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A total of 111 seed genes (ADNP, ALDH7A1, ALG13, ANK2, ANKRDI11, ARHGEF9, ARIDIB,
ASHIL, ASXL3, BAZ2B, BCKDK, BCL114, CACNAID, CACNAIH, CACNB4, CDKLS5, CHD2,
CHDS, CHRNB2, CIC, CNTNAP2, CTNND?2, CUL3, DDX3X, DEPDCS5, DIP2C, DNM1,
DSCAM, DYRKIA, EEF1A2, ERBIN, FLNA, FMRI1, GABRAI, GABRB3, GABRG2, GIGYF2,
GNAOI, GRIAI, GRINI, GRIN2A, GRIN2B, GRIPI1, HCNI, HNRNPU, ILF2, INTS6, IRF2BPL,
KCNBI, KCNMAI, KCNQ2, KCNT1, KCTD7, KDM5B, KDM6A, KMT2A, KMT2C, KMT5B,
LEOI, LGIl, MBOAT7, MECP2, MEDI3L, MED13, MET, MYTIL, NAA15, NCKAPI1, NECAPI,
NEDDA4L, NLGN3, NRXNI1, PCDH19, PHF3, POGZ, PRRT2, PTEN, RANBPI17, RIMS1,
SCN1A4, SCNIB, SCN2A4, SCN8A, SCNY9A, SETDS5, SHANK?2, SHANK3, SLC25422, SLC6A1,
SMARCC2, SPAST, SPTANI1, SRCAP, SRSF11, STXIB, STXBP1, SYNGAPI, TAOK?2,
TBCID24, TBLIXRI, TBRI1, TCF20, TNRC6B, TRIO, TRIP12, UBN2, UPF3B, USP15, USP7,
WAC, WDFY3) associated with neurodevelopmental disorders (NDDs) including autism
spectrum disorders (ASD), intellectual disability (ID), developmental disability (DD), or
epilepsy were selected to produce modules via MAGI-S. Seed genes were selected from the
following databases: (i) all genes from SFARI Gene database with gene scores of either 1 (high
confidence ASD gene) or 2 (strong candidate gene for ASD) (total of 84 genes), (ii) the genes
that have been concurrently reported to be associated with epilepsy in 1) OMIM, 2) DDG2P, 3)
EpilepsyGene, and 4) a recent review paper of epilepsy genes (total of 41 genes, 4 of which also
have SFARI gene scores of either 1 or 2) (1-5), (iii) and an additional 6 genes associated with

NDDs.

Due to few protein-protein interactions (PPIs) or co-expression values (Figure S1) associated with

certain gene names (ERBIN, IRF2BPL, KMT2A, KMT2C, KMT5B, MBOAT7, NAA15, SRSF11),



respective alternate gene names (ERBB2IP, Cl4orf4, MLL, SUV420HI, MLL3, LENG4, NARGI,
SFRS11) were provided to MAGI-S for module discovery. Parameters related to minimum size
(20-35), minimum average co-expression value (0.425-0.52), and minimum PPI density (0.085-
0.14) of modules were tested through multiple trials to identify the optimal module producing the
highest score. Potential seed genes CACNAIA, CACNA2D3, CHRNA2, CHRNA4, CNTN4,
DEAF1, FOXP1, KAT2B, KATNAL2, MAGEL2, MSNPI1AS, PTCHDI, RELN, SLCI1A2, SZT2,
WWOX, were omitted from enrichment analysis and failed to produce modules due to average co-
expression values below the specified range for minimum average co-expression value. Modules
ranged in size from 25 to 79 genes (Figure S2). Genes within modules were renamed according

to approved gene symbols for enrichment analyses.
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Figure S1. Co-expression between seed genes. Co-expression values were determined by
adjacency and Topological Overlap Matrix (TOM) matrices with power of 2 to reveal significant

(p<0.05) co-expression among seed genes.



