-1.203909	-0.423883
C	2.855409	-0.752120	-0.883477
C	1.980421	-0.036836	-0.014770
C	2.381613	0.212503	1.301114
C	3.614316	-0.251433	1.748989
Н	4.710239	-1.750965	-1.100231
Н	2.555344	-0.895259	-1.921066
Н	1.750115	0.763974	1.986246
Η	3.920862	-0.051023	2.771294
Р	0.420174	0.549265	-0.709913
С	-0.392064	1.944273	0.117818
С	-0.871321	2.963910	-0.717789
С	-0.548257	2.064382	1.505031
С	-1.500486	4.079688	-0.173258
Η	-0.760043	2.891419	-1.794811
С	-1.162749	3.189896	2.042918
Η	-0.219539	1.284004	2.179924
Η	-1.874717	4.857025	-0.832755
Η	-1.272900	3.273266	3.120028
С	-0.757052	-0.991625	0.846167
С	-2.012699	-0.716300	1.395528
С	-0.020916	-2.045842	1.398529
Ċ	-2.478639	-1.438434	2.473102
Ĥ	-2.648713	0.066872	0.990309
С	-0.515817	-2.752438	2.474705
H	0.947021	-2.336524	0.999922
Н	-3 433311	-1 266962	2.955886
н	0.005901	-3 569792	2 957519
C	4 448433	-0.969131	0.892875
н	5 407057	-1 334794	1 249551
$\hat{0}$	0.883931	1 182820	-2 137006
c	-0 703214	-0.707577	-1 276685
c	-0.254507	-1 988909	-1 740614
C	2 032028	0.323535	1 655332
C	1 154642	-0.525555	-1.055552
с ц	-1.134042	-2.800179	1 628606
Γ	0.774534	1 252491	2 182007
С	-2.070039	-1.232401	-2.103097
п	-2.39/9/4	0.085155	-1.492204
н	-0.883491	-3.804909	-2.384773
П	-3.905971	-1.030800	-2.445197
C H	1.924706	2.169350	-2.252940
H	2.882223	1.66/5//	-2.414638
H	1.6/3850	2.783308	-3.119368
H	1.984562	2.801601	-1.361924
N	-1.719029	-2.426703	2.982053
H	-2.073132	-2.954300	3.776702
N	-2.451509	-2.511011	-2.442074
H	-3.094278	-3.176490	-2.858392
С	-1.642019	4.197476	1.206997
Н	-2.126310	5.071922	1.632208

$[TS-I-2H]^{2+}-PyH^+,Ph,ax-a (v_i = -319.63 \text{ cm}^{-1})$ C 0.667367 3.281143 -2.007585

С	0.820175	1.988186	-1.513202
С	0.310438	1.667191	-0.251019
С	-0.315634	2.643906	0.529449
С	-0.442748	3.938842	0.037638
Н	1.051237	3.527983	-2.993017
Н	1.337176	1.241370	-2.110633
Н	-0.704136	2.396259	1.512870
Н	-0.921827	4,700362	0.646003
Р	0.522373	0.004936	0.409458
С	-1.964688	-0.005886	0.411534
Ċ	-2.655173	-0.436857	1.550457
Ĉ	-2.709353	0.622501	-0.594480
Ĉ	-4.012673	-0.220725	1.671798
Н	-2.144181	-0.946770	2.362354
C	-4.064339	0.824201	-0.446974
Н	-2.238734	0.968969	-1.512472
Н	-4.604423	-0.517406	2.529869
Н	-4.695463	1.311278	-1.180914
C	2.312619	-0.294787	0.236867
C	2.805026	-1 504635	-0 264958
C	3 213440	0 710677	0.618648
C	4 179871	-1 707339	-0 379479
н	2 130698	-2 297834	-0 573269
C	4 583621	0 502921	0 507837
н	2 846355	1 658930	1 004074
C	5.068060	-0.707165	0.007977
н	4 553140	-2 648311	-0 773148
н	5 273737	1 286236	0.807652
н	6 138941	-0.867163	-0.082022
C	0.038788	4 254992	-1 233169
н	-0.069481	5 265403	-1 617332
0	0.231541	-0.036694	1.979830
č	-0.310845	-1 339477	-0.422592
C	-0 524484	-2 555183	0.286962
C	-0.552620	-1 338666	-1 822899
c	-1 124312	-3 604729	-0 348209
н	-0.251606	-2 654659	1 331195
C	-1 157509	-2 422568	-2 396556
н	-0.298663	-0.490630	-2 446722
н	-1 344504	-4 545853	0 140452
н	-1 401584	-2 473969	-3 450487
N	-1 455466	-3 514197	-1 657445
C	1 168156	-0 511298	2 974215
н	0.573015	-0.635045	3 879202
н	1 603250	-1 468019	2 678654
Н	1 950152	0 232596	3 136928
N	-4 674389	0 402458	0 678529
н	-5 673917	0.102430	0 780961
H	-1.887219	-4.313623	-2.111875

[Int-IV·2H]²⁺-Ph,OMe,ax-a

) -	
С	-2.963293	-0.471248	-3.029465
С	-1.778358	0.072819	-2.543018
С	-1.183572	-0.474418	-1.398413
С	-1.792345	-1.547742	-0.729904
С	-2.974654	-2.083798	-1.228061
Η	-3.422125	-0.047336	-3.917495
Н	-1.332661	0.922115	-3.051082
Н	-1.359161	-1.965331	0.174553
Н	-3.442695	-2.916564	-0.711999
Р	0.276926	0.322931	-0.727529
С	1.680547	-0.828856	-0.533804
С	2.935501	-0.262020	-0.280350
С	1.547977	-2.217313	-0.596742
Ċ	4.017013	-1.095096	-0.072195
Η	3.091770	0.809976	-0.251063
С	2.661987	-3.005703	-0.382909
Η	0.606315	-2.705753	-0.814951
Н	5.019066	-0.739907	0.132000
Н	2.646113	-4.087689	-0.413998
С	-0.706613	0.235402	1.834556
C	0.136429	-0.744323	2.377118
Ċ	-2.064795	0.201433	2.161847
Ċ	-0.369651	-1.744374	3.203119
H	1.202044	-0.736420	2.166790
С	-2.571518	-0.797496	2.991906
H	-2.746190	0.952273	1.777402
Н	0.303043	-2.494235	3.610296
Н	-3.631381	-0.805824	3.230899
C	-3 558405	-1 548923	-2.376204
H	-4.483525	-1.970241	-2.758942
0	0 779630	1 455175	-1 722505
Č	-0.140418	1.287788	0.874144
C	-1 126055	2.323692	0 395676
C	1.099504	1 963832	1 399934
c	-0 784778	3 616190	0.231099
н	-2 122015	2 013270	0.101448
C	1 342330	3 273684	1 207331
н	1.873683	1 377085	1.207331
н	-1 487394	4 347214	-0 153092
н	2 239939	3 751114	1 584355
C	1 434981	1 165737	-2 986019
н	1 169613	1 988578	-3 649091
н	2 513692	1 141777	-2 821677
н	1 089904	0.2181/9	-3 405200
N	3 8/2888	-2 424012	-0.123789
Н	1 653357	-3 023535	0.123789
C	-1 720500	-3.023333	3 508100
с ц	-1.127300 2 126821	-1.117319 2560160	1 150720
11 N	-2.120021	1 007833	4.130/39 0 5601/7
ц	0.455627	5 000010	0.50014/
11	0.039012	5.050010	0.307002

[Int-IV·2H]²⁺-PyH⁺,OMe,ax-a

С	2.969260	-2.878281	-0.348603
С	1.851462	-2.117049	-0.678608
С	1.819315	-0.752814	-0.359761
С	2.923107	-0.155864	0.271373
С	4.034799	-0.924954	0.593433
Η	2.988134	-3.935262	-0.596356
Η	1.019031	-2.592271	-1.186672
Η	2.926479	0.902774	0.508179
Η	4.885615	-0.457933	1.080157
Р	0.378021	0.237531	-0.784419
С	-0.359077	1.296236	0.628065
С	-1.452315	2.082034	-0.060425
С	0.680315	2.251929	1.177327
С	-1.297323	3.374848	-0.398328
Η	-2.353798	1.570722	-0.378505
С	0.734097	3.541404	0.800184
Η	1.406302	1.887673	1.894507
Η	-2.062225	3.916745	-0.943243
Η	1.492697	4.215572	1.182033
С	-0.860706	0.346738	1.716549
С	-2.223233	0.213697	2.000416
С	0.047064	-0.415088	2.465365
С	-2.639864	-0.666066	2.977786
Η	-2.978182	0.787589	1.479459
С	-0.411899	-1.283200	3.431261
Η	1.116742	-0.345461	2.312684
Η	-3.678425	-0.817751	3.243520
Η	0.235877	-1.901934	4.039035
С	4.056983	-2.286183	0.289339
Η	4.927555	-2.883735	0.544327
0	0.727986	1.279847	-1.935105
С	-0.941303	-0.768697	-1.472662
С	-1.488354	-1.821056	-0.723307
С	-1.465606	-0.451543	-2.730425
С	-2.551505	-2.553159	-1.239831
Η	-1.082595	-2.086948	0.248961
С	-2.532240	-1.190338	-3.236466
Η	-1.047861	0.364401	-3.310734
Η	-2.968866	-3.372548	-0.662356
Η	-2.938247	-0.944914	-4.213241
С	2.032945	1.845877	-2.195662
Η	2.737825	1.052248	-2.452206
Η	1.885699	2.507803	-3.048352
Η	2.379713	2.414649	-1.331427
С	-3.074638	-2.237303	-2.493882
Η	-3.906049	-2.811193	-2.893196
Ν	-1.732361	-1.387677	3.653218
Ν	-0.178703	4.096584	-0.063817
Η	-2.057520	-2.031297	4.372783
Η	-0.152347	5.089965	-0.246870

[Ir	nt-IV·2H] ²	²⁺ -PyH ⁺ ,O	Me,ax-b
С	-4.189841	-0.328237	0.311861
С	-2.980956	0.219486	-0.101009
С	-1.877311	-0.619311	-0.327240
С	-2.001718	-2.004058	-0.162133
С	-3.217390	-2.541084	0.251689
Η	-5.042315	0.321673	0.484663
Н	-2.904679	1.290853	-0.258911
Н	-1.169194	-2.669771	-0.362475
Η	-3.313022	-3.615409	0.377084
Р	-0.331845	0.156403	-0.811277
С	0.925812	-1.026380	-1.307486
С	1.542518	-0.875752	-2.555519
С	1.361411	-2.022186	-0.420615
С	2.575221	-1.734775	-2.921327
Η	1.229337	-0.091877	-3.238190
С	2.394277	-2.874068	-0.796549
Η	0.903602	-2.140067	0.557416
Η	3.050323	-1.619094	-3.890828
Η	2.726918	-3.648028	-0.111406
С	0.794180	0.519426	1.702359
С	2.128144	0.336584	2.077838
С	-0.202825	-0.073875	2.490440
С	2.433307	-0.432623	3.181450
Η	2.945717	0.786494	1.529782
С	0.147053	-0.835236	3.583990
Η	-1.258034	0.044110	2.273043
Η	3.444467	-0.616812	3.521949
Η	-0.571698	-1.323987	4.229383
С	-4.306249	-1.706189	0.495860
Η	-5.252272	-2.130982	0.819243
0	-0.621711	1.156254	-2.015862
С	0.422445	1.350410	0.471425
С	-0.578128	2.426233	0.830024
С	1.606240	1.964682	-0.240016
C	-0.480930	3.682295	0.359089
Н	-1.406391	2.176093	1.482976
C	1.600416	3.238281	-0.674009
H	2.460905	1.342066	-0.479868
H	-1.210608	4.442588	0.614042
Н	2.437925	3.656351	-1.221289
C	-1.466339	0.783753	-3.135097
H	-2.50/039	0.991256	-2.8/9488
H	-1.144533	1.413988	-3.963/02
H	-1.339897	-0.270380	-3.393611
IN N	1.444404	-0.9965/0	3.891/03
	0.333888	4.09304/	-0.442783
	2.998909	-2./32046	-2.045602
н u	3.803302 0.621021	-3.400208	-2.334//9
н	1 687301	-1 550801	-0.722971 1 705008
11	1.00/371	-1.557001	+./0.0000

[Int-IV·2H]²⁺-PyH⁺,Ph,ax-a

Ċ	-1.440672	3.038730	-1.773317
С	-0.515853	2.110689	-1.306250
С	-0.624763	1.626231	0.003703
С	-1.653560	2.071159	0.842018
С	-2.572814	3.000247	0.364137
Н	-1.355068	3.418527	-2.786927
Н	0.284524	1.771348	-1.958111
Н	-1.740962	1.693970	1.856100
Η	-3.370371	3.348817	1.013544
Р	0.456307	0.303805	0.553217
С	-1.684537	-1.245205	-0.057766
С	-2.312949	-1.456741	1.176106
С	-2.480053	-0.909471	-1.158174
С	-3.679526	-1.313584	1.283421
Η	-1.758537	-1.720515	2.068242
С	-3.842942	-0.773491	-1.004586
Η	-2.056615	-0.744216	-2.140809
Н	-4.227279	-1.456628	2.206201
Н	-4.514159	-0.507405	-1.811126
С	2.164702	0.660129	0.146446
С	3.112432	-0.361198	-0.010921
С	2.559035	2.004659	0.080219
С	4.441199	-0.032553	-0.254537
Η	2.827825	-1.404441	0.061610
С	3.891673	2.321001	-0.162353
Η	1.836093	2.803305	0.217696
С	4.830000	1.304574	-0.333857
Η	5.173915	-0.823851	-0.380425
Η	4.194591	3.362177	-0.216767
Η	5.869468	1.554804	-0.526047
С	-2.469574	3.479628	-0.941223
Η	-3.191023	4.202869	-1.310705
0	0.241399	0.209348	2.132137
С	-0.150923	-1.334316	-0.184799
С	0.402010	-2.494359	0.621679
С	0.327079	-1.426756	-1.619230
С	1.072601	-3.510668	0.052105
Η	0.233581	-2.521288	1.691964
С	1.011505	-2.486114	-2.083051
Η	0.121712	-0.610191	-2.302405
Η	1.431945	-4.350815	0.635914
Η	1.333552	-2.545001	-3.116710
Ν	1.361729	-3.549993	-1.289102
С	1.318725	-0.035341	3.070450
Η	0.830124	-0.160897	4.036086
Η	1.863146	-0.942322	2.800716
Η	1.988031	0.827204	3.091376
Ν	-4.398347	-0.973656	0.201526
Η	-5.406843	-0.868895	0.298857
Η	1.896112	-4.316368	-1.671897

