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Supplementary Methods  

 

Technical Details for the Machine Learning Algorithms 

The SVMs were trained for classification using a radial kernel. The data were scaled to zero 

mean and unit variance prior to training. The hyperparameters 'cost' and γ were set using an 

internal 10-fold cross validation. The implementation in the R package e1071 version 1.6-8 

[1] was used to train the SVMs.  

The R package C50 [2] was used in version 0.1.1 for the boosted classification tree models. 

Up to 100 iterations of boosting were allowed. The default options were used: Winnowing 

was not applied, global pruning was enabled, the confidence factor was set to 0.25, a 

minimum of 2 cases was required, fuzzy thresholds were not used, and early stopping was 

allowed. 

Both random forest models were trained through the R package randomForestSRC ([3], 

version 2.5.1) and 5000 trees were grown.  

Using as case weights the inverse prevalence the class imbalance was handled in the random 

forest of classification trees. Splitting was done using the Gini index splitting ([4], Chapter 

4.3).  

The regression trees were trained to predict the invasively measured PAPm. As splitting rule 

the weighted mean-squared error splitting was used ([4], Chapter 8.4). The class prediction 

(PH vs noPH) was then done using the value corresponding to the Youden index as cutoff.  

All other parameters for the random forest models were left at their default values: 

boostrap resamples of the size of 0.632 of the sample size in the training data were drawn 

with replacement at the root node, the (rounded) square root of the number of available 

features was sampled in each split, the forest average number of unique cases (data points) 

in a terminal node was set to 1, deterministic splitting was used,  

The hyperparameter λ in the lasso penalized logistic regression model was chosen using an 

internal 10-fold cross validation. The R package glmnet was facilitated in version 2.0.16. The 
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alpha parameter was fixed at ‘1’ to arrive at lasso penalization. The other parameters were 

used at their default values: The data was standardized, intercepts were included in the 

models, uniform case weights were used, no offsets were given. 

Technical Details for the Statistical Analysis 

As descriptive values continuous variables have been summarized by mean and standard 

deviation as well as median, minimum and maximum. Categorical variables are summarized 

with absolute and relative frequencies. Pairwise correlations were calculated and tested for 

significance using Pearson's correlation coefficient and Kendall's τ as appropriate. P values 

were adjusted for multiplicity using Holm's procedure. Hierarchical clustering was applied on 

the pairwise correlation profiles.  

For the visualization of the data facilitating dimension reduction by factor analysis for mixed 

data (FAMD) imputation based on FAMD on the full data set was applied. Prior to that and 

only for the visualization variables were scaled, the data (both, variables and patients) 

hierarchically clustered and presented as a heatmap.  

Prior to applying the lasso penalized logistic regression and the SVM missing values were 

imputed using the iterative FAMD algorithm. In short, the first step is to recode categorical 

variables by dummy variables. The imputation starts with an initial simple mean imputation 

which is iteratively replaced by FAMD reconstructions.  

Variable importance for the regression tree forest was calculated using Breiman-Cutler 

permutation variable importance. In short, variable importance is measured by the average 

(across all trees) increase in the out-of-bag prediction error when the variable is randomly 

permuted. The reported variable importance was averaged across the CV repeats.  

The predictions of the PAPm measurement from random forest of regression trees have 

additionally been combined – by taking the mean – with the predictions obtained through 

the formula by Aduen et al. (called random forest of regression trees with Aduen et al.). 

Several conventional formulae have been suggested to estimate PAP or the likelihood of PH. 

For comparison, the best of several formulae (that by Aduen et al.) as systematically 

compared in [5], has been included as reference. 
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Individual ROC curves for each repetition of the CV are presented as well as a consensus ROC 

curve pooled over all repetitions. The Youden index was determined. Sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV), and accuracy were 

evaluated at the Youden index. For regression tree random forest, the Pearson's correlation 

coefficient of measured and predicted PAPm values together with its 95% confidence 

interval were calculated. Average values across CV repetitions are reported. 
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Tripod Checklist 

 

The guidelines of the transparent reporting of a multivariable prediction model for individual 
prognosis or diagnosis (TRIPOD) statement [6] were followed. 
 