%64
56
3‘|

79
75
7069
67
5858
52|
47]
1i||

63
39
1{‘\]{

7474
62
5959
41 41
40
3938
35| 35
ii ‘\ ‘\

72
69 68
61
57|
52
39
‘\ ]{][

76
53]
ii ||

7979

73
61 60

53
1{ ||

78
75
46
‘i‘\

0 1
@
0000000001
©|

S

75
66|
\\

78
|

Figure S2. Number of genes within each module excluding seed gene.
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Module groups (Classes) were defined by concurrent epilepsy annotations from the following
sources (Table S1): Class 1 (OMIM, DDG2P, EpilepsyGene, and Wang et al. 2017), Class 2 (a

subset of Class I sources), Class 3 (none of Class I sources) (3-5).

Determining enrichment of de novo mutations within modules

De novo mutations were retrieved from denovo-db (version 1.6) (6). The total number of missense
(or missense-near-splice) or loss of function (frameshift, frameshift-near-splice, splice donor,
splice acceptor, stop-gained, stop-gained-near-splice, stop-lost) mutations from the denovo-db
Simons Simplex Collection (SSC) set (7-13), Autism Sequencing Consortium (ASC) (14),
MSSNG (15, 16), Deciphering Developmental Disorders (DDD) (2), Epi4K (17), Helbig et al.

2016, and selected intellectual disability (18-21) and schizophrenia studies (22-26) were recorded.

Rigorous phenotyping standards were applied in contributing studies. The Autism Diagnostic
Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS), among
other measures (https://www.sfari.org/resources/ssc-instruments/), were recorded for probands
with autism. For the SSC cohort, phenotyping was uniform across 12 university-affiliated clinics
serving children with autism (27). For the Epi4K cohort, epilepsy phenotyping was accomplished
by magnetic resonance imaging (MRI), electroencephalogram (EEG) findings, collection of
medical records, and structured interviews (28). For intellectual disability cohorts, individuals
with intellectual disability who were referred to a tertiary referral center for clinical genetics
were further evaluated by a clinical geneticist (18), patients with intellectual disability were
recruited by the Genetic Diagnostics Unit at Uppsala University Hospital (19), and patients with

severe non-syndromic intellectual disability were selected from the German Mental Retardation



Network (20). For the developmental disability cohort, individuals with severe undiagnosed
developmental disability were recruited, and phenotypes were described using the Human
Phenotype Ontology (2). Patients in the schizophrenia cohort were recruited from psychiatric

treatment settings (22-26).

We retrieved the total number of non-synonymous and synonymous mutations in genes in
probands and controls and normalized the number of mutations by number of SSC, MSSNG, and
DDD probands (8,426) and controls (1,933) considered (Additional file 2: Table S2: ‘denovo-
db’). To compare the average number of de novo mutations per individual among probands and
controls in 1) seed genes, 2) the union of all modules excluding seed genes, 3) the union of all
modules excluding seed genes and 128 previously identified ASD/DD genes from the sources: de
Rubeis et al. 2014, Mcrae et al. 2017 (DDD), O'Roak et al. 2014, Sanders et al. 2015, SFARI (score
of 1) (1, 9, 14, 29, 30), and 4) outside of modules and seeds, we applied a one-tailed two-sample
t-test on normalized counts of mutations per individual. To assess the accuracy of the t-test to
measure true difference in normalized average number of mutations per individual, we applied
20,000 iterations of bootstrapping per comparison to calculate an empirical p-value. To determine
an empirical p-value, we created bootstrap samples with replacement of cases (8,426) and controls
(1,933) and calculated the t-test statistic for the bootstrapped sample and its respective p-value. If
this p-value from the bootstrap sample was less than the p-value calculated prior to bootstrapping,
then a ‘total score’ was incremented by one. The empirical p-value was then calculated as the total

score divided by the number of iterations (20,000) plus 1.