[T]	S-II·2H] ²⁺	-Ph,OMe	ax-a ($v_i = -241.51 \text{ cm}^{-1}$)
С	-2.467413	-1.466929	-3.116946
С	-1.445806	-0.645337	-2.647236
С	-0.857089	-0.910672	-1.404324
С	-1.324651	-1.976281	-0.619220
Ĉ	-2.342250	-2.793549	-1.100316
н	-2.918428	-1 262391	-4 083570
Н	-1 117799	0 198026	-3 247556
Н	-0 904962	-2.168788	0.365432
н	-2.696507	-3 621536	-0 493304
Р	0 334084	0 246691	-0 709196
C	1 905761	-0 594378	-0 317088
c	2 990511	0 228527	0.019479
c	2.052137	-1 982929	-0 251928
c	4 180418	-0.350018	0.408981
н	2 922098	1 310124	-0.024736
C	3 26/318	-2 512508	0.1/1968
н	1 251638	-2.512500	-0 515553
н	5.063285	0.213211	0.683822
н Ц	3 462628	3 574777	0.003022
C	-1 00/1912	0 /21/38	1 797531
C	0.011078	0.421450	2 487830
C	2 3 4 3 0 6 3	-0.287900	2.487850
C	-2.343003	1 225762	2.008020
С Ц	-0.346206	-1.525705	5.550052 2.247720
п	2 680507	-0.036392	2.347739
С П	-2.080307	-0.900338	2.874430
п	-3.136303	1.866207	2.871670
п	0.450774	-1.000297	2.022206
пС	-3.720722	-1.215552	2 248484
С П	-2.911907	-2.341708	-2.346464
П	-5./10120	-5.1/9149	-2.718100
C	0.707170	1.559050	-1.824795
C	-0.016347	1.314417	0.016284
C	-1.000324	2.154978	0.010284
C	0.394931	2.408009	1.270370
U U	-1.551015	3.39/2/9	-0.402314
п	-2.337093	1.303300	-0.265296
	0.459789	3.722780	0.700284
Н	1.129802	2.1/0/39	2.015222
н	-2.2/1449	3.85/0/3	-1.105852
П	1.210290	4.437279	2,080168
U U	1.524548	1.03/938	-2.980168
н	1.199307	1./19/23	-3.700333
H	2.5/2093	1.222517	-2.730750
H	1.389997	0.002059	-3.302228
IN IT	4.2/616/	-1.088/88	0.439233
H	5.162496	-2.101630	0.747399
C	-1.686901	-1.6/1156	5.541650
H	-1.951155	-2.4848/0	4.211288
N	-0.464154	4.1/3606	-0.128814
Н	-0.414831	5.128038	-0.463049

 $[TS-II-2H]^{2+}-PyH^+,OMe,ax-a (v_i = -200.84 \text{ cm}^{-1})$ C 3.465284 1.762214 -1.174921

С	2.332357	0.960636	-1.069413
С	1.113210	1.518203	-0.659403
С	1.035849	2.886412	-0.367153
С	2.174144	3.681387	-0.470401
Η	4.407509	1.325628	-1.493249
Η	2.400689	-0.095542	-1.317011
Η	0.093652	3.335930	-0.067986
Η	2.111113	4.741836	-0.243822
Р	-0.321189	0.415934	-0.587362
С	-1.577831	1.130836	0.490160
С	-2.927143	0.988476	0.141749
С	-1.234552	1.675706	1.735864
С	-3.921099	1.418302	1.018085
Η	-3.203273	0.551176	-0.813956
С	-2.232751	2.098608	2.607675
Н	-0.191784	1.775926	2.026037
Н	-4.965583	1.315073	0.738264
Н	-1.961322	2.529653	3.567057
С	1.074159	-1.863547	0.603080
С	1.204237	-1.181660	1.821298
С	2.175284	-2.583864	0.128198
С	2.401218	-1.205248	2.499396
Н	0.385222	-0.619358	2.254223
С	3.356495	-2.579861	0.840925
Η	2.136621	-3.157343	-0.789270
Η	2.570283	-0.691777	3.437410
Η	4.246307	-3.110495	0.526263
С	3.387472	3.120544	-0.869091
Η	4.273240	3.744961	-0.945821
0	-0.964258	0.331030	-2.068568
С	-0.225223	-1.832874	-0.163251
С	-0.259552	-2.416381	-1.493791
С	-1.427945	-2.087886	0.618866
С	-1.416503	-2.894194	-2.016300
Η	0.618193	-2.388478	-2.128568
С	-2.549913	-2.577734	0.031837
Η	-1.459777	-1.846780	1.674976
Η	-1.486177	-3.278135	-3.026873
Η	-3.471599	-2.737125	0.578472
С	-1.191227	1.515426	-2.858708
Η	-0.234556	1.943095	-3.170834
Η	-1.755748	1.186419	-3.732009
Η	-1.770308	2.254456	-2.297121
Ν	3.437973	-1.893519	1.990640
Ν	-2.560479	-2.932775	-1.280354
С	-3.575738	1.973033	2.249053
Η	-4.352446	2.306807	2.931418
Η	-3.401377	-3.327407	-1.685189
Η	4.319139	-1.900924	2.502032

[]	[S-II·2H] ²⁺	-PyH ⁺ ,Ph	,ax-a ($v_i = -239.51 \text{ cm}^{-1}$)
С	-1.685289	2.764134	-1.835781
С	-0.672209	1.993047	-1.273095
С	-0.790095	1.540451	0.048519
С	-1.929985	1.862391	0.796674
С	-2.937316	2.635648	0.226302
Н	-1.586638	3.116215	-2.858545
Н	0.205603	1.747478	-1.864861
Н	-2.034762	1.508253	1.817372
Н	-3.817370	2.886621	0.811683
Р	0.389983	0.336965	0.682946
С	-1.575640	-1.470531	-0.176713
С	-2.132275	-1.622006	1.101812
С	-2.421750	-1.098079	-1.227766
Ċ	-3.472595	-1.378897	1.299949
Н	-1.533096	-1.896838	1.962508
С	-3.756719	-0.856482	-0.980237
Ĥ	-2.066055	-0.988812	-2.244313
Н	-3.962195	-1.466960	2.261250
Н	-4.460920	-0.551720	-1.743791
С	2.069434	0.903261	0.318356
Ĉ	3.095972	-0.048360	0.261653
Ĉ	2.366019	2.262043	0.143218
C	4 406722	0 354415	0.022259
н	2.879237	-1.101405	0.414001
C	3.678497	2.657726	-0.097164
н	1.580956	3.011000	0.195774
C	4.696483	1.705688	-0.161409
н	5 199597	-0.386698	-0.020959
н	3 906142	3 711031	-0 233494
н	5 719192	2.019248	-0.351722
C	-2.819550	3 082245	-1 089626
н	-3 610309	3 681108	-1 532811
0	0 142833	0.436443	2 288844
č	-0.096445	-1 666242	-0 397675
c	0 504629	-2 811234	0.275510
C	0.452634	-1 419981	-1 721505
C	1 607053	-3 422320	-0.222682
н	0.082048	-3 189617	1 198242
C	1 573345	-2.056857	-2.147189
н	0.025750	-0.661270	-2 366421
н	2 077337	-4 265601	0.268585
н	2.031841	-1 846585	-3 106125
N	2.168499	-3 022322	-1 398076
C	0.850498	-0.467061	3 160015
н	0.513990	-0.229388	4.169468
Н	0.606090	-1.505579	2.922190
Н	1.929954	-0.303524	3.082896
N	-4.239505	-1.000748	0.263363
H	-5.228021	-0.817913	0.427483
	2.220021		

[Int-V·2H]²⁺-Ph,OMe,ax-a

С	-1.501452	-2.639170	2.204882
С	-0.855029	-2.509217	0.978424
С	-0.047945	-1.394228	0.714408
С	0.080791	-0.402434	1.693166
С	-0.571236	-0.531273	2.918400
Η	-2.117124	-3.513211	2.399551
Η	-0.979601	-3.283457	0.224576
Н	0.680671	0.485408	1.508247
Η	-0.462098	0.248192	3.667773
Р	0.608184	-1.177424	-0.988269
С	2.262927	-0.383859	-0.637726
С	2.741498	0.517262	-1.593937
С	3.055102	-0.655296	0.483990
С	3.970309	1.123242	-1.414616
Н	2.164250	0.760474	-2.479980
С	4.278670	-0.031877	0.623645
Н	2.734964	-1.344207	1.257316
Н	4.403392	1.834017	-2.107025
Н	4.947755	-0.192278	1.459552
С	-1.402806	2.020187	-0.056132
С	-0.220086	2.350484	-0.729382
С	-1.617141	2.518193	1.235640
С	0.743040	3.142945	-0.110697
Н	-0.033042	1.960885	-1.725994
С	-0.661430	3.324869	1.844173
Н	-2.535505	2.281087	1.765944
Η	1.666356	3.374250	-0.634777
Н	-0.840216	3.710573	2.843832
С	-1.361874	-1.649051	3.178182
Н	-1.869011	-1.748623	4.134035
0	1.041649	-2.710362	-1.432315
С	-2.376526	1.098153	-0.678133
С	-3.047101	0.141026	0.099445
С	-2.625513	1.120658	-2.059279
С	-3.911574	-0.747282	-0.498605
Н	-2.872616	0.058797	1.166121
С	-3.501149	0.214911	-2.614202
Н	-2.150075	1.848244	-2.706975
Η	-4.446420	-1.519921	0.039064
Н	-3.741226	0.179305	-3.669310
С	1.935490	-3.540075	-0.679713
Н	1.806010	-4.555732	-1.059179
Н	2.970625	-3.221275	-0.839733
Н	1.700427	-3.518736	0.389264
Ν	4.689875	0.831827	-0.319845
H	5.595251	1.283719	-0.201181
С	0.525422	3.630750	1.176922
Н	1.276869	4.249972	1.659102
Ν	-4.112004	-0.688195	-1.826980
Н	-4.755002	-1.352169	-2.253014

[Int-V·2H]²⁺-PyH⁺,OMe,ax-a

Ċ	4.631704	-0.590448	1.972939
С	3.315695	-0.872173	1.605598
С	2.768710	-0.332376	0.434432
С	3.565373	0.500766	-0.364210
С	4.878374	0.783759	0.001681
Η	5.042302	-1.014193	2.885399
Н	2.708759	-1.515377	2.239644
Н	3.160378	0.934759	-1.274615
Η	5.486549	1.430120	-0.625480
Р	1.036203	-0.805505	0.041090
С	0.458761	0.659706	-0.911791
С	-0.206209	0.516157	-2.133478
С	0.544544	1.934915	-0.335983
С	-0.761021	1.623991	-2.775132
Η	-0.294913	-0.465053	-2.592937
С	-0.012190	3.040238	-0.973581
Η	1.051706	2.070825	0.617059
Η	-1.268252	1.495350	-3.727809
Η	0.065238	4.022400	-0.514445
С	-2.518293	0.378790	0.905491
С	-3.180294	1.342593	0.138562
С	-1.772663	0.790542	2.016572
С	-3.086094	2.672343	0.492948
Η	-3.780008	1.075037	-0.723448
С	-1.711040	2.130429	2.333287
Η	-1.217977	0.085850	2.624425
Η	-3.569729	3.474106	-0.049905
Η	-1.151044	2.524453	3.171703
С	5.413276	0.238071	1.170463
Η	6.437905	0.462345	1.454939
0	1.180683	-1.974725	-1.135221
С	-2.573093	-1.059076	0.539084
С	-2.524846	-2.047571	1.528909
С	-2.634666	-1.447354	-0.803584
С	-2.509459	-3.375914	1.160390
Η	-2.505343	-1.800612	2.583834
С	-2.607947	-2.788240	-1.124005
Η	-2.671396	-0.722484	-1.607519
Η	-2.468758	-4.195524	1.866590
Η	-2.630792	-3.163589	-2.138930
С	2.144802	-1.894939	-2.190251
Η	3.147542	-2.107090	-1.805049
Η	1.867836	-2.657281	-2.922254
Η	2.140420	-0.911626	-2.672040
Ν	-2.366238	3.020450	1.571004
Ν	-2.540427	-3.701283	-0.142215
С	-0.667230	2.888034	-2.196993
Н	-1.102551	3.750838	-2.694003
Η	-2.518553	-4.687670	-0.397593
Η	-2.308354	4.007167	1.818234

