Supporting information

Structural and functional evidence that lipoprotein LpqN supports cell envelope biogenesis in *M. tuberculosis*

Geoff C. Melly¹, Haley Stokas¹, Jennifer L. Dunaj¹, Fong Fu Hsu², Malligarjunan Rajavel³, Chih-Chia Su³, Edward W. Yu³ and Georgiana E. Purdy^{1*}

Supplemental Methods ESI HPLC /MS analysis of lipid extracts

Table S1. Trimethoprim minimal inhibitory concentrations (MICs), determined via M-PFC, to assess interactions between $MmpL3/11_{TB}$ D2 domains and LpqN-family proteins.

 Table S2 Primers used in this study

Figure S1 Lpq N_{TB} does not co-purify with MmpL11_{TB} when co-expressed in *M. smegmatis*.

Figure S2 Lpq N_{TB} does not co-purify with Ag85A_{TB} when co-expressed in *M. smegmatis*.

Figure S3. Generation of H37Rv $\Delta lpqN$ mutant and its initial characterization.

Figure S4 Positive-ion ESI HPLC/MS analysis

Figure S5 Negative-ion ESI HPLC/MS analysis

Supplemental Materials

ESI HPLC /MS analysis of lipid extracts

ESI HPLC/MS analysis was performed using an Agilent 6550 A QTOF instrument with an Agilent 1290 HPLC, operated by Agilent Masshunter software as previously described[1]. Separation of lipids was achieved by a Supelco 100×2.1 mm (2.7 µm particle size) Ascentis Express C-8 column at a flow rate of 250 µl/min. The mobile phase contained 5 mM ammonium formate (pH 5.0) both in solvent A, acetonitrile:water (60:40, v/v), and solvent B, isopropanol:acetonitrile (90:10, v/v). A gradient elution in the following manner was applied: 0 min; 68 % A, 0–3 min; 70% A, 3–8 min; 50% A, 8–13 min; 35% A, 13–18 min; 25% A, 18–28 min; 15% A, 28–33 min; 5% A, 33–40 min; 0% A, 40–50 min; 0% A, 50–51 min; 68% A, 51–60 min; 68% A.

 Howard, N.C., Marin, N.D., Ahmed, M., Rosa, B.A., Martin, J., Bambouskova, M., Sergushichev, A., Loginicheva, E., Kurepina, N., Rangel-Moreno, J., Chen, L., Kreiswirth, B.N., Klein, R.S., Balada-Llasat, J.M., Torrelles, J.B., Amarasinghe, G.K., Mitreva, M., Artyomov, M.N., Hsu, F.F., Mathema, B., Khader, S.A.: Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. *Nat Microbiol* 3, 1099-1108

Insert in pUAB200	Insert in pUAB300	Trim MIC (µg/mL)
-	Rv2763 (dfr)	>200
	positive control	
-	LpqT	25
-	LprG	25
-	Mtc28	12.5
MmpL3 D2	-	<6.25
MmpL3 D2	LpqT	<6.25
MmpL3 D2	LprG	<6.25
MmpL3 D2	Mtc28	<6.25
MmpL11 D2	-	<6.25
MmpL11 D2	LpqT	50
MmpL11 D2	LprG	50
MmpL11 D2	Mtc28	25

Table S1. Trimethoprim minimal inhibitory concentrations (MICs), determined via M-PFC, to assess interactions between $MmpL3/11_{TB}$ D2 domains and LpqN-family proteins.

Table S2 Primers used in this study

Name	Primer (5'-3')
ΔlpqN 5' F	tataagatettagtegtageegtagtt
ΔlpqN 5' R	tataaagcttgctgtcggtcttgatgttga
ΔlpqN 3' F	tatatctagagcagaagacggtggtgattc
ΔlpqN 3' R	agctggtaccatgtggtagcggaactcgac
lpqN -865	aggtgccatacgagctgaac
lpqN +1637	tcaagggaatcgagaagtgc
lpqN +367	gcgatcetetecaaacteae
hyg primer 22	tggctaaaatgtatcctaaatcag
hyg primer 3500	tgttataacagacactgcttg
mmpL3D1.102	atcaattggcaagcacgtcacgcagagc
mmpL3D1.573	atatcgatcaacggcagcgccagcacttc
mmpL3D2.990	tacaattgcaatcctgggcaaacacgt
mmpL3D2.1185	taatcgatcatcacccggttaaccagcttg
mmpL11D1.90	atcaattgcgatgacgcagtcggggaatc
mmpL11D1.349	atatcgatgcgttcggcgttggcaatatc
mmpL11D2.1172	aattcatatggtgctgggcaacagcttg
mmpL11D2.1587	ataggateeteacggttgegtegeggacae
lpqN.61	atatcatatgagtttcaacatcaagaccgacag
lpqN.687	atatggatcettagggegtgatggtegtete
lpqN qRT.Forward	gcgatcetetecaaacteae
lpqN qRT.Reverse	ggaatcaccaccgtcttctg
lpqN.pUAB300.F	aaggatccagtttcaacatcaagaccgacag
lpqN.pUAB300.R	ttatcgatttagggcgtgatggtcgtctg
lpqT.pUAB300.F	taggatcctgcggaccgaaatcgcctg
lpqT.pUAB300.R	ataagetttaetttgeegegaegaeg
lprG.pUAB300.F	cggtggaggtggtgggtccggatcctgctcgtcgggctcgaag