We additionally constructed contingency tables of the raw counts of de novo mutations and

evaluated Fisher's exact test to compare proportions of non-synonymous mutation among probands



and controls within the seed genes, the union of all modules excluding seed genes, and outside of
modules. Percent contribution to the neurodevelopmental phenotypes was calculated by dividing
the difference between the normalized number of mutations in probands and controls by the
normalized number of mutations in probands (Additional file Table S2: ‘enrichment (union)”).
We also assessed the average number of de novo mutation among probands and controls while
requiring a CADD score greater than 15 for missense variants to examine likely penetrant non-

synonymous mutations (Figure S3).
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Figure S3. Average number of non-synonymous and synonymous de novo mutations per

individual for probands and controls in seed genes ('Seed'), modules excluding seed genes

("Module'), Module genes excluding 128 previously reported neurodevelopmental disorder genes

("M-ND'). Penetrant missense mutations are examined by requiring CADD score to be greater

than 15.
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To determine if significant enrichment of non-synonymous de novo mutations within modules
exists in probands with NDDs relative to controls, we compared the number of de novo missense
and loss of function mutations inside and outside of the module via Fisher's exact test with
consideration of a) only autism, developmental disorder, or intellectual disability variants (ASD,
DD, ID), b) only ID or DD variants, ¢) only ASD variants, d) only epilepsy variants, and ) ASD,
DD, ID and epilepsy variants (Additional file 2: Table S2: ‘denovo-db’). Additionally, we further
assessed the significance of de novo mutation enrichment in probands by considering a) missense
or loss of function mutations, b) only missense, or ¢) only loss of function mutations. We repeated
the above analyses while excluding variants attributed to the seed gene. To assess the accuracy of
contingency tables applied to test the increased enrichment of non-synonymous mutation in cases
relative to controls while excluding the seed gene, we applied resampling via 5,000 iterations of
permutation testing per comparison. Cases and controls were randomly sampled indiscriminately
to yield two sets of size equal to the number of cases and controls. Fisher’s exact test was evaluated
for each permuted set, and contingency tables were created to determine significant difference in
proportions of non-synonymous mutation in or outside modules. We incremented a ‘total score’
for every permuted p-value less than the p-value calculated prior to permutation testing and
calculated an empirical p-value as the total score divided by the number of iterations (5,000) plus

1.

The absence of any de novo mutations in controls in certain modules results in an infinitely large
odds ratio. Thus, to better visualize significant enrichment of de novo mutation for modules with
zero de novo mutations in controls, we increased the count of de novo mutation to one. We repeated

the above analyses requiring missense variants to have a CADD score greater than 15 (Figure S4).
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Determining overlap of copy number variation morbidity map and modules

From a previously described copy number variant (CNV) morbidity map (31), we retrieve copy
number deletions or duplications that overlap any of the genes within a module to determine if
significant enrichment of coding copy number deletion and duplication exists in probands with
developmental delay relative to copy number deletions in controls. We construct contingency
tables to compare the proportion of coding CNVs in probands with CNVs from controls. To
account for CNV burden in probands and controls, we conducted 5,000 permutation tests in which
coding CNVs containing genes from the module of interest were randomly assigned to two groups
of unequal size, with the size of each group corresponding to the number of coding CNVs in
probands and in controls. Within a group, we determined how many CNVs contained genes inside
or outside the module and constructed a contingency table. If the p-value of this contingency table
was less than the initial observed p-value, then we increment a 'total score'. We calculate an
empirical p-value by dividing the total score plus by the number of permutations plus 1. A
significant empirical p-value indicates that an initial assessment of CNV enrichment as significant

is indeed significant.

Assessing phenotypic differences in individuals with mutations within and outside modules

To determine if individuals with de novo missense or loss of function mutations within a module
have lower 1Q and higher Social Responsiveness Scale (SRS) T-scores than individuals with de
novo mutations in genes outside of the module, we intersect Simons Simplex Collection (SSC)
individuals with denovo-db and compare average verbal, non-verbal, and full scale IQ and SRS T-

scores via a two-sample t-test (6, 27). To determine if the proportion of 1) male and female
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individuals or 2) individuals with macrocephaly differs within a module, we conducted Fisher's
exact tests for individuals with either missense or loss of function mutations and a phenotype of
either autism, developmental disability, intellectual disability, or epilepsy. Macrocephaly scores

were retrieved for SSC individuals, and scores > 3 were defined as macrocephalic.