[Int-V·2H]²⁺-PyH⁺,Ph,ax-a

Ċ	1 205517	1 215227	2 674034
C	-1.303317	-1.213327	2.074934
C	-0.545564	1 560803	0.374348
C	-0.022140	-1.309893	0.374348
C	-1.8895555	-2.108484	0.104093
с u	-2.843718	-2.218380	2 675 190
н ц	-1.072800	-0.800232	1 00/762
п	0.020002	-0.093049	1.904/03
Н	-2.134104	-2.440545	-0.900432
п	-3.61/629	-2.043343	0.888370
P C	0.538055	-1.443058	-1.043205
C	-1.840403	1.034121	-0.406035
C	-2.145607	1.088232	-1.658450
C	-2.770085	1.5105//	0.631415
C	-3.350839	0.445496	-1.842739
Н	-1.450869	1.135210	-2.488261
C	-3.963190	0.858511	0.398540
Н	-2.590222	1.92/480	1.615141
Н	-3.652610	-0.008210	-2.778052
Н	-4.731399	0.726791	1.149461
С	2.108785	-0.922984	-0.250196
С	2.655969	0.308418	-0.622707
С	2.794614	-1.723937	0.673445
С	3.852637	0.752727	-0.058700
Η	2.147851	0.924223	-1.362531
С	3.994085	-1.287371	1.228204
Η	2.386405	-2.689495	0.962017
С	4.521157	-0.044558	0.867459
Η	4.265659	1.714758	-0.350852
Η	4.518983	-1.913781	1.944583
Η	5.456818	0.295453	1.303444
С	-2.553787	-1.768630	2.401183
Η	-3.301138	-1.846135	3.186372
0	0.774059	-3.093995	-1.232284
С	-0.545277	2.325107	-0.180398
С	0.054724	3.071091	-1.201667
С	0.096160	2.239698	1.060169
С	1.259759	3.699364	-0.965079
Η	-0.409060	3.190556	-2.173744
С	1.304592	2.876993	1.246561
Η	-0.322173	1.668748	1.879651
Н	1.779783	4.296976	-1.702869
Н	1.864615	2.843889	2.172150
Ν	1.842126	3.581885	0.238665
С	1.528922	-3.482009	-2.380831
Η	1.493147	-4.572652	-2.427963
Н	1.096380	-3.063661	-3.298634
Н	2.574144	-3.160615	-2.291182
N	-4.215550	0.355456	-0.819722
H	-5.100579	-0.125038	-0.972673
Н	2.735690	4.045972	0.393079
	-		-

Final Products

BiPy

0.742260	-0.000031	0.000014
1.468254	-1.131421	0.382854
1.468203	1.131379	-0.382860
2.857619	-1.080506	0.367319
0.966866	-2.038218	0.707588
2.857595	1.080517	-0.367358
0.966792	2.038224	-0.707412
3.436609	-1.950335	0.667936
3.436545	1.950412	-0.667872
-0.742257	0.000004	0.000020
-1.468226	1.131416	0.382812
-1.468229	-1.131400	-0.382850
-2.857602	1.080492	0.367389
-0.966836	2.038214	0.707504
-2.857614	-1.080498	-0.367389
-0.966825	-2.038243	-0.707435
-3.436570	1.950393	0.667846
-3.436595	-1.950382	-0.667873
3.557715	0.000030	-0.000006
-3.557715	-0.000001	0.000007
	0.742260 1.468254 1.468203 2.857619 0.966866 2.857595 0.966792 3.436609 3.436545 -0.742257 -1.468226 -1.468229 -2.857602 -0.966836 -2.857614 -0.966825 -3.436570 -3.436595 3.557715 -3.557715	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Phosph-Ph,Ph,OMe

С	3.771818	-0.142717	0.391612
С	2.652682	0.636088	0.100662
С	1.457717	0.034663	-0.315628
С	1.414002	-1.357887	-0.459973
С	2.537438	-2.134038	-0.178772
Η	4.688279	0.336911	0.725373
Η	2.712326	1.716003	0.207607
Η	0.499141	-1.847603	-0.785133
Η	2.486022	-3.213919	-0.290383
Р	0.028417	1.080765	-0.803060
С	-1.377118	0.034285	-0.248482
С	-2.314621	-0.384138	-1.197072
С	-1.542632	-0.342133	1.091589
С	-3.396037	-1.182769	-0.818584
Η	-2.202718	-0.087842	-2.238193
С	-2.627234	-1.126366	1.472160
Η	-0.819665	-0.022012	1.838357
Η	-4.116219	-1.508715	-1.564262
Η	-2.750568	-1.412258	2.513486
С	3.717866	-1.529308	0.251796
Η	4.591511	-2.135254	0.476798
0	0.154111	2.184700	0.450337
С	-0.685166	3.335487	0.349898
Η	-1.742998	3.060781	0.446265
Η	-0.411247	3.997060	1.174761
Η	-0.529238	3.857349	-0.602553
С	-3.553117	-1.551487	0.515382
Η	-4.397359	-2.167651	0.813548

Phosph-Py,Ph,OMe

	I ()	,	
С	-2.504691	-1.326628	1.322246
С	-1.375389	-0.652571	0.866448
С	-1.415922	0.070957	-0.334647
С	-2.609542	0.100891	-1.067253
С	-3.741914	-0.574302	-0.611123
Η	-2.461411	-1.883492	2.254412
Η	-0.459762	-0.694603	1.450277
Η	-2.656130	0.652291	-2.003941
Η	-4.660015	-0.545394	-1.191515
Р	-0.008295	1.030908	-1.024680
С	-3.689384	-1.287985	0.584149
Η	-4.568756	-1.817634	0.940979
0	0.079504	2.391989	-0.075556
С	1.428874	0.043032	-0.425671
С	1.500342	-1.334744	-0.655468
С	2.549097	0.658473	0.137618
С	2.655888	-2.021522	-0.300957
Η	0.671678	-1.880808	-1.098540
С	3.656928	-0.118765	0.463505
Η	2.570725	1.727310	0.329883
Η	2.724362	-3.093676	-0.469262
Η	4.531816	0.344356	0.913726
С	-0.098165	2.364880	1.344322
Η	0.512322	1.587066	1.815051
Η	0.216396	3.343602	1.713706
Η	-1.152018	2.202683	1.592734
Ν	3.726065	-1.438789	0.255447

Phosph-PyH⁺,Ph,OMe

С	-2.401593	-1.529429	1.151700
С	-1.277379	-0.860544	0.710831
С	-1.380755	0.038117	-0.356674
С	-2.632958	0.235494	-0.948832
С	-3.733717	-0.451573	-0.475057
Η	-2.401923	-2.236276	1.972169
Η	-0.334111	-1.049270	1.210858
Η	-2.762865	0.919082	-1.781592
Η	-4.732098	-0.352895	-0.882086
Р	0.033463	1.046797	-1.045734
0	-0.019123	2.376322	-0.064264
С	1.479540	0.097186	-0.425740
С	1.628020	-1.246110	-0.797369
С	2.511918	0.728582	0.275791
С	2.774996	-1.952716	-0.444488
Η	0.844577	-1.751411	-1.359375
С	3.659794	0.018763	0.628399
Η	2.427665	1.776843	0.550573
Η	2.874499	-2.995930	-0.731890
Η	4.451913	0.518180	1.179716
С	-0.253446	2.304916	1.349341
Η	0.307634	1.488907	1.815279
Η	0.078754	3.257764	1.766296
Η	-1.323144	2.173868	1.542238
С	3.792718	-1.322065	0.272234
Η	4.688041	-1.873334	0.546544
Ν	-3.581511	-1.305990	0.549118
Η	-4.400163	-1.809859	0.886730

PhPy

С	0.746892	-0.000017	0.000090
С	1.478546	-1.123931	0.399142
С	1.478457	1.123914	-0.399087
С	2.867638	-1.074693	0.380863
Η	0.979493	-2.026304	0.739778
С	2.867553	1.074739	-0.380995
Η	0.979309	2.026428	-0.739249
Η	3.445721	-1.941297	0.693129
Η	3.445576	1.941368	-0.693302
С	-0.738259	0.000020	0.000146
С	-1.451232	-1.145733	-0.377114
С	-1.451329	1.145739	0.377251
С	-2.844270	-1.144676	-0.379042
Η	-0.915145	-2.038290	-0.689515
С	-2.844351	1.144626	0.378932
Η	-0.915307	2.038272	0.689860
Η	-3.382401	-2.038855	-0.682105
Η	-3.382568	2.038764	0.681966
Ν	3.570162	0.000034	-0.000099
С	-3.545281	-0.000035	-0.000126
Н	-4.631993	-0.000031	-0.000225

[B	iPy·2H] ²⁺		
С	-0.742470	0.000173	0.000390
С	-1.451131	1.140021	-0.395240
С	-1.451090	-1.139745	0.395730
С	-2.830050	1.115065	-0.388953
Η	-0.943721	2.039420	-0.725094
С	-2.830044	-1.115072	0.388674
Η	-0.943656	-2.039070	0.725765
Η	-3.447654	1.953067	-0.686023
Η	-3.447594	-1.953261	0.685329
С	0.742469	0.000134	0.000315
С	1.451324	1.139913	0.395724
С	1.450890	-1.139858	-0.395245
С	2.830266	1.114947	0.388653
Η	0.944117	2.039319	0.725878
С	2.829832	-1.115185	-0.388998
Η	0.943256	-2.039170	-0.724980
Η	3.448016	1.952991	0.685311
Η	3.447245	-1.953371	-0.685949
Ν	3.469529	-0.000169	-0.000386
Ν	-3.469528	-0.000094	-0.000311
Η	-4.488195	-0.000240	-0.000779
Η	4.488196	-0.000213	-0.000871
	• • • • • • • • • • • • • • • • • • • •		
	iPy·H] ⁺	0.000000	0.000000
[B	iPy·H] ⁺ 0.786862	0.000222	-0.000088
[B C C	iPy • H] ⁺ 0.786862 1.506229	0.000222	-0.000088 -0.385637
C C C B	iPy·H] ⁺ 0.786862 1.506229 1.506651	0.000222 -1.133188 1.133416	-0.000088 -0.385637 0.385572
C C C C C C C C C C C C C C C C C C C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812	0.000222 -1.133188 1.133416 -1.080324	-0.000088 -0.385637 0.385572 -0.371994
[B C C C C H	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330	0.000222 -1.133188 1.133416 -1.080324 -2.038748	-0.000088 -0.385637 0.385572 -0.371994 -0.712411
[B C C C C C H C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038
[B C C C C C C H C H C H	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288
[B C C C C C C H C H H H H	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848
[B C C C C C C C H C H H H H C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701
[B C C C C C C C C C C H C H H H C C C C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190
[B C C C C C H C H H H C C C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261 -1.411303	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300 1.144132	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190 -0.378182
[B C C C C C C C C C C C C C C C C C C C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261 -1.411303 -1.410962	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300 1.144132 -1.143807	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190 -0.378182 0.378367
[B C C C C C C C C C C C C C C C C C C C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261 -1.411303 -1.410962 -2.788979	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300 1.144132 -1.143807 1.120561	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190 -0.378182 0.378367 -0.370754
[B C C C C C C C C C C C C C C C C C C C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261 -1.411303 -1.410962 -2.788979 -0.904559	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300 1.144132 -1.143807 1.120561 2.048046	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190 -0.378182 0.378367 -0.370754 -0.696257
[B C C C C C C C C C C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261 -1.411303 -1.410962 -2.788979 -0.904559 -2.788639	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300 1.144132 -1.143807 1.120561 2.048046 -1.120771	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190 -0.378182 0.378367 -0.370754 -0.696257 0.370809
[B C C C C C C C C C C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261 -1.411303 -1.410962 -2.788979 -0.904559 -2.788639 -0.903766	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300 1.144132 -1.143807 1.120561 2.048046 -1.120771 -2.047476	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190 -0.378182 0.378367 -0.370754 -0.696257 0.370809 0.696448
[B C C C C C C C C C C	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261 -1.411303 -1.410962 -2.788979 -0.904559 -2.788639 -0.903766 -3.406202	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300 1.144132 -1.143807 1.120561 2.048046 -1.120771 -2.047476 1.963274	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190 -0.378182 0.378367 -0.370754 -0.696257 0.370809 0.696448 -0.655328
$\begin{bmatrix} \mathbf{B} \\ \mathbf{C} $	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261 -1.411303 -1.410962 -2.788979 -0.904559 -2.788639 -0.903766 -3.406202 -3.405601	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300 1.144132 -1.143807 1.120561 2.048046 -1.120771 -2.047476 1.963274 -1.963796	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190 -0.378182 0.378367 -0.370754 -0.696257 0.370809 0.696448 -0.655328 0.655018
IB C C C C C H C H H H C C C C H C H H H N Y	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261 -1.411303 -1.410962 -2.788979 -0.904559 -2.788639 -0.903766 -3.406202 -3.405601 3.592794	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300 1.144132 -1.143807 1.120561 2.048046 -1.120771 -2.047476 1.963274 -1.963796 -0.000231	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190 -0.378182 0.378367 -0.370754 -0.696257 0.370809 0.696448 -0.655328 0.655018 -0.000137
IB C C C C C H C H H H C C C C C H C H H H N N H	iPy·H] ⁺ 0.786862 1.506229 1.506651 2.895812 1.004330 2.896174 1.005060 3.475354 3.476074 -0.695261 -1.411303 -1.410962 -2.788979 -0.904559 -2.788639 -0.903766 -3.406202 -3.405601 3.592794 -3.431476	0.000222 -1.133188 1.133416 -1.080324 -2.038748 1.080059 2.039154 -1.948184 1.947739 0.000300 1.144132 -1.143807 1.120561 2.048046 -1.120771 -2.047476 1.963274 -1.963796 -0.000231 -0.000261	-0.000088 -0.385637 0.385572 -0.371994 -0.712411 0.372038 0.712288 -0.675848 0.675701 0.000190 -0.378182 0.378367 -0.370754 -0.696257 0.370809 0.696448 -0.655328 0.655018 -0.000137 -0.000153