 
Section/Topic Ite

m  
Checklist Item Page 

Title and abstract 
Title 1 D;V Identify the study as developing and/or validating a multivariable prediction 

model, the target population, and the outcome to be predicted.  

Abstract 2 D;V Provide a summary of objectives, study design, setting, participants, sample 
size, predictors, outcome, statistical analysis, results, and conclusions. 2 

Introduction 

Background 
and objectives 

3a D;V 
Explain the medical context (including whether diagnostic or prognostic) and 
rationale for developing or validating the multivariable prediction model, 
including references to existing models. 

7 

3b D;V Specify the objectives, including whether the study describes the development 
or validation of the model or both. 8 

Methods 

Source of 
data 

4a D;V 
Describe the study design or source of data (e.g., randomized trial, cohort, or 
registry data), separately for the development and validation data sets, if 
applicable. 

9 

4b D;V Specify the key study dates, including start of accrual; end of accrual; and, if 
applicable, end of follow-up.  9 

Participants 
5a D;V Specify key elements of the study setting (e.g., primary care, secondary care, 

general population) including number and location of centres. 9 

5b D;V Describe eligibility criteria for participants.  9 
5c D;V Give details of treatments received, if relevant.  n/a 

Outcome 6a D;V Clearly define the outcome that is predicted by the prediction model, including 
how and when assessed.  10 

6b D;V Report any actions to blind assessment of the outcome to be predicted.  n/a 

Predictors 
7a D;V Clearly define all predictors used in developing or validating the multivariable 

prediction model, including how and when they were measured. 9+Tab1 

7b D;V Report any actions to blind assessment of predictors for the outcome and 
other predictors.  n/a 

Sample size 8 D;V Explain how the study size was arrived at. 9 

Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single 
imputation, multiple imputation) with details of any imputation method.  11 

Statistical 
analysis 
methods 

10a D Describe how predictors were handled in the analyses.  10 

10b D Specify type of model, all model-building procedures (including any predictor 
selection), and method for internal validation. 10 

10c V For validation, describe how the predictions were calculated.  n/a 

10d D;V Specify all measures used to assess model performance and, if relevant, to 
compare multiple models.  11 

10e V Describe any model updating (e.g., recalibration) arising from the validation, if 
done. n/a 

Risk groups 11 D;V Provide details on how risk groups were created, if done.  n/a 
Development 
vs. validation 12 V For validation, identify any differences from the development data in setting, 

eligibility criteria, outcome, and predictors.  n/a 

Results 

Participants 

13a D;V 
Describe the flow of participants through the study, including the number of 
participants with and without the outcome and, if applicable, a summary of the 
follow-up time. A diagram may be helpful.  

Fig 4 

13b D;V 
Describe the characteristics of the participants (basic demographics, clinical 
features, available predictors), including the number of participants with 
missing data for predictors and outcome.  

Tab 1 

13c V For validation, show a comparison with the development data of the 
distribution of important variables (demographics, predictors and outcome).  n/a 

Model 
development  

14a D Specify the number of participants and outcome events in each analysis.  Tab1 

14b D If done, report the unadjusted association between each candidate predictor 
and outcome. Tab1 

Model 
specification 

15a D 
Present the full prediction model to allow predictions for individuals (i.e., all 
regression coefficients, and model intercept or baseline survival at a given 
time point). 

n/a 

15b D Explain how to the use the prediction model. 16 
Model 
performance 16 D;V Report performance measures (with CIs) for the prediction model. Tab2 
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Model-
updating 17 V If done, report the results from any model updating (i.e., model specification, 

model performance). n/a 

Discussion 
Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few 

events per predictor, missing data).  17 f. 

Interpretation 
19a V For validation, discuss the results with reference to performance in the 

development data, and any other validation data.  n/a 

19b D;V Give an overall interpretation of the results, considering objectives, limitations, 
results from similar studies, and other relevant evidence.  19 

Implications 20 D;V Discuss the potential clinical use of the model and implications for future 
research.  19 

Other information 
Supplementary 
information 21 D;V Provide information about the availability of supplementary resources, such as 

study protocol, Web calculator, and data sets.  20 

Funding 22 D;V Give the source of funding and the role of the funders for the present study.  20 

 
*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are  
denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD  

Explanation and Elaboration document.  
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Supplementary Figure Legends 
 

S1 Fig. Correlation pairs. Not intended for printout in letter format - to be viewed on a larger 

screen for expansion. 