Dissection of epilepsy phenotype by enrichment of epilepsy genes within modules

A gene was considered to have an epilepsy annotation if reported by OMIM or DDG2P to have an
annotation of 'epilepsy’, 'ataxia', 'seizure', or 'Ohtahara’, or reported in EpilepsyGene or Wang et
al. 2017 to be an epilepsy gene (3, 4). A gene was considered to have an ASD, ID, or DD annotation
if the gene has a SFARI gene score of 1 or 2 (1), or is reported by OMIM or DDG2P (5) to be
annotated with any of the following case-insensitive terms: autism, Angelman, fragile, intellect,
Rett, retardation, Coffin, Bainbridge, CNOT3, Cognitive impairment, Cornelia, CSNK2AI,
Developmental, Smith-Kingsmore, Feingold, Floating, GNAI1, Joubert, Kabuki, KBG, KCNQ3,
KMT5B, Noonan, Megalencephaly-polymicrogyria-polydactyly-hydrocephalus, Mowat-Wilson,
Myhre, Nijmegen, nonspecific severe ID, Opitz-Kaveggia, Phelan, Potocki-Shaffer, Riddle,
Rubinstein, Temple-Barraister, Temple Barraister, Weaver, Wiedemann-Steiner, Woodhouse-
Sakati, Tatton-Brown-Rahman, Aicardi-Goutieres, Au-Kline, CHOPS, CRASH, Dias-Logan, FG
syndrome, Gabriele-de Vries, Helsmoortel-van der, Lopes-Maciel-Rodan, Kleefstra, Koolen-De
Vries, Lujan-Fryns, Nicolaides-Baraitser, Pilarowski-Bjornsson, Pitt-Hopkins, Rubinstein-Taybi,
Schuurs-Hoeijmakers, Seckel syndrome, Stankiewicz-Isidor, Takenouchi-Kosaki, White-Sutton,

Witteveen-Kolk syndrome, You-Hoover-Fong.
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Enrichment of NDDs with or without epilepsy was calculated by counting the number of genes
within a module annotated with epilepsy or non-epilepsy associated terms with the formula
(Mp/Mp,) / (Gp / (19,986 — Gp)), where Mp is the number of genes annotated as a certain NDD
phenotype inside a module Mp,is the complement, and G is the total number of genes annotated
as a certain phenotype. The total number of genes in the human genome (Gencode GRCh38.p12)

is 19,986 genes.

As supplemental phenotypic descriptions, the terms 'epilepsy', 'seizure', 'ataxia', 'convulsion',
'autism', 'macrocephaly’, 'intellectual', or 'neurodevelopment' were retained from the Mouse
Genome Database (MGD), Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor,

Maine (http://www.informatics.jax.org/allele). MGD annotations were not considered in finding

NDD phenotypic associations. SFARI gene scores ranging from minimal evidence (4) to high

confidence (1) and DDG2P and OMIM descriptions are noted for genes within modules (1, 5).

Pathway and ontology enrichment and expression analyses of modules

Separate lists of genes within a module and respective seed genes were provided to Enrichr

(http://amp.pharm.mssm.edu/Enrichr/) to produce pathway and GO biological process and

Reactome pathway enrichments and OMIM disease annotations (Figure S5, Figure S6) (32, 33).
Gene lists and the union of gene lists belonging to the same Class were provided to the Cell-type
Specific Expression Analysis (CSEA), Specific Expression Analyses (SEA), and Tissue Specific
Expression Analyses (TSEA) tools to assess selective expression profiles of modules in the human
brain and body (Figure S7) (34). To visualize shared pathway and biological processes, we

performed UPGMA hierarchical clustering on selected significant terms (p<0.0001) that occurred
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in at least ten modules and were related to synapses, neurons, neurodevelopment,
neurotransmitters, axons, chromatin, the brain, nervous system, potentiation, or signaling

pathways.
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Figure S7. Specific expression analyses profiles for Class 1, 2, and 3 modules. Significance of
overlap of provided gene lists with transcripts enriched in specific cell-types or tissue types are
indicated by intensity of color.
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Supplementary Information