-0.000162

0.000502

[P]	hPy∙H]⁺		
С	0.697948	0.000024	0.000082
С	1.421526	1.143789	-0.374714
С	1.421543	-1.143721	0.374936
С	2.797979	1.121314	-0.366235
Η	0.918579	2.049047	-0.694630
С	2.797984	-1.121303	0.366165
Η	0.918613	-2.048992	0.694849
Η	3.413957	1.965560	-0.649241
Η	3.413990	-1.965531	0.649160
С	-0.781209	0.000014	0.000064
С	-1.490098	1.153929	0.361308
С	-1.490021	-1.153954	-0.361197
С	-2.881922	1.150257	0.365833
Η	-0.955822	2.050608	0.663621
С	-2.881833	-1.150301	-0.365937
Η	-0.955683	-2.050622	-0.663441
Η	-3.421036	2.046716	0.658775
Η	-3.420882	-2.046781	-0.658926
Ν	3.443698	0.000005	-0.000076
Η	4.461177	-0.000177	-0.000613
С	-3.580519	-0.000020	-0.000110
Η	-4.667046	-0.000023	-0.000182

MeO-Py Couplings

[TS-I·2H] ²⁺ -Ph,OMe,ax-MeO-PyH ⁺				
$(v_i = -316.16 \text{ cm}^{-1})$				
Ċ	1.442186	3.567193	1.422495	
С	0.909501	2.287138	1.299626	
С	0.646652	1.753942	0.029161	
С	0.927517	2.517694	-1.111496	
С	1.437637	3.804593	-0.978281	
Η	1.650221	3.965913	2.410887	
Η	0.710093	1.712673	2.198157	
Η	0.767428	2.112542	-2.102459	
Η	1.642084	4.391571	-1.868779	
Р	-0.018163	0.067769	-0.055242	
С	-1.494770	-0.169317	-1.130411	
С	-2.295450	-1.294243	-0.917031	
С	-1.880573	0.773109	-2.083996	
С	-3.425777	-1.476203	-1.688990	
Н	-2.068799	-2.031762	-0.155282	
С	-3.031380	0.559671	-2.814618	
Н	-1.313169	1.673698	-2.273386	
Η	-4.085886	-2.328951	-1.594447	
Н	-3.398058	1.245011	-3.568017	
С	1.698694	4.330577	0.286128	
Н	2.105545	5.333021	0.384676	
С	-0.803660	-0.179849	1.580190	
С	-1.936749	0.579163	1.907565	
С	-0.297964	-1.097231	2.505308	
С	-2.552786	0.420426	3.143044	
Η	-2.337369	1.303399	1.201295	

С	-0.920260	-1.254579	3.744233
Η	0.580876	-1.693447	2.279269
Η	-3.428790	1.013528	3.389299
Η	-0.520806	-1.969815	4.457481
С	-2.044724	-0.498841	4.063366
Η	-2.527438	-0.623472	5.028647
Ν	-3.753453	-0.552468	-2.603890
Η	-4.595723	-0.697112	-3.159736
С	1.245688	-1.217238	-0.232789
С	2.546525	-0.925653	0.272032
С	0.948301	-2.585872	-0.502955
С	3.493622	-1.911076	0.317452
С	1.940484	-3.518866	-0.439029
Η	2.817724	0.069979	0.603188
Η	-0.040896	-2.904167	-0.806027
Η	4.505179	-1.737890	0.663951
Η	1.782410	-4.563977	-0.675112
Ν	3.192061	-3.174296	-0.048754
Η	3.909333	-3.890373	0.003487
0	0.969779	-0.310530	-1.973497
С	2.214571	0.013618	-2.527689
Η	2.803898	0.696790	-1.896252
Η	2.814882	-0.895490	-2.695033
Η	2.067519	0.504460	-3.500583

$[TS\text{-}I\text{-}2H]^{2+}\text{-}PyH^+\text{,}OMe\text{,}ax\text{-}MeOPyH^+$

(v_i)	= -310.68 cm	n ⁻¹)	
С	1.318639	3.588703	1.483515
С	0.646535	2.382586	1.300134
С	0.928188	1.597823	0.177299
С	1.885212	2.015591	-0.752964
С	2.563881	3.212977	-0.553097
Η	1.093468	4.200201	2.352229
Η	-0.083018	2.062643	2.039021
Η	2.095163	1.416684	-1.634699
Η	3.311458	3.532873	-1.272855
Р	0.054093	0.046168	-0.138825
С	0.209039	-0.844466	1.510150
С	-0.677569	-1.888487	1.799291
С	1.195291	-0.530005	2.450828
С	-0.570444	-2.570990	2.994311
Η	-1.456348	-2.194679	1.110573
С	1.268137	-1.239075	3.633619
Η	1.924815	0.252871	2.280282
Η	-1.221968	-3.385928	3.282953
Η	2.005440	-1.050010	4.403310
С	2.277551	4.002350	0.560939
Η	2.804015	4.940755	0.710337
С	0.975960	-1.099465	-1.210715
С	2.137593	-1.683252	-0.685405
С	0.588999	-1.394086	-2.523687
С	2.898448	-2.549728	-1.463873
Η	2.474649	-1.462427	0.321889
С	1.344734	-2.279473	-3.287488
Η	-0.288175	-0.928140	-2.952673
Η	3.802384	-2.985536	-1.048926

Η	1.030444	-2.508391	-4.301588
С	2.498985	-2.856865	-2.763016
Η	3.088878	-3.540872	-3.366576
Ν	0.388589	-2.224706	3.867003
Н	0.453066	-2.735276	4.746978
С	-1.740865	0.126761	-0.388345
С	-2.468517	-0.971232	-0.953078
С	-2.510191	1.093849	0.331568
С	-3.829818	-0.947494	-0.969743
С	-3.873837	1.056260	0.274813
Н	-1.956434	-1.813890	-1.401839
Η	-2.041223	1.889326	0.896602
Η	-4.425369	-1.730172	-1.423439
Η	-4.500124	1.790550	0.766938
Ν	-4.515003	0.067533	-0.386792
Η	-5.528998	0.054927	-0.402168
0	-0.815131	0.936184	-1.843747
С	-1.125739	2.295297	-2.025266
Η	-0.933299	2.906531	-1.131724
Н	-0.510902	2.691861	-2.843713
Н	-2.184660	2.408851	-2.298776

Molecular Coordinates Used in the COSMO-RS Study

EtOH (in gas phase)

С	1.221003	-0.221581	-0.000002
Η	1.288465	-0.858986	0.887113
Η	2.070778	0.469551	0.000405
Η	1.288835	-0.858403	-0.887504
С	-0.085445	0.547513	-0.000001
Η	-0.143619	1.192112	0.889449
Η	-0.143625	1.192114	-0.889450
0	-1.148091	-0.395809	0.000002
Н	-1.989455	0.074490	-0.000008

EtOH (optimized with SMD in EtOH)

С	1.225396	-0.221402	0.000002
H	1.305368	-0.856258	0.889898
Η	2.068666	0.478274	0.000352
Η	1.305682	-0.855759	-0.890220
С	-0.080173	0.544623	-0.000004
Η	-0.147658	1.185829	0.888786
Η	-0.147652	1.185820	-0.888801
0	-1.157913	-0.396258	-0.000007
Η	-1.992442	0.092832	0.000053

[Int-III·2H]²⁺-PyH⁺,OMe,ax-a (in gas phase)

С	-0.457074	1.802509	3.288322	
С	-0.624563	1.391601	1.984295	
С	0.140467	0.340651	1.442786	
С	1.103346	-0.229930	2.290379	
С	1.250387	0.200847	3.595256	
Η	-1.037754	2.589608	3.755240	
Η	-1.394689	1.882128	1.395795	
Η	1.738727	-1.042369	1.953263	
Н	1.963742	-0.223599	4.292501	
Р	-0.087173	-0.162822	-0.524056	
--------	---------------	-----------	------------------------------	--
С	-1.913166	-0.152159	-0.357717	
С	-2.557493	-0.688908	0.766880	
С	-2.695007	0.366913	-1.399116	
С	-3.945286	-0.717671	0.840779	
Н	-1.989604	-1.095763	1.597744	
С	-4 084438	0 370561	-1 306101	
Н	-2.221422	0 745770	-2.298410	
н	-4 429089	-1 161379	1 705159	
н	-4 675220	0.78/131	-2 117206	
C	0.824964	1 730382	0.322100	
C	0.354815	2 747538	0.514854	
c	1 004765	1 033816	1.063860	
C	1.994703	2 048068	-1.003809	
с ц	0.562527	-3.940000	1 020241	
n C	-0.303337	-2.023017	0.026224	
С	2.700911	-3.123949	-0.930224	
п	2.334042	-1.181850	-1.77102	
п	0.007074	-4.742054	1.24/102	
Н	3.015040	-3.272286	-1.511044	
0	-0.0/199/	-0.195034	-2.222498	
C	0.865611	1.420029	-0.821351	
C	2.246498	1.496419	-0.593136	
C	0.207354	2.553456	-1.320212	
C	2.930133	2.652660	-0.903292	
H	2.804747	0.654609	-0.19/10/	
C	0.925122	3.695298	-1.601307	
Н	-0.857725	2.545139	-1.521988	
Н	4.000727	2.767769	-0.780731	
H	0.481928	4.598423	-2.004383	
C	-0.524921	-1.306656	-2.999211	
Н	0.307609	-1.985102	-3.204/14	
H	-1.321649	-1.859985	-2.489625	
Н	-0.911642	-0.908881	-3.939333	
C	2.235709	-4.132370	-0.098246	
Н	2.780299	-5.067408	-0.013878	
С	-4.712059	-0.177928	-0.191218	
Н	-5.795533	-0.193431	-0.128402	
Ν	0.468936	1.193941	4.059319	
Ν	2.258005	3.711978	-1.395744	
Η	2.777649	4.553354	-1.631897	
Η	0.574315	1.490526	5.025772	
гт	4 III II]+ D-	.II+ OM	b (in see above)	
	1 971700	2 075711	$-\mathbf{D}$ (in gas phase)	
C	1 551000	1 666026	-2.181909	
C	-1.551009	-1.000920	-1.025517	
C	-0.302193	-1.434031	-1.150/58	
C	0.458591	-2.529559	-0.801258	
	0.037200	-3./91043	-1.290/1/	
H	-2.8006//	-3.183/39	-2.700203	
H	-2.222170	-0.85805/	-2.091923	
H	1.39/939	-2.421818	-0.520342	
H	0.089511	-4.03/358	-1.1084//	
Р С	0.070704	0.201/4/	-0.360291	
C	-1.230/28	1.499398	-U.145/8/	
C	-2.149938	1.8/63/3	-1.132843	
U	-1.323808	2.092378	1.120130	

С	-3.152648	2.801076	-0.852432
Η	-2.067474	1.459943	-2.130734
С	-2.304710	3.043286	1.389198
Η	-0.638408	1.819574	1.915212
Η	-3.864765	3.070153	-1.626358
Η	-2.348277	3.508510	2.369265
С	1.819284	0.669754	-0.216956
С	2.181931	1.653347	0.706306
С	2.813480	0.010397	-0.947112
С	3.525177	1.960776	0.910985
Н	1.425135	2.199153	1.261285
С	4.156532	0.302447	-0.722107
Н	2.541266	-0.713399	-1.710300
Н	3.796733	2.739340	1.617409
Н	4.921786	-0.219391	-1.288471
0	0.158722	0.698717	-2.203494
C	-0.165293	-0.577895	1.304140
Ċ	-1.458431	-0.991863	1.684338
C	0.879886	-0.934601	2.171692
Ĉ	-1.673182	-1.708182	2.835788
Ĥ	-2.317945	-0.756682	1.063189
С	0.637396	-1.654533	3.323312
Ĥ	1.905990	-0.656876	1.953894
Н	-2.646690	-2.051875	3.164488
Н	1.411222	-1.955054	4.020137
С	0.656879	1.952327	-2.643621
Η	1.752393	1.946933	-2.667002
Н	0.277555	2.112211	-3.655499
Н	0.320142	2.779492	-2.004888
С	4.514529	1.276916	0.207421
Н	5.561149	1.514066	0.371587
С	-3.228487	3.391776	0.405718
Н	-3.999896	4.125407	0.618705
Ν	-1.091915	-4.027179	-1.926037
Ν	-0.621988	-2.022830	3.627007
Н	-0.787929	-2.554952	4.474392
гт	4 137 41112+ 1	D-111+ OM a a	
[III C	2 860462	1 661507	0.207150
C	-3.809403	1.001307	0.29/139
C	2.003414	0.105076	-0.304330
C	-2.021155	0.103070	1 216475
C	-2.373830	-0.042322	1.210475
с ц	-3.700024	-0.222743	0.072771
н ц	-4.380850	2.340908	-0.072771
п u	-2.290339	1.600934	-1.133673
п u	-2.103909	-1.339233	1.550906
п	-4.195255	-0.80/330	2.010017
r C	-0.303907	-0.363327	-0.034600
C	0.103937	-1.710304	-0.010004
C	0.470/00	2.757000	1 351101
C	1.078524	112606	0.445104
с ц	0.311766	-+.113000 2820671	1 070400
п С	1 020/66	-2.0200/1	-1.7/7407 1 81000/
с µ	0.2025400	-5.245/15	2 06151 <i>/</i>
н	1 325724	-1.202/1/	2.001314 _1 1/152/
11	1.545744	700200	1.171334