lprG.pUAB300.R	tacgtcgacatcgataagcttcagctcaccggggggcttc
mtc28.pUAB300.F	taggatccgatcccctgctgccaccg
mtc28.pUAB300.R	ataagettetagegegggggggggggggggggggggggg
lpqN -570.F	atgatatcgacctcggtgtcgtcgtg
lpqN +HA.R	taaagettttaagegtaatetggaacategtatgggtagggegtgatggtegtetg
lpqN TAP.F	atggatccggcaacatcgagatgtcgccga
lpqN TAP.R	t caatgatgatgatgatgatgtcctcctcctccttgtcgtcatcgtctttgtagtcggatccgggcgtgatggtcgtctgct
mmpL11 TAP.F	atggatcccgcctcgaaatgggccttca
mmpL11 TAP.R	atggatcccctcgcctcctccaacatcg
Ag85A.F	agtggatcccccgggctgcagcgcaagccgaagcggccctg
Ag85A.R	agtggtggtggtggtggctagcggcgccctgggggcgcggg

Figure S1. LpqN_{TB} does not co-purify with MmpL11_{TB} when co-expressed in *M. smegmatis*. HA-tagged LpqN and tandem (FLAG + HIS) affinity purification (TAP)-tagged MmpL11 were co-expressed in *M. smegmatis* mc²155 in the presence/absence of protein cross-linking agent (1% formaldehyde, +X-link). MmpL11 TAP was purified via HisPur affinity resin. Resin flow through (FT) and elutions 1 and 2 (E1/E2) were analyzed for the presence of MmpL11/LpqN protein via Western blot with anti-FLAG/anti-HA antibodies. *M. smegmatis* solely expressing HA-tagged LpqN serves as a negative control for non-specific binding.

Figure S2. LpqN_{TB} does not co-purify with Ag85A_{TB} when co-expressed in *M. smegmatis*. HA-tagged LpqN and HIS-tagged Ag85A were co-expressed in *M. smegmatis* mc²155 in the presence/absence of protein cross-linking agent (1% formaldehyde, +X-link). LpqN HA was purified via anti-HA affinity resin. Crude lysate (L), resin flow through (FT), and elution 1 (E1) were analyzed for the presence of Ag85A/LpqN protein via Western blot with anti-HIS/anti-HA antibodies. *M. smegmatis* solely expressing HIS-tagged Ag85A serves as a negative control for non-specific binding.

Figure S3. Generation of H37Rv $\Delta lpqN$. (A) Genomic organization of rv0583c/lpqN in *Mtb* H37Rv, *hyg* resistance cassette allelic exchange strategy ($\Delta lpqN$), and chromosomal complementation of lpqN using plasmid pMV306 ($\Delta lpqN::lpqN$). Diagnostic PCR products are indicated with dashed lines. (B) Diagnostic PCRs performed with genomic template DNA isolated from H37Rv, $\Delta lpqN$, and $\Delta lpqN::lpqN$ *Mtb*. Primers used = lpqN PCR: lpqN +367/lpqN +1637; KO check PCR #1: hyg primer 3500/lpqN +1637; KO check PCR #2: hyg primer 22/lpqN -865. (C) Growth of *Mtb* strains in 7H9 medium. (D) Growth of *Mtb* strains in Sauton's medium.

B TDM

D TMM $([M+NH_4]^+)$

8 10 12 14 16 18 20 22

0 -

26 28 30 32 34 Counts vs. Acquisition Time (min)

36 38 40 42 44 46 48 50 52 54 56

E Wax ester

Figure S4. Positive-ion ESI HPLC/MS analysis of lipid extracts from wild type *M. tuberculosis* H37Rv and the *lpqN* mutant. (A) ESI HPLC/MS Total ion chromatogram (TIC) in the positive ion mode, (B) Selected ion chromatogram of TDM (elution time: 43-45.3 min), (C) Selected ion chromatogram of TMM (elution time: 39.5-40.5 min), (D) The ESI mass spectra of TMM $[M + NH_4]^+$ ions (top panels) and TDM $[M + NH_4]^+$ ions (bottom panels), (E) Selected ion chromatograms of wax ester (elution time: 39.5-41 min), (F) ESI MS spectra of the $[M + NH_4]^+$ ions of wax esters.

A TIC

B mycolic acids

C mycolic acids [M - H]⁻

Figure S5. Negative-ion ESI HPLC/MS analysis of lipid extracts from wild type *M. tuberculosis* H37Rv and the *lpqN* mutant. (A) ESI HPLC/MS Total ion chromatogram (TIC) in the negative ion mode, (B) Selected ion chromatogram of mycolic acids (elution time: 35.5-38 min), (C) ESI MS spectra of the $[M - H]^-$ ions of mycolic acids.