Table S1. Neurodevelopmental phenotypes associated with seed genes. Autism (ASD),
intellectual disability (ID), and developmental disability (DD) associations are listed according to
the SFARI Gene database (gene score of 1 or 2), Online Mendelian Inheritance in Man (OMIM)),
Developmental Disorders Genotype-Phenotype Database (DDG2P), and literature. Epilepsy
phenotypes are retrieved from OMIM, the DDG2P, and literature. Number of genes in modules
associated with autism, ID, or DD (Gp,), or epilepsy (Gg) and total number of genes in the module

(Gr) including seed gene are shown.

ASD, ID, DD Gp | Epilepsy Gy | Gr

Strong epilepsy association: Class 1

ARHGEF9 12{(3-5), OMIM 10 44
ALDH7A1 31(3-5), OMIM 3 48
ALGI3 31(3-5), OMIM 3 53
CACNAIA (3-5), OMIM

CACNAIH |(1) 16((3-5), OMIM 5 69
CACNB4 12{(3-5), OMIM 13 41
CDKLS 2) 14((3-5), OMIM 8 36
CHD2 (1,2,9,30) 25((3-5), OMIM 7 72
CHRNA2 (3-5), OMIM

CHRNA4 (3-5), OMIM

CHRNB2 6[(3-5), OMIM 8 43
DEPDCS 8](3-5), OMIM 4 50
DNM1 2) 8](3-5), OMIM 9 44
EEF142 OMIM, (2) 31(3-5), OMIM 4 32




GABRAI 10](3-5), OMIM 15 36
GABRB3 (1,2, 14, 30) 11](3-5), OMIM 7 63
GABRG2 9((3-5), OMIM 15 44
GNAOI OMIM, (2) 10](3-5), OMIM 10 41
GRIN24 OMIM 14](3-5), OMIM 11 40
GRIN2B OMIM, (1, 2,5, 9, 14, 30) 13](3-5), OMIM 10 37
HCNI 13](3-5), OMIM 17 42
KCNB1 12](3-5), OMIM 10 39
KCNMAI OMIM 16](3-5), OMIM 15 39
KCNQ2 2) 8[(3-5), OMIM 6 39
KCNT1I 7((3-5), OMIM 12 37
KCTD7 12](3-5), OMIM 6 67
LGII 8[(3-5), OMIM 10 41
PCDHI9 17](3-5), OMIM 11 62
PRRT?2 %) 5[(3-5), OMIM 6 40
SCNI1A 2) 12](3-5), OMIM 14 36
SCNIB 3[(3-5), OMIM 10 26
SCN24 (1, 2,5, 14, 30) 15](3-5), OMIM 10 42
SCN8A %) 14](3-5), OMIM 17 41
SLCIA2 (3-5), OMIM

SLC25A422 6[(3-5), OMIM 9 42
SPTANI1 17](3-5), OMIM 7 60
STXIB 7((3-5), OMIM 12 38
STXBP1 2) 7((3-5), OMIM 10 40
SZT12 (3-5), OMIM

TBC1D24 10](3-5), OMIM 8 48
wWwox (3-5), OMIM
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Moderate epilepsy association: Class 2

ASHIL OMIM, (1, 5, 30) 12{(3) 7 45
BCKDK (1) 11(3) 2 37
CACNAID |(1) 13((5), OMIM 14 40
CNTNAP2 |OMIM, (1) 8[(3, 5), OMIM 7 49
DIP2C (1) 18((3) 9 73
DYRKIA OMIM, (1, 2, 5, 14, 30) 12{(3) 5 56
FLNA OMIM 8](3,5) 3 69
FMRI OMIM, (5) 71(5), OMIM 4 50
GRIN1 OMIM 8](3,5) 13 45
HNRNPU  ((2) 12((3, 5), OMIM 3 65
KMT24 (1,2,95) 20](3) 7 66
MBOAT7 OM1M, (1, 5) 71(5) 10 47
MECP2 (1,2,95) 17{(3) 8 80
NECAPI 8[(3, 4), OMIM 7 50
NEDDA4L 15((3) 5 77
PTEN OMIM, (1, 2, 5,9, 14, 30) 15((3) 5 69
RANBPI7  |(1, 30) 313) 4 53
RELN (1, 14) OMIM