Η	1.232987	-3.368323	2.869806
С	1.353091	1.204455	0.764243
С	2.699864	1.066437	1.122352
С	0.465686	1.708235	1.730849
С	3.121197	1.411139	2.389580
Η	3.433900	0.715364	0.407028
С	0.925394	2.045454	2.985381
Η	-0.586804	1.856754	1.515420
Η	4.150071	1.330442	2.720412
Η	0.291568	2.446981	3.767227
С	-4.401964	0.929182	1.359895
Η	-5.331249	1.247038	1.822242
0	-0.779194	-0.518597	-2.213609
С	0.892003	0.914227	-0.669940
С	0.424957	2.211902	-1.294950
С	1.969725	0.291373	-1.527660
С	0.802270	2.593043	-2.529001
Η	-0.216818	2.870425	-0.720724
С	2.263621	0.746795	-2.758963
Η	2.469106	-0.604557	-1.173495
Η	0.456374	3.524427	-2.962804
Η	3.006961	0.260223	-3.380156
С	-1.961686	-1.172391	-2.744380
Η	-2.841703	-0.556981	-2.549522
Η	-1.785126	-1.254344	-3.815152
Η	-2.085001	-2.164473	-2.303297
Ν	2.230490	1.885678	3.281466
Ν	1.663083	1.854330	-3.297948
С	1.340847	-4.266914	0.914192
Η	1.788781	-5.186051	1.278376
Η	1.951349	2.195677	-4.202747
Η	2.558297	2.149074	4.207624
[In	t-IV·H]⁺-Pv	,OMe,ax-b	(in gas phase)
Ċ	-4.103376	-0.797506	0.458300
Ċ	-2.971731	-0.101775	0.050500
C	-1.794909	-0.802550	-0.261698
Ċ	-1.773060	-2.199799	-0.189104
Ċ	-2.911499	-2.887259	0.221583
H	-5.012335	-0.255160	0.698354
Н	-3.005088	0.980683	-0.034577
Н	-0.882327	-2.757088	-0.458631
Н	-2.892541	-3.970894	0.277515
P	-0.360574	0.160128	-0.753197
C	1.011703	-0.872363	-1.279411
C	1 606915	-0.618809	-2.521839
c	1 555342	-1 846403	-0.427376
č	2 718174	-1 355515	-2.920589
н	1 216804	0 159610	-3 170128
C	2.666025	-2.575816	-0.835009
Ĥ	1.129812	-2.030055	0.554925
Н	3.175182	-1.159871	-3.885325
Н	3.083855	-3.328357	-0.174020
C	0.819494	0.570288	1.685748
Č	2.175866	0.545530	2.001439
Ċ	-0.029558	-0.227793	2.459565
	-	-	

С	2.618680	-0.285982	3.029100	
Η	2.895017	1.162305	1.475547	
С	0.513615	-1.023857	3.463966	
Η	-1.102715	-0.249013	2.297955	
Η	3.674974	-0.320463	3.283628	
Η	-0.132269	-1.654290	4.070014	
С	-4.070664	-2.189055	0.552005	
Н	-4.955581	-2.730323	0.872029	
0	-0.799287	1.098429	-1.970597	
С	0.267874	1.412245	0.530259	
С	-0.847922	2.323956	0.983849	
C	1.308565	2.213859	-0.216333	
С	-0.970515	3.586875	0.543951	
Н	-1.546749	1.960266	1.727851	
С	1.087602	3.474210	-0.623764	
Н	2.244674	1.739423	-0.486836	
Н	-1.767266	4.235679	0.889784	
Н	1.828014	4.026873	-1.190668	
С	-1.606522	0.609579	-3.061204	
Ĥ	-2.634879	0.459146	-2.725665	
Н	-1.568540	1.387614	-3.822360	
Н	-1.202677	-0.325556	-3.459403	
N	1.817013	-1.073836	3.746113	
N	-0.072679	4.152895	-0.332093	
С	3.243859	-2.334954	-2.081024	
Ĥ	4.111105	-2.907850	-2.394335	
Н	-0.147670	5.131919	-0.558523	
[In	t-V·2H] ²⁺ -P	vH+.OMe.az	x-a (in gas phas	se)
[In C	t-V·2H] ²⁺ - P -3.200766	yH⁺,OMe,a x -3.544044	x-a (in gas phas -1.202714	se)
[In C C	t-V·2H] ²⁺ - P -3.200766 -2.088208	yH⁺,OMe,a x -3.544044 -2.744408	x-a (in gas phas -1.202714 -0.953752	se)
[In C C C	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636	yH⁺,OMe,ax -3.544044 -2.744408 -1.502786	x-a (in gas phas -1.202714 -0.953752 -0.319376	se)
[In C C C C	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801	yH⁺,OMe,a -3.544044 -2.744408 -1.502786 -1.067809	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474	se)
[In C C C C C C	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912	se)
[In C C C C C H	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717	se)
[In C C C C C H H	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165	se)
[In C C C C C C H H H	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334	se)
[In CCCCCHHHH H	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238	se)
[In C C C C C C H H H H P	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097	se)
[In C C C C C C H H H H P C	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720	se)
[In C C C C C C C H H H H P C C	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958	se)
[In C C C C C C C H H H H P C C C C	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264	se)
[In C C C C C C C C H H H H P C C C C C C C	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480	se)
[In C C C C C C H H H H P C C C C H	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029	se)
[In C C C C C H H H H P C C C C H C	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076	se)
[In CCCCCHHHHPCCCCHCH	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560 -1.869123	<pre>yH⁺,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289 1.186680</pre>	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076 -1.993770	se)
[In CCCCCHHHHPCCCCHCHH	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560 -1.869123 -1.689262	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289 1.186680 3.842618	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076 -1.993770 2.191092	se)
[In CCCCCHHHHPCCCCHCHHH	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560 -1.869123 -1.689262 -2.570584	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289 1.186680 3.842618 3.551045	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076 -1.993770 2.191092 -2.006522	se)
[In CCCCCCHHHHPCCCCCHCHHHC	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560 -1.869123 -1.689262 -2.570584 2.499404	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289 1.186680 3.842618 3.551045 0.868426	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076 -1.993770 2.191092 -2.006522 -0.279536	se)
[ICCCCCHHHHPCCCCCHCHHHCC	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560 -1.869123 -1.689262 -2.570584 2.499404 2.270234	<pre>yH⁺,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289 1.186680 3.842618 3.551045 0.868426 1.665005</pre>	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076 -1.993770 2.191092 -2.006522 -0.279536 0.844749	se)
[ICCCCCHHHHPCCCCCHCHHHCCC	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560 -1.869123 -1.689262 -2.570584 2.499404 2.270234 2.073884	<pre>yH⁺,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289 1.186680 3.842618 3.551045 0.868426 1.665005 1.317202</pre>	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076 -1.993770 2.191092 -2.006522 -0.279536 0.844749 -1.535891	se)
[ЛСССССННННРССССНСНННССССС	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560 -1.869123 -1.689262 -2.570584 2.499404 2.270234 2.073884 1.606557	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289 1.186680 3.842618 3.551045 0.868426 1.665005 1.317202 2.867905	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076 -1.993770 2.191092 -2.006522 -0.279536 0.844749 -1.535891 0.696090	se)
[ПСССССННННРССССНСНННССССН	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560 -1.869123 -1.689262 -2.570584 2.499404 2.270234 2.073884 1.606557 2.591441	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289 1.186680 3.842618 3.551045 0.868426 1.665005 1.317202 2.867905 1.359314	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076 -1.993770 2.191092 -2.006522 -0.279536 0.844749 -1.535891 0.696090 1.833983	se)
[ПСССССННННРССССНСНННССССНС	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560 -1.869123 -1.689262 -2.570584 2.499404 2.270234 2.673884 1.606557 2.591441 1.401368	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289 1.186680 3.842618 3.551045 0.868426 1.665005 1.317202 2.867905 1.359314 2.517392	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076 -1.993770 2.191092 -2.006522 -0.279536 0.844749 -1.535891 0.696090 1.833983 -1.630677	se)
[]СССССННННРССССНСНННССССНСН	t-V·2H] ²⁺ -P -3.200766 -2.088208 -2.232636 -3.513801 -4.624068 -3.081413 -1.102563 -3.649396 -5.613123 -0.707964 -1.338908 -1.289464 -1.795216 -1.695664 -0.941031 -2.191560 -1.869123 -1.689262 -2.570584 2.499404 2.270234 2.073884 1.606557 2.591441 1.401368 2.210041	yH ⁺ ,OMe,ax -3.544044 -2.744408 -1.502786 -1.067809 -1.865419 -4.503204 -3.085651 -0.102113 -1.522293 -0.560432 1.167993 1.935067 1.771687 3.271334 1.487958 3.107289 1.186680 3.842618 3.551045 0.868426 1.665005 1.317202 2.867905 1.359314 2.517392 0.717360	x-a (in gas phas -1.202714 -0.953752 -0.319376 0.050474 -0.202912 -1.696717 -1.263165 0.530334 0.084238 0.002097 0.103720 1.272958 -1.078264 1.266480 2.200029 -1.090076 -1.993770 2.191092 -2.006522 -0.279536 0.844749 -1.535891 0.696090 1.833983 -1.630677 -2.428642	se)

Η	1.006312	2.911144	-2.558900
С	-4.467704	-3.103981	-0.826267
Η	-5.337244	-3.722924	-1.024713
0	-0.300619	-0.882942	1.593180
С	3.177038	-0.448920	-0.134074
С	4.284036	-0.771208	-0.928341
С	2.707286	-1.377438	0.804707
С	4.901677	-1.995657	-0.765744
Η	4.684077	-0.074119	-1.656828
С	3.354487	-2.590929	0.925994
Η	1.817307	-1.183680	1.403490
Η	5.767878	-2.311159	-1.335459
Η	3.047224	-3.364005	1.620444
С	-1.279860	-1.225746	2.587283
Η	-1.715483	-2.203753	2.367149
Η	-0.753173	-1.259155	3.542451
Η	-2.079871	-0.480797	2.635307
Ν	1.199890	3.254791	-0.522994
Ν	4.422442	-2.859503	0.148716
С	-2.137894	3.864312	0.084077
Η	-2.477837	4.896035	0.083931
Η	4.888812	-3.757660	0.257717
Η	0.632307	4.097967	-0.596849
[In	t-V·H]⁺-Py,	OMe,ax-a (i	n gas phase)
С	5.281576	0.228471	-1.253566
С	3.984705	0.675649	-1.010072
С	3.081321	-0.110786	-0.284168
С	3.499907	-1.362436	0.188920
С	4.793448	-1.810956	-0.055894
Η	5.971932	0.846154	-1.819977
Η	3.670781	1.643934	-1.394022
Η	2.811020	-1.994476	0.742914
Η	5.107247	-2.782506	0.313922
Р	1.422176	0.603171	0.018009
С	0.392208	-0.908021	0.229455
С	-0.449298	-1.076474	1.333159
С	0.350064	-1.858936	-0.799474
С	-1.305497	-2.173815	1.416049
Η	-0.424934	-0.353749	2.145029
С	-0.502831	-2.955597	-0.716608
Η	1.004088	-1.757143	-1.663332
Η	-1.946162	-2.295574	2.284768
Η	-0.513165	-3.691477	-1.515620
С	-3.120775	0.442751	-0.363768
С	-4.101747	0.267399	0.615956
С	-3.015055	-0.518664	-1.368942
С	-4.923348	-0.852784	0.541525
Η	-4.252937	0.994960	1.407914
С	-3.881042	-1.608338	-1.341048
Η	-2.242634	-0.464670	-2.129488
Η	-5.703023	-1.010864	1.281813
Η	-3.807374	-2.382913	-2.099545
С	5.685571	-1.015372	-0.775390
ΤT			
п	6.694156	-1.369296	-0.966987

С	-2.195881	1.591608	-0.323763
С	-1.749893	2.207496	-1.505427
С	-1.708585	2.080778	0.897087
С	-0.844795	3.240066	-1.443139
Η	-2.113600	1.884683	-2.473851
С	-0.796177	3.110106	0.915065
Η	-1.996749	1.622559	1.835084
Η	-0.455958	3.747971	-2.316784
Η	-0.346420	3.494050	1.821073
С	2.233540	0.566451	2.611938
Η	3.307564	0.629253	2.413704
Η	2.000150	1.098436	3.536383
Η	1.945814	-0.485660	2.714132
Ν	-4.819868	-1.782018	-0.411228
Ν	-0.398443	3.666018	-0.244757
С	-1.335800	-3.114843	0.390838
Η	-2.003928	-3.968303	0.454121
Η	0.301287	4.399866	-0.216189
[I n	t.Vl.Pv OM	le av-a (in o	s nhase)
C	0 367932	-1 574268	2 773782
c	-0.156578	-0.562910	1 969906
c	-0.460917	-0.816843	0.630716
c	-0.233833	-2.095098	0.110608
c	0.235055	-3 105146	0.912659
н	0.200702	-1 367/193	3 815176
н	-0.319676	0.431536	2 373996
н	-0 // 9883	-2 302748	-0.935/72
н	0.472620	-4.087690	0.489065
D	1 103844	-4.087090	0.489005
Г С	-2 905196	0.407721	-0.309933
C	3 573007	0.195275	1 6/3052
C	3 673808	0.065636	0 754404
C	-5.025808	0.003030	1 6/1550
с u	-4.930731	-0.493423	2 583103
II C	-3.023493	-0.172471	-2.383103
с u	-4.964303	-0.218733	1 699422
п	-5.109720	0.279203	1.000422
п u	-3.440281	-0.709448	-2.3/0400
п	-3.333402	-0.220039	1.093728
C	2.090808	-0.240070	-0.090000
C	2.194039	-0.708812	-1.910047
C	3.309081	-1.1/0384	0.101725
	2.381/9/	-2.040510	-2.209380
Н	1.626008	-0.054946	-2.5/0145
C II	3.49/165	-2.488624	-0.341353
H	3.800376	-0.889131	1.055694
H	1.989642	-2.414312	-3.212/28
H	4.012610	-3.222781	0.273503
C II	0.592245	-2.844/56	2.24/830
H	1.007269	-3.629443	2.8/4405
U C	-1.006981	1./51426	0.548594
C	2.501185	1.156051	-0.260856
C	2.367527	1.488546	1.088482
C	2.420294	2.204623	-1.1818//
C	2.149570	2.814837	1.444666
н	2.383177	0.722163	1.836039