All pairwise correlations between the variables have been calculated. Kendall's τ is used for 

discrete variables, Pearson's correlation otherwise. Each correlation is tested for 

significance. The resulting p values are adjusted for multiplicity using Holm's procedure. The 

upper triangle shows the results as a heatmap colored by the correlation coefficient: blue 

shades represent negative correlations, red shades represent positive correlations. Bold text 

shows correlations which remain significant after multiplicity adjustment. The panels on the 

diagonal show the distribution of the variables grouped by PH. Barplots are shown for 

discrete variables, density plots otherwise. The lower triangle visualizes pairs of variables 

coloured by PH. Scatter plots are used if both variables are continuous, histograms if only 

one variable is continuous, and barplots if both variables are discrete. The variables are 

ordered using hierarchical clustering on their correlation profiles. (Not intended for printout 

in letter format - to be viewed on a larger screen for expansion). 

S2 Fig. Clustering of variables based on correlation profiles. Variables are pairwise 

correlated. This dendrogram shows a clustering based on the profiles of these pairwise 

correlations. 

S3 Fig. Setup of the cross validation. A stratified 10 times repeated 3 fold cross validation 

scheme was used to assess the classification performance. Panel (A) shows the number of in 

the test set of each fold. Panel (B) shows the allocation of patients to training and test set in 

each fold. Panel (C) shows the distribution of PH (named '1') and no PH (named '0') in each 
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fold. As the cross validation is stratified the distribution in each training and test set is 

similar. (Not intended for printout in letter format - to be viewed on a larger screen for 

expansion). 

S4 Fig. ROC Curves. For the five machine learning algorithms under consideration gray lines 

show the ROC curves from the single repeats of the cross validation and the black line shows 

the consensus ROC curve across all repeats. For the established method by Aduen et al. the 

ROC curve from the prediction of the full data set is shown. The black dot mark the Youden 

index. The text gives the AUC and the sensitivity/specificity. 

S5 Fig. Classification performance assessed by precision recall (PR) curves. Random forest 

of regression trees shows performance comparable to the best of several established PH 

prediction methods by Aduen et al. Consensus PR curves for the prediction of PH of the five 

machine learning algorithms under consideration as well as the PR curve of the method by 

Aduen et al. (light blue).  

S6 Fig. Bland-Altman-Plots. The difference between the prediction of the mPAP and the 

invasively determined mPAP (y axis) are plotted against the invasively determined mPAP (x 

axis). The left panel shows the predictions by random forest of regression trees, the center 

panel shows the predictions of the combination of Aduen et al. with the random forest of 

regression trees, the right panel shows the predictions of Aduen et al.. The results of the first 

repetition of the CV are displayed in the left and center panel. While the bias increases 

towards prediction without ML (Aduen et al. on average predict 5mmHG to low), the 

variance of the difference stays nearly constant. In the ML approach the regression to the 

mean is clearly visible as trend in the Bland-Altman-Plot (left and center panels). 
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S7 Fig. Analysis of variable importance for all ML algorithms. This plot shows the variable 

importance measures for the remaining ML methods besides the top-performing random 

forest of regression trees (main text, Figure 3 (B)). Shown is the increase in prediction error 

after permuting the variable in question. For classification methods the prediction error is 

measured as the log-loss, for the regression trees random forest with Aduen the prediction 

error is measured as mean squared error. The regression model in the lasso penalized 

logistic regression does not include any interaction terms, so the lasso penalized logistic 

regression yields expectedly different results from the other methods. All other methods 

rank TRVm as most important and have RVD2 among the most important variables. As the 

random forest of regression trees, the other methods based on random forest, rfsrc and 

regression trees random forest with Aduen, attribute less importance to the RAP variables. 