SCN94 (1) 71(3, 4), OMIM 5 36
SLC6A1 (1,2,30) 714, 5), OMIM 10 36
SYNGAP! (OMIM, (1, 2,5,9, 14, 30) 8](3,5) 5 37
TRIO OM1M, (1, 5) 13{(3) 7 70
Weak epilepsy association: Class 3

ADNP OMIM, (1, 2, 5,9, 14, 30) 17 5 73
ANK2 (1, 14, 30) 12 8 40
ANKRDII |OMIM, (1, 2,5) 9 5 39
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ARIDIB OMIM, (1, 2, 5, 14, 30) 26 70
ASXL3 OMIM, (1, 2, 5, 14) 12 67
BAZ2B ) 18 72
BCL11A4 OMIM, (1, 2, 5, 14, 30) 8 59
CACNA2D3 |(1, 14)

CHDS OMIM, (1, 2, 5,9, 14, 30) 23 73
cIc OMIM, (1) 11 36
CNTN4 )

CTNND2  |(1) 8 50
CUL3 (1,5, 14, 30) 10 63
DDX3X OMIM, (1, 2, 5) 17 70
DEAFI OMIM, (1, 5)

DSCAM (1, 30) 8 47
ERBIN ) 6 54
FOXPI OMIM, (1, 2, 5, 30)

GIGYF2  |(1,30) 18 61
GRIAI ) 10 63
GRIPI ) 11 70
ILF2 (1, 30) 12 65
INTS6 M 11 79
IRF2BPL (1, 30) 15 76
KAT2B (1, 30)

KATNAL2  |(1, 14, 30)

KDM35B (1,2,5,30) 15 76
KDM®64 OMIM, (1, 5) 19 72
KMT2C OMIM, (1, 5, 30) 20 66
KMTSB (1,5) 15 76
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LEOI ) 5 31 79
MAGEL2  |(1)

MEDI3 ) 21 7| 80
MEDI3L  |OMIM, (1,2, 5) 15 51 62
MET ) 12 1| 40
MSNPIAS |(1)

MYTIL OMIM, (1, 2, 5, 30) 14 of 61
NAAIS OMIM, (1) 12 4| 74
NCKAPI (1, 30) 6 4| 548
NLGN3 OMIM, (1, 5) 8 4| 54
NRXNI OMIM, (1, 5, 30) 16 9| 58
PHF3 ) 18 71 73
POGZ OMIM, (1, 2, 5, 14, 30) 25 6| 70
PTCHDI ~ |OMIM, (1, 5)

RIMSI ) 13 12| 36
SETDS OMIM, (1, 2, 5, 30) 21 71 63
SHANK2  |OMIM, (1, 5, 30) 10 7| 40
SHANK3  |OMIM, (1, 5, 14, 30) 9 1| 39
SMARCC2 |(1) 17 6| 75
SPAST (1, 30) 15 4 75
SRCAP OMIM, (1, 5) 18 8| 60
SRSF11 ) 4 4| 64
TAOK?2 ) 5 3| 40
TBLIXRI |OMIM, (1,2, 5) 14 6| 68
TBRI (1,5,9, 14, 30) 11 3l 53
TCF20 (1,2) 23 9| 80
TNRC6B  |(1, 30) 12 6| 71
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TRIPI2 OMIM, (1, 5, 9, 30) 16 3l 76
UBN2 1 17 7| 58
UPF3B OMIM, (1, 5) 4 3 59
USPI5 (1 8 4| 66
USP7 (1,5) 14 4| 65
WAC (1,2,5,30) 5 4| 40
WDFY3 (1, 30) 11 6| 57
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