С	2.205338	3.498965	-0.721410
Η	2.539045	2.026621	-2.246166
Η	2.024996	3.084049	2.491033
Η	2.142514	4.325096	-1.426323
С	-1.315591	3.032836	0.020986
Η	-2.398044	3.141869	-0.125662
Η	-0.966843	3.768340	0.748148
Η	-0.799319	3.204527	-0.932318
Ν	3.017779	-2.932597	-1.505473
Ν	2.064323	3.817893	0.568107
С	-5.641973	-0.503370	-0.441959
Η	-6.704530	-0.730212	-0.437610
[In	t-III]-Py,ON	Me,ax-b (in g	gas phase)
С	0.893724	4.035952	-0.634811
С	0.959420	2.646832	-0.708775
С	-0.139576	1.869850	-0.334457
С	-1.312727	2.499799	0.083575
С	-1.382300	3.890274	0.141109
Н	1.757286	4.630023	-0.919906
Н	1.865906	2.169267	-1.070452
Н	-2.183011	1.913805	0.364664
Н	-2.303033	4.368920	0.462115
Р	-0.019175	0.041731	-0.465139
С	-1.600847	-0.949317	-0.433393
С	-1.894418	-1.864868	-1.444548
С	-2.537847	-0.816606	0.593255
С	-3.073591	-2.602757	-1.373151
Н	-1.227371	-1.992478	-2.288480
С	-3.707939	-1.570527	0.548895
Н	-2.367537	-0.155606	1.436599
Н	-3.303547	-3.337569	-2.141262
Н	-4.456351	-1.460132	1.330042
С	0.180183	-0.220031	1.461712
С	0.280883	-1.532183	1.942872
С	0.278083	0.785918	2.422524
С	0.457597	-1.770222	3.298742
Н	0.225981	-2.380589	1.263201
С	0.457349	0.449284	3.767476
Н	0.225278	1.836427	2.153988
Н	0.534400	-2.788881	3.672978
Н	0.534000	1.233775	4.518268
С	-0.276739	4.661372	-0.209311
Н	-0.329180	5.745022	-0.158273
0	-0.110962	0.148664	-2.225096
Č	1.643082	-0.723412	-0.744886
C	2.723287	-0.344365	0.058980
Ċ	1.848765	-1.679971	-1.743738
C	3.985051	-0.897360	-0.141316
Н	2.588377	0.383876	0.852916
C	3.100618	-2.265262	-1.913689
H	1.035087	-1.956635	-2.402266
Н	4.815319	-0.576942	0.481285
н	3,238335	-3.021421	-2.681295
C	-1.121721	0.863012	-2.892474
H	-0.896794	1.937852	-2.921996

Η	-1.174270	0.485967	-3.919583
Η	-2.112615	0.732414	-2.430936
С	4.174352	-1.870170	-1.119460
Η	5.153957	-2.317243	-1.262804
Ν	0.545483	-0.800392	4.218277
Ν	-3.981632	-2.461978	-0.405667
[TS	S-I·2H] ²⁺ -Pv	H+.OMe.ax	-b (in gas phase)
Ċ	-4.046648	-1.196231	-0.504226
С	-2.749231	-0.928981	-0.929477
Ċ	-1.676128	-1.047206	-0.031503
Ċ	-1.913099	-1.482120	1.277244
Ċ	-3.211306	-1.763215	1.690369
Н	-4.872002	-1.103865	-1.202851
Н	-2.574604	-0.666205	-1.969700
Н	-1.098583	-1.623201	1.976756
Н	-3.387751	-2.114950	2.701791
Р	-0.032475	-0.724148	-0.690079
С	1.396996	-1.395396	0.186347
Ĉ	2.401723	-1.960409	-0.617082
Č	1.545490	-1.411009	1.580753
C	3.532266	-2.523717	-0.033010
Н	2.302684	-1.967911	-1.698324
C	2.668485	-1.991853	2.157260
Н	0.801174	-0.962071	2.227382
Н	4.303011	-2.955031	-0.663527
Н	2.766801	-2.013323	3.237925
C	0.045845	1.268258	0.916477
C	1.224924	1.774081	1.481978
Č	-1.164861	1.743298	1.442970
Ċ	1.186557	2.667721	2.531300
H	2.201093	1.462440	1.116810
C	-1.178998	2.641836	2.490475
H	-2.122347	1.406583	1.053499
Н	2.065165	3.075286	3.018618
Н	-2.082739	3 030670	2.946171
C	-4.278698	-1.608687	0.806982
H	-5.289581	-1.830525	1.134201
0	-0.032537	-1.501942	-2.107616
Č	0.243224	0.937305	-1.314420
Ĉ	-0.814031	1.751186	-1.820173
Ĉ	1.572485	1.332194	-1.650495
Č	-0.529805	2.922263	-2.460749
Н	-1.852436	1.474290	-1.688056
C	1.794660	2.514713	-2.297426
H	2.422830	0.706514	-1.404543
Н	-1.297359	3.580915	-2.849476
Н	2 785626	2.860097	-2.567888
Ċ	-0.340303	-2.904829	-2.254615
Ĥ	-1.394779	-3.082313	-2.030323
Н	-0.133499	-3.145275	-3.296280
Н	0.290160	-3.510268	-1.597517
N	-0.009942	3.073862	3.008063
Н	-0.030694	3.728049	3.784785
N	0.756336	3.300184	-2.672823
H	0.942322	4.155480	-3.184621

С	3.663700	-2.546859	1.353082
Η	4.538698	-3.000004	1.808231
[T	S-I∙H]+-Py,C)Me,ax-a (in	gas phase)
С	-3.857004	-1.811078	-0.564265
С	-2.621609	-1.312053	-0.967103
С	-1.577615	-1.178367	-0.041130
С	-1.783371	-1.571665	1.285024
С	-3.009709	-2.096160	1.676435
Η	-4.661846	-1.900486	-1.287097
Η	-2.466098	-1.040669	-2.007365
Η	-1.006337	-1.449342	2.028873
Η	-3.155142	-2.405904	2.706395
Р	-0.001673	-0.527720	-0.668623
С	1.569060	-1.189405	-0.039007
С	2.610641	-1.338238	-0.965460
С	1.773294	-1.576396	1.289314
С	3.841897	-1.846339	-0.561314
Н	2.456429	-1.071145	-2.006991
С	2.995235	-2.109967	1.682182
Н	0.998839	-1.441954	2.033755
Н	4.644862	-1.947387	-1.284698
Н	3.139272	-2.414660	2.713844
С	0.002719	1.069365	0.968292
С	1.190856	1.467227	1.576287
С	-1.184149	1.470359	1.576783
С	1.141924	2.190017	2.767550
Н	2.161767	1.225969	1.150158
С	-1.132685	2.193083	2.768012
Н	-2.155944	1.231631	1.151304
Н	2.061353	2.495160	3.262293
Н	-2.051084	2.500646	3.263170
С	-4.050293	-2.209316	0.756040
Н	-5.009870	-2.609604	1.068263
0	-0.003283	-1.210287	-2.176018
Ĉ	0.005290	1.164856	-1.166473
Č	-1.210399	1.849147	-1.515521
Ĉ	1.227731	1.837242	-1.515144
Č	-1.169506	3.151981	-1.897217
Ĥ	-2.171544	1.356051	-1.441645
C	1 199766	3 140414	-1 896895
н	2 183887	1 334456	-1 441571
н	-2.060230	3 722717	-2 130304
н	2.000103	3 702323	-2 129935
C	-0.010904	-2 617035	-2 426515
н	-0.911511	-3 083909	-2 014701
н	-0.001227	-2 735537	-3 510523
н	0.874558	-3 09719/	_1 007300
N	0.005216	2 551480	3 365596
N	0.018383	3 801737	-2 0402/0
н	0.023130	A 765/83	-2.0+02+9
C	4 033363	-2 238533	0.761044
н	4 989603	-2.645904	1 074348
	1.20200.2	4.0TJ /0T	1.0/7070

[**TS-II·2H**]²⁺-**PyH**⁺,**OMe,ax-a** (in gas phase) C 3.965345 0.096175 -1.292585

С	2.605846	-0.136332	-1.112509
С	1.760176	0.904347	-0.700442
С	2.291281	2.181974	-0.468422
С	3.652688	2.407035	-0.645870
Η	4.616987	-0.706707	-1.622741
Н	2.200255	-1.126517	-1.310942
Н	1.647249	2.999551	-0.157062
Н	4 061974	3 397031	-0 471641
Р	-0.003773	0 546228	-0 568189
Ċ	-0.747001	1 672194	0.622784
c	2 0/38/2	2 155772	0.396294
C	-2.043842	2.155772	1 840508
C	-0.10+338	2 020768	1.040500
С	-2.070301	2.929708	0.545721
П	-2.344332	1.930109	-0.343721
U U	-0.747947	2.721076	2.805155
H	0.909444	1.604075	2.021710
H	-3.672548	3.322690	1.176526
H	-0.240347	2.956543	3.735433
С	-0.082172	-2.167525	0.626107
С	0.091417	-1.640842	1.919805
С	0.703951	-3.272279	0.262602
С	1.019095	-2.189068	2.773067
Η	-0.480251	-0.786802	2.266527
С	1.623457	-3.792201	1.148738
Η	0.591226	-3.760851	-0.697279
Η	1.195940	-1.822947	3.777359
Н	2.248639	-4.648271	0.923251
С	4.487386	1.367472	-1.055902
Н	5.547915	1.550828	-1.197371
0	-0.716493	0.819143	-1.994052
Č	-1 114727	-1 610351	-0.305858
C	-1 181525	-2 076472	-1 666377
C	-2 383946	-1 228289	0.264803
C	-2 327098	-1.964414	-2 390064
ц	0.207358	2 / 38010	2.370004
II C	-0.297338	-2.430717	-2.177308
с u	-3.300733	-1.143631	-0.309903
п	-2.477044	-0.961336	2 420002
Н	-2.392060	-2.200052	-3.430093
Н	-4.462458	-0.843609	-0.112638
C	-0.445866	2.011444	-2./63862
Н	0.602608	2.027952	-3.070917
Н	-1.090626	1.954613	-3.639939
Η	-0.684387	2.904886	-2.179511
Ν	1.760947	-3.242333	2.369308
Ν	-3.465565	-1.484234	-1.823692
С	-2.034611	3.208835	2.568623
Η	-2.529021	3.816813	3.319650
Η	-4.315765	-1.442807	-2.372465
Η	2.435650	-3.643931	3.015385
[TS	S-II·H] ⁺ -Py,	UMe,ax-a (i	n gas phase)
C	3.932411	-1.211160	1.306256
C	2.640801	-1.266481	0.794197
С	2.140731	-0.209122	0.019838
С	2.949766	0.904199	-0.234931
С	4.239838	0.958556	0.286558

Н	4.316265	-2.033669	1.901762
Η	2.022298	-2.140337	0.989158
Η	2.579022	1.726334	-0.839846
Η	4.864318	1.823863	0.087194
Р	0.452954	-0.391801	-0.616605
С	-0.094103	1.208592	-1.252881
С	-0.714799	1.293964	-2.505483
С	-0.071112	2.333367	-0.414476
Č	-1.273060	2.498614	-2.927001
н	-0 759518	0.421982	-3 152242
C	-0.632152	3 532017	-0.840329
н	0.382161	2 276988	0.572388
н	-1 7/0386	2.562941	-3 90/1938
н	0.605072	1 308880	0.187386
II C	-0.003072	4.398880	-0.187380
C	-1.490990	-0.106417	1.545091
C	-2.331004	0.01/030	1.323243
C	-0.4/3398	0.088271	2.465541
	-2.492300	1.890304	2.407512
Н	-3.3/28/5	0.720842	0.846894
C	-0.530792	1.194653	3.321411
Н	0.378098	-0.582666	2.550198
Н	-3.290357	2.634513	2.398542
Н	0.255365	1.369282	4.051332
С	4.730112	-0.094867	1.055763
Η	5.736669	-0.047511	1.459859
0	0.527230	-1.402506	-1.891890
С	-1.453932	-1.266834	0.590737
С	-1.085842	-2.563986	1.111712
С	-2.377194	-1.311136	-0.518653
С	-1.407741	-3.702837	0.448497
Η	-0.539637	-2.640462	2.044398
С	-2.653484	-2.481043	-1.150221
Η	-2.799427	-0.396331	-0.917209
Η	-1.131292	-4.688024	0.804438
Н	-3.297805	-2.538546	-2.019157
С	1.577407	-1.298257	-2.867531
Ĥ	2.535517	-1.576535	-2.419963
Н	1 321774	-1 996356	-3 664980
Н	1 638499	-0 281400	-3 268429
N	-1 514154	2 099772	3 287140
N	-2 148046	-3 660534	-0 695965
$\hat{\mathbf{C}}$	-1 230580	3 617016	-2 097238
н	-1 665865	4 554972	-2 428058
и П	2 305508	4.504972	1 162003
11	-2.393398	-4.522257	-1.102093
[TS	8-I]-Py,OM	e ,ax-a (in gas	s phase)
С	-4.172155	0.481785	-0.359814
С	-2.872821	0.340384	-0.836408
С	-1.916512	-0.349044	-0.079374
С	-2.288745	-0.934044	1.132452
С	-3.591834	-0.797760	1.601262
Н	-4.903447	1.028621	-0.947084
Н	-2.605950	0.758296	-1.802905
Η	-1.572512	-1.494868	1.720205
Н	-3.870545	-1.249934	2.548112
P	-0.263886	-0.490397	-0.801466
-	0.200000		0.001100

С	0.789864	-1.751282	-0.025685
С	1.480530	-2.608257	-0.893248
С	0.965953	-1.893123	1.356346
С	2.323540	-3.593351	-0.387094
Η	1.372229	-2.494558	-1.967221
С	1.798647	-2.887611	1.857390
Η	0.493341	-1.204841	2.046731
Η	2.862252	-4.241620	-1.071439
Η	1.928974	-2.982956	2.930982
С	0.594478	1.164094	0.864544
С	1.863827	1.131483	1.433554
С	-0.394257	1.830254	1.588454
С	2.076059	1.696253	2.687702
Η	2.699143	0.683839	0.897181
С	-0.088837	2.368705	2.836857
Η	-1.403950	1.949288	1.200540
Η	3.063976	1.667622	3.144417
Η	-0.856769	2.878388	3.416755
С	-4.530891	-0.080966	0.863340
Η	-5.544451	0.031232	1.236782
0	-0.583427	-1.131284	-2.270101
С	0.576816	1.038385	-1.083015
С	-0.109952	2.225398	-1.552005
С	1.934479	0.937519	-1.582071
С	0.636690	3.268164	-2.052838
Η	-1.171415	2.366261	-1.383693
С	2.546324	2.065337	-2.086553
Η	2.498091	0.013758	-1.493355
Η	0.123810	4.196164	-2.304164
Η	3.595707	2.001441	-2.374356
С	-1.415213	-2.274712	-2.457739
Η	-1.100769	-3.107357	-1.818004
Η	-2.460468	-2.028465	-2.245809
Η	-1.310106	-2.559459	-3.505582
Ν	1.120488	2.301558	3.401358
Ν	1.957935	3.251713	-2.303900
С	2.478110	-3.739155	0.988647
Η	3.135002	-4.508253	1.384279

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	maa
	19, 11, - , 1 - , 1 - , 1 - , 1 - , 1 - , 1 - , 1										,									

CI

...

CDCl₃, 400 MHz

 		144 196	100 100 11	••••		•••	••••	•••	••••	·····
				 1						
	N H									S202
$CDCl_3, 10$	00 MHz	>								
					-07				27.	

 $\cdot \cdot \cdot \cdot$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 ppm

8 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 -184 -192 Chemical Shift (ppm)

8 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 -184 -192 Chemical Shift (ppm)

	S213

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16

ppm

f1 (ppm)

__-11.94 CDCl₃, 162 MHz PPh_2 ,CI 2d S230 50 f1 (ppm) 140 130 120 110 100 90 80 70 60 40 30 20 10 Ó -10 -20 -30 50 -40 -5

				CDCI Ph ₂	l ₃ , 16	52 M	Hz CI CO ₂ E	ŧ										- S243	
 	 112	104	 96	****		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			 	······································	 ,	16	·····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-8	-16	 -32	-40	

---6.35

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 ppm

-10 -20 -30 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 Ó -40 -100 · -2 0 f1 (ppm)

f1 (ppm) Ó -10 -20

-10 -20 -30 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 Ó -40 -100 · -2 0 f1 (ppm)

-5

__21.61

CDCl₃, 162 MHz

 $^{O}_{-5}^{V} CF_{3}$

-130 -140 -150 -160 -10 -20 -30 -50 -60 -70 -80 -90 -110 -120 -170 -180 -190 -2 Ó -40 -100 0 f1 (ppm)

__21.96

-5

-10 -20 Ó f1 (ppm)

-10 -20 -30 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 Ó -40 -60 · -2 0 f1 (ppm)

							3e												
50	140	130	120	110	100	90	80	70	60 f	50 50	40	30	20	10	0	-10	-20	-30	-40

N´ ||

F

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 ppm

CDCl₃, 400 MHz \cap F N/ `PPh₂ CF₃ ČS_CF3 Ο 0, S306 0 \Y EtO₂C² С 31 0.91 0.90 1.03 13.00 4.01 2.58 2.69 4.10 2.85 1.06 3.73 1.73 2.51 3.97 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

З	0
\sim	\mathbf{v}

ydd ar ydyn waad ddan yn Hilli halan feddau y farfan yn gollana flen y barrh y dan ar y ddan ar blan yddan ar b Hel ar yn yn santyn fan yn ar yn

70	60	50	40	30	20	10	0	-10	-20	-30	ppm

13.93

8.41 CDCl₃, 162 MHz O \\S_CF₃ D__\O 0

140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	ppm

CI

-16.31

CDCl₃, 162 MHz

ne, shi ka parka mela sa shi ku sushi da sa ki Ang fiyalikin ya faqana fiyalan ka sa sa sa sa sa sa sa sa sa s	na an la Ìbrid an giadhla a sa Ile an faire pagas ar an agus	lang di sa baga di siya da sa baga Pang sa pang sa sa pang	nin by he down we get the	talah ditahatan kuma kuma kuma pelantan kuma kuma kuma kuma kuma kuma kuma kuma	dan seri fernik fransjar Gan seri fernik fransjar	d a life da e de se le se Se d a gran le se le s	i Byr Malwa le Bhillen a Mary I I y I Terran yn Argang y'r Derwyn gwl De	kuita kashi, uuliy dallaqildig. Ta'ay yong yong ^{ang} ay ^{ong yong bilang salari ba}	Bigtala palatan Ja (palatan and Palatan palatan Ja (palatan and	n, e.e. lis Notes Varia dalar Nota Service estilare dalar pe	uraina paina di padani Manimané di panagin	ána martin anna 1,1913 an 191 Ann Martin Anna 1,1913 an 1914	ha dha a fa dan dan dag 2000 ha and a Karan ng nagang 11 ng mang 1 ng mang 1	and for the force of force of the	kana yanan di dalam da akan di di Mana maya na yan yan ya ng pana	lantallakiyaki atrianda si nangat mangat Urayakiyi t	n lý pil kirne y tří Lennistelen v desekt Ny v Lennister (jezejí previ jezejí previ pet	fa bha na far gun da sa da sa ban sa an
	130	120	110		90	80			50		 30	20	10	•••• 0	-10	<u>-</u> 20	-30	 ppm

8 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 -184 -192 Chemical Shift (ppm)

13.27

69 55 53 53 49 48	25 24 21 20

CDCl₃, 400 MHz

S378

, , ,								· · · ·	· · · ·			· · ·	· · · ·					
0	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90		-110	-130	D	-150	-170	-190

CDCl₃, 400 MHz

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 ppm

References

- D. G. Brown, J. Boström, Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where have All the New Reactions Gone? J. Med. Chem. 59, 4443–4458 (2016). doi:10.1021/acs.jmedchem.5b01409 Medline
- S. D. Roughley, A. M. Jordan, The medicinal chemist's toolbox: An analysis of reactions used in the pursuit of drug candidates. *J. Med. Chem.* 54, 3451–3479 (2011). <u>doi:10.1021/jm200187y Medline</u>
- R. Capdeville, E. Buchdunger, J. Zimmermann, A. Matter, Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. *Nat. Rev. Drug Discov.* 1, 493–502 (2002). doi:10.1038/nrd839 Medline
- 4. A. J. Roecker, S. P. Mercer, J. D. Schreier, C. D. Cox, M. E. Fraley, J. T. Steen, W. Lemaire, J. G. Bruno, C. M. Harrell, S. L. Garson, A. L. Gotter, S. V. Fox, J. Stevens, P. L. Tannenbaum, T. Prueksaritanont, T. D. Cabalu, D. Cui, J. Stellabott, G. D. Hartman, S. D. Young, C. J. Winrow, J. J. Renger, P. J. Coleman, Discovery of 5"-chloro-*N*-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2':5',3"-terpyridine-3'-carboxamide (MK-1064): A selective orexin 2 receptor antagonist (2-SORA) for the treatment of insomnia. *ChemMedChem* 9, 311–322 (2014). doi:10.1002/cmdc.201300447 Medline
- 5. S. D. Martina, K. S. Vesta, T. L. Ripley, Etoricoxib: A highly selective COX-2 inhibitor. *Ann. Pharmacother.* **39**, 854–862 (2005). <u>doi:10.1345/aph.1E543 Medline</u>
- 6. M. L. Crawley, B. M. Trost, *Applications of Transition Metal Catalysts in Drug Discovery* and Development: An Industrial Perspective (Wiley, 2012), pp. 25–96.
- 7. A. de Meijere, F. Diederich, *Metal-Catalyzed Cross-Coupling Reactions* (Wiley-VCH, ed. 2, 2004).
- J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. *Chem. Rev.* 102, 1359–1470 (2002). doi:10.1021/cr000664r Medline
- L.-C. Campeau, K. Fagnou, Applications of and alternatives to π-electron-deficient azine organometallics in metal catalyzed cross-coupling reactions. *Chem. Soc. Rev.* 36, 1058– 1068 (2007). doi:10.1039/B616082D Medline
- D. Zhao, J. You, C. Hu, Recent progress in coupling of two heteroarenes. *Chem. Eur. J.* 17, 5466–5492 (2011). doi:10.1002/chem.201003039 Medline
- K. L. Billingsley, K. W. Anderson, S. L. Buchwald, A highly active catalyst for Suzuki-Miyaura cross-coupling reactions of heteroaryl compounds. *Angew. Chem. Int. Ed.* 45, 3484–3488 (2006). doi:10.1002/anie.200600493 Medline
- N. Kudo, M. Perseghini, G. C. Fu, A versatile method for Suzuki cross-coupling reactions of nitrogen heterocycles. *Angew. Chem. Int. Ed.* 45, 1282–1284 (2006). doi:10.1002/anie.200503479 Medline
- A. S. Guram, X. Wang, E. E. Bunel, M. M. Faul, R. D. Larsen, M. J. Martinelli, New catalysts for Suzuki-Miyaura coupling reactions of heteroatom-substituted heteroaryl chlorides. *J. Org. Chem.* 72, 5104–5112 (2007). doi:10.1021/j0070341w Medline
- U. Kiehne, J. Bunzen, A. Lützen, Synthesis of Substituted 2,2'-Bipyridines from 2-Bromo- or 2-Chloropyridines Using Tetrakis(triphenylphosphine)palladium(0) as a Catalyst in a Modified Negishi Cross-Coupling Reaction. *Synthesis* 1061–1069 (2007).
- T. Markovic, B. N. Rocke, D. C. Blakemore, V. Mascitti, M. C. Willis, Pyridine sulfinates as general nucleophilic coupling partners in palladium-catalyzed cross-coupling reactions with aryl halides. *Chem. Sci.* 8, 4437–4442 (2017). <u>doi:10.1039/C7SC00675F Medline</u>
- 16. P. A. Cox, M. Reid, A. G. Leach, A. D. Campbell, E. J. King, G. C. Lloyd-Jones, Base-Catalyzed Aryl-B(OH)₂ Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion. J. Am. Chem. Soc. 139, 13156–13165 (2017). doi:10.1021/jacs.7b07444 Medline
- 17. D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W. Thomas, D. M. Wilson, A. Wood, Organic synthesis provides opportunities to transform drug discovery. *Nat. Chem.* 10, 383–394 (2018). doi:10.1038/s41557-018-0021-z Medline
- 18. J. A. Joule, K. Mills, *Heterocyclic Chemistry* (Wiley-Blackwell, ed. 5, 2013).
- 19. M. R. Grimmett, Halogenation of Heterocycles: II. Six- and Seven-Membered Rings. *Adv. Heterocycl. Chem.* **58**, 271–345 (1993). <u>doi:10.1016/S0065-2725(08)60288-3</u>
- M. A. Larsen, J. F. Hartwig, Iridium-catalyzed C-H borylation of heteroarenes: Scope, regioselectivity, application to late-stage functionalization, and mechanism. *J. Am. Chem. Soc.* 136, 4287–4299 (2014). doi:10.1021/ja412563e Medline
- 21. H.-Q. Do, O. Daugulis, A general method for copper-catalyzed arene cross-dimerization. *J. Am. Chem. Soc.* **133**, 13577–13586 (2011). <u>doi:10.1021/ja2047717</u> <u>Medline</u>
- 22. J.-P. Finer, in *Ligand Coupling Reactions with Heteroaromatic Compounds, Vol. 18* (Pergamon, 1998), chap. 4.
- 23. K. D. Reichl, A. T. Radosevich, A phosphine-mediated stereocontrolled synthesis of Z-enediynes by a vicinal dialkynylation of ethynylphosphonium salts. *Chem. Commun.* 50, 9302–9305 (2014). doi:10.1039/C4CC03415E Medline
- 24. R. Hoffmann, J. M. Howell, E. L. Muetterties, Molecular Orbital Theory of Pentacoordinate Phosphorus. J. Am. Chem. Soc. 94, 3047–3058 (1972). doi:10.1021/ja00764a028

- 25. F. G. Mann, J. Watson, Conditions of Salt Formation in Polyamines and Kindred Compounds. Salt Formation in the 2-Pyridylamines, Phosphines and Arsines. J. Org. Chem. 13, 502–531 (1948). doi:10.1021/jo01162a007
- 26. G. R. Newkome, D. C. Hager, A New Contractive Coupling Procedure. Convenient Phosphorus Expulsion Reaction. J. Am. Chem. Soc. 100, 5567–5568 (1978). doi:10.1021/ja00485a053
- 27. Y. Uchida, K. Onoue, N. Tada, F. Nagao, S. Oae, Ligand Coupling Reaction on the Phosphorus Atom. *Tetrahedron Lett.* **30**, 567–570 (1989). <u>doi:10.1016/S0040-4039(00)95256-0</u>
- 28. Y. Uchida, H. Kozawa, S. Oae, Formation of 2,2'-Bipyridiyl by Ligand Coupling on the Phosphorus Atom. *Tetrahedron Lett.* **30**, 6365–6368 (1989). <u>doi:10.1016/S0040-4039(01)93895-X</u>
- Y. Uchida, N. Echikawa, S. Oae, Reactions of Heteroaryllithium Compounds with Phosphorus Trichloride, Phosphorus Oxychloride, and Thionyl Chloride. Formation of Heterocyclic Biaryls. *Heteroatom Chem.* 5, 409–413 (1994). doi:10.1002/hc.520050414
- 30. F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Solvent- and Catalyst-Free Regioselective Hydrophosphanation of Alkenes. *Green Chem.* 14, 2699–2702 (2012). <u>doi:10.1039/c2gc35898k</u>
- 31. M. C. Hilton, R. D. Dolewski, A. McNally, Selective Functionalization of Pyridines via Heterocyclic Phosphonium Salts. J. Am. Chem. Soc. 138, 13806–13809 (2016). doi:10.1021/jacs.6b08662 Medline
- X. Zhang, A. McNally, Phosphonium Salts as Pseudohalides: Regioselective Nickel-Catalyzed Cross-Coupling of Complex Pyridines and Diazines. *Angew. Chem. Int. Ed.* 56, 9833–9836 (2017). doi:10.1002/anie.201704948 Medline
- 33. J. L. Koniarczyk, D. Hesk, A. Overgard, I. W. Davies, A. McNally, A General Strategy for Site-Selective Incorporation of Deuterium and Tritium into Pyridines, Diazines, and Pharmaceuticals. J. Am. Chem. Soc. 140, 1990–1993 (2018). doi:10.1021/jacs.7b11710 Medline
- 34. R. D. Dolewski, P. J. Fricke, A. McNally, Site-Selective Switching Strategies to Functionalize Polyazines. J. Am. Chem. Soc. 140, 8020–8026 (2018). doi:10.1021/jacs.8b04530 Medline
- 35. R. G. Anderson, B. M. Jett, A. McNally, A Unified Approach to Couple Aromatic Heteronucleophiles to Azines and Pharmaceuticals. *Angew. Chem. Int. Ed.* 57, 12514– 12518 (2018). doi:10.1002/anie.201807322 Medline

- 36. E. Anders, F. Markus, Neue Methode Zur Regiospezifischen Substitution Einiger Reacktionsträcer N-Heteroaromatisher Ringsystem. *Tetrahedron Lett.* 28, 2675–2676 (1987). doi:10.1016/S0040-4039(00)96178-1
- P. S. Fier, A Bifunctional Reagent Designed for the Mild, Nucleophilic Functionalization of Pyridines. J. Am. Chem. Soc. 139, 9499–9502 (2017). doi:10.1021/jacs.7b05414 Medline
- 38. Both DLPNO-CCSD(T)/cc-pV(DT)Z and ωB97XD/def2-QZVPP results are in close agreement. Full details in the supplementary materials.
- O. Afzal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi, S. Bawa, A review on anticancer potential of bioactive heterocycle quinoline. *Eur. J. Med. Chem.* 97, 871–910 (2015). <u>doi:10.1016/j.ejmech.2014.07.044</u> <u>Medline</u>
- 40. R. B. Silverman, M. W. Holladay, in *The Organic Chemistry of Drug Design and Drug Action* (Academic Press, ed. 3, 2014), chap. 2.
- 41. D. A. Erlanson, S. W. Fesik, R. E. Hubbard, W. Jahnke, H. Jhoti, Twenty years on: The impact of fragments on drug discovery. *Nat. Rev. Drug Discov.* 15, 605–619 (2016). <u>doi:10.1038/nrd.2016.109</u> Medline
- 42. C. W. Murray, D. C. Rees, The rise of fragment-based drug discovery. *Nat. Chem.* **1**, 187–192 (2009). doi:10.1038/nchem.217 Medline
- T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. *Chem. Soc. Rev.* 45, 546–576 (2016). doi:10.1039/C5CS00628G Medline
- 44. D. D. Perrin, W. L. F. Amerego, *Purification of Laboratory Chemicals* (Pergamon, ed. 3, 1988).
- 45. A. D. Becke, Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. J. Chem. Phys. 107, 8554–8560 (1997). <u>doi:10.1063/1.475007</u>
- 46. J.-D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.* **10**, 6615–6620 (2008). doi:10.1039/b810189b Medline
- W. J. Hehre, R. Ditchfield, J. A. Pople, Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 56, 2257–2261 (1972). doi:10.1063/1.1677527
- 48. P. C. Hariharan, J. A. Pople, The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. *Theor. Chim. Acta* 28, 213–222 (1973). <u>doi:10.1007/BF00533485</u>

- 49. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second-Row Elements. J. Chem. Phys. 77, 3654–3665 (1982). doi:10.1063/1.444267
- 50. V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, L. A. Curtiss, 6-31G* Basis Set for Third-Row Atoms. J. Comput. Chem. 22, 976–984 (2001). <u>doi:10.1002/jcc.1058</u>
- 51. T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, P. von R. Schleyer, Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li–F. J. Comput. Chem. 4, 294–301 (1983). doi:10.1002/jcc.540040303
- 52. L. Goerigk, S. Grimme, A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. *Phys. Chem. Chem. Phys.* 13, 6670–6688 (2011). <u>doi:10.1039/c0cp02984j Medline</u>
- 53. A. Bhunia, T. Roy, R. G. Gonnade, A. T. Biju, Rapid access to benzoxaphospholes and their spiro analogues by a three-component coupling involving arynes, phosphines, and activated ketones. *Org. Lett.* 16, 5132–5135 (2014). <u>doi:10.1021/ol502490t Medline</u>
- 54. K. Fukui, The Path of Chemical Reactions—The IRC Approach. *Acc. Chem. Res.* **14**, 363–368 (1981). <u>doi:10.1021/ar00072a001</u>
- 55. S. Grimme, Supramolecular binding thermodynamics by dispersion-corrected density functional theory. *Chem. Eur. J.* 18, 9955–9964 (2012). <u>doi:10.1002/chem.201200497</u> <u>Medline</u>
- 56. GoodVibes, Version 2.0.1 (I. Funes-Ardoiz, R. S. Paton, 2018). doi:10.5281/zenodo.595246
- 57. E. Cancès, B. Mennucci, J. Tomasi, A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 107, 3032–3041 (1997). <u>doi:10.1063/1.474659</u>
- 58. B. Mennucci, E. Cancès, J. Tomasi, Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications. *J. Phys. Chem. B* 101, 10506–10517 (1997). doi:10.1021/jp971959k
- B. Mennucci, J. Tomasi, Continuum Solvation models: A New Approach to the Problem of Solute's Charge Distribution and Cavity Boundaries. J. Chem. Phys. 106, 5151–5158 (1997). doi:10.1063/1.473558
- 60. J. Tomasi, B. Mennucci, E. Cancès, The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM ab initio Level. J. Mol. Struct. Theochem 464, 211–226 (1999). doi:10.1016/S0166-1280(98)00553-3

- G. Scalmani, M. J. Frisch, Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010). doi:10.1063/1.3359469 Medline
- 62. A. V. Marenich, C. J. Cramer, D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* **113**, 6378–6396 (2009). <u>doi:10.1021/jp810292n Medline</u>
- 63. Gaussian 16, Revision A.03 (Gaussian Inc., Wallingford, CT, 2016).
- 64. K. B. Wiberg, Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. *Tetrahedron* 24, 1083–1096 (1968). doi:10.1016/0040-4020(68)88057-3
- 65. NBO, version 6.0 (Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013).
- 66. PyMOL Molecular Graphics System, version 2.0.7 (Schrödinger LLC).
- 67. https://gist.github.com/bobbypaton (accessed 13 April 2018); doi:10.5281/zenodo.1435046.
- 68. GraphPad Prism, version 5.00 for Windows (GraphPad Software, San Diego, CA); www.graphpad.com.
- 69. A. Savin, R. Nesper, S. Wengert, T. E. Fassler, ELF: The Electron Localization Function. Angew. Chem. Int. Ed. Engl. 36, 1808–1832 (1997). doi:10.1002/anie.199718081
- T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). doi:10.1002/jcc.22885 Medline
- 71. F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 7, 3297–3305 (2005). doi:10.1039/b508541a Medline
- 72. F. Weigend, Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* **8**, 1057–1065 (2006). <u>doi:10.1039/b515623h Medline</u>
- 73. G. D. Purvis III, R. J. Bartlett, A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 76, 1910–1918 (1982). doi:10.1063/1.443164
- 74. J. A. Pople, M. Head-Gordon, K. Raghavachari, Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies. J. Chem. Phys. 87, 5968–5975 (1987). doi:10.1063/1.453520
- 75. C. Riplinger, F. Neese, An efficient and near linear scaling pair natural orbital based local coupled cluster method. *J. Chem. Phys.* 138, 034106 (2013). <u>doi:10.1063/1.4773581</u> Medline

- 76. C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 139, 134101 (2013). <u>doi:10.1063/1.4821834 Medline</u>
- 77. C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, F. Neese, Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 144, 024109 (2016). doi:10.1063/1.4939030 Medline
- 78. T. H. Dunning Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 90, 1007–1023 (1989). doi:10.1063/1.456153
- D. E. Woon, T. H. Dunning Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum Through Argon. J. Chem. Phys. 98, 1358–1371 (1993). doi:10.1063/1.464303
- 80. E. R. Davidson, Comment on "Comment on Dunning's Correlation-Consistent Basis Sets". *Chem. Phys. Lett.* **260**, 514–518 (1996). <u>doi:10.1016/0009-2614(96)00917-7</u>
- 81. F. Neese, The ORCA program system. *WIREs Comput. Mol. Sci.* **2**, 73–78 (2012). doi:10.1002/wcms.81
- 82. F. Neese, Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018). doi:10.1002/wcms.1327
- 83. D. G. Liakos, M. Sparta, M. K. Kesharwani, J. M. L. Martin, F. Neese, Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. J. Chem. Theory Comput. 11, 1525–1539 (2015). doi:10.1021/ct501129s Medline
- 84. J. Řezáč, P. Hobza, Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the "Gold Standard," CCSD(T) at the Complete Basis Set Limit? J. Chem. Theory Comput. 9, 2151–2155 (2013). doi:10.1021/ct400057w Medline
- 85. D. G. Truhlar, Basis-Set Extrapolation. *Chem. Phys. Lett.* **294**, 45–48 (1998). doi:10.1016/S0009-2614(98)00866-5
- 86. E. L. Muetterties, W. Mahler, R. Schmutzler, Stereochemistry of Phosphorus(V) Fluorides. *Inorg. Chem.* 2, 613–618 (1963). <u>doi:10.1021/ic50007a047</u>
- 87. A. Klamt, Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99, 2224–2235 (1995). doi:10.1021/j100007a062
- A. Klamt, V. Jonas, T. Bürger, J. C. Lohrenz, Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074–5085 (1998). doi:10.1021/jp980017s
- 89. COSMOtherm Version 18.0.0 (Revision 4360), COSMOlogic GmbH & Co KG.

- 90. F. Eckert, A. Klamt, Fast solvent screening via quantum chemistry: COSMO-RS approach. *AIChE J.* **48**, 369–385 (2002). <u>doi:10.1002/aic.690480220</u>
- 91. TURBOMOLE, version 7.2.1 (TURBOMOLE GmbH).
- 92. E. J. Corey, Y. Tian, Selective 4-arylation of pyridines by a nonmetalloorganic process. Org. Lett. 7, 5535–5537 (2005). doi:10.1021/ol052476z Medline
- 93. M. A. Abreo, N.-H. Lin, D. S. Garvey, D. E. Gunn, A. M. Hettinger, J. T. Wasicak, P. A. Pavlik, Y. C. Martin, D. L. Donnelly-Roberts, D. J. Anderson, J. P. Sullivan, M. Williams, S. P. Arneric, M. W. Holladay, Novel 3-Pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. *J. Med. Chem.* **39**, 817–825 (1996). doi:10.1021/jm9506884 Medline
- 94. S. Molitor, J. Becker, V. H. Gessner, Selective dehydrocoupling of phosphines by lithium chloride carbenoids. J. Am. Chem. Soc. 136, 15517–15520 (2014). <u>doi:10.1021/ja509381w Medline</u>
- 95. T. Hirai, L.-B. Han, Air-induced *anti*-Markovnikov addition of secondary phosphine oxides and H-phosphinates to alkenes. *Org. Lett.* 9, 53–55 (2007). <u>doi:10.1021/ol0625051</u> <u>Medline</u>
- 96. D. E. Bergbreiter, Y.-C. Yang, C. E. Hobbs, Polyisobutylene-supported phosphines as recyclable and regenerable catalysts and reagents. J. Org. Chem. 76, 6912–6917 (2011). doi:10.1021/jo201097x Medline
- 97. R. Sure, S. Grimme, Comprehensive benchmark of association (free) energies of realistic host–guest complexes. J. Chem. Theory Comput. 11, 3785–3801 (2015). doi:10.1021/acs.jctc.5b00296 Medline