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CONTACT FOR REAGENT AND RESOURCE SHARING  

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Trey Ideker (tideker@ucsd.edu)  

METHOD DETAILS  

Data filtering 

For somatic mutation-based analyses, we filtered out all silent and extra-exonic somatic 

mutations, with the exception of mutations on splice sites. More specifically, for TCGA data, all 

mutations with ‘Variant_Classification’ of 'Silent', ‘3'UTR’, 'Intron', ‘5'UTR’, 'RNA', ‘3'Flank’, and 

‘5'Flank’ were removed. For MSKCC data, all mutations with a ‘Consequence’ of 

'synonymous_variant', '3_prime_UTR_variant', 'intron_variant', and '5_prime_UTR_variant' were 

removed. As the MSKCC contains multiple samples for some patients, we filtered the data so 

that each patient is only represented once in the set. First, we prioritized samples for which 410 

genes were analyzed on the most recent MSK-IMPACT platform over samples for which only 

341 genes were analyzed on the older MSK-IMPACT platform, if a patient had samples 

analyzed by both platforms. Any other patient duplicates were removed by simply choosing the 

sample with lowest index. For combined analyses of somatic mutations and CNVs, only high-

level CNV events were utilized (GISTIC scores of −2 and +2).  

Data inclusion 

For somatic mutation-based analyses, we included all TCGA and MSKCC cohorts of tumor 

types with ≥30 genes within the 341 MSK-IMPACT cancer gene panel with >20 mutations within 

the respective cohort (Table S1, S2, S3). For MSKCC data, we first made cohorts comparable 

to TCGA, by subsetting based on (detailed) tumor type. For the included MSKCC cohorts, this 



mapping was performed as follows. BLCA: 'DetailedTumorType' = 'Bladder Urothelial 

Carcinoma'; BRCA: 'DetailedTumorType' = 'Breast Invasive Ductal Carcinoma', 'Breast Invasive 

Lobular Carcinoma', 'Breast Mixed Ductal and Lobular Carcinoma', 'Breast Invasive Carcinoma, 

NOS', 'Breast Invasive Cancer, NOS', 'Breast Carcinoma', or 'Breast Invasive Mixed Mucinous 

Carcinoma'; LUAD: 'DetailedTumorType' = 'Lung Adenocarcinoma'; SCKM: 

'DetailedTumorType' = 'Cutaneous Melanoma'; COADREAD: 'GeneralTumorType' = 'Colorectal 

Cancer' (Table S4). For combined analyses of somatic mutations and CNVs, only (TCGA) 

samples for which somatic mutation and GISTIC calls were both available were included in the 

analysis. For the consensus molecular subtype (CMS) stratified DISCOVER analysis of the 

TCGA colorectal cancer cohort, 498 tumors with available CMS classification were used (rather 

than the full set of 559 tumors). 

Tumor mutation and alteration load calculations 

For tumor mutation load calculations, the binary (filtered) patient-by-gene matrix was summed 

over all genes sequenced for the respective cohort (whole exome for TCGA cohorts, 341 genes 

for the MSKCC cohorts). We chose this measure for mutation load (rather than summing the 

number of individual variants in the MAF files for each patient) for compatibility with mutual 

exclusivity testing. Namely, mutual exclusivity detection methods take binary patient-by-gene 

matrices as input, and the tumor mutation load is then given by the number of genes with at 

least one mutation. For alteration load calculations (combined analyses of somatic mutations 

and CNVs), a binary patient-by-gene ‘alteration matrix’ was created with 0's and 1’s 

representing unaltered (no mutation or high-level CNV) and altered (mutation or high-level CNV) 

cases, respectively. This binary matrix was then summed over all genes. 



Mutation/Alteration Load Association (MLA/ALA) calculation 

To obtain a standardized measure for the association of a gene’s mutation profile to mutation 

load (Mutation Load Association, MLA), or alteration load (Alteration Load Association, ALA) we 

used logistic regression, as implemented by the Python package statsmodels 

(statsmodels.discrete.discrete_model.Logit). For each tumor type, the mutation/alteration profile 

of each gene (separately) was regressed on the tumor mutation load (+ intercept). The 

coefficient fitted for the tumor mutation/alteration load corresponds to the log of the odds ratio. 

To compare these coefficients between genes with different mutation/alteration frequencies, 

they need to be standardized. This standardized association was calculated by dividing the 

fitted coefficient by the standard error. Relatively low values imply tendencies of genes to be 

mutated in tumors with low mutation/alteration load, high values imply enrichment of mutations 

in tumors with high mutation/alteration load. 

QUANTIFICATION AND STATISTICAL ANALYSIS  

Cancer gene enrichment calculation 

To investigate whether genes with extreme (low or high) MLAs tend to be cancer genes, we 

calculated the MLA of all human genes in each cohort. We defined ‘cancer genes’ as the genes 

within the panel of 341 established onco- and tumor suppressor genes sequenced for all 

patients in the MSKCC cohorts (Table S1). Next, for each cohort, we used Fisher’s exact test to 

assess whether these cancer genes were significantly enriched in the 25 genes with lowest or 

highest MLA. 

Mutual exclusivity analyses 

For mutual exclusivity analyses, data were arranged in a binary patient-by-gene format. 

Pairwise gene-gene mutual exclusivities were tested using DISCOVER (Canisius et al., 2016), 

MEMo (Ciriello et al., 2012), WExT (Leiserson et al., 2016), Fisher’s exact test, and MEGSA 



(Hua et al., 2016). MEMo was adapted for pairwise mutual exclusivity testing by comparing the 

number of tumors mutated in at least one of the two genes to its expectation by chance based 

on 10,000 marginal-preserving permutations of the mutation matrix. For WExT, we used the 

highly accurate saddlepoint approximation, since the heavy computational requirements of the 

recursive formula approach made its use unfeasible. The mutation probability matrix used by 

WExT was estimated using 10,000 degree-preserving permutations. For the consensus 

molecular subtype (CMS) stratified DISCOVER analysis of the TCGA colorectal cancer cohort, 

the estimation of background mutation probabilities was performed separately for each subtype. 

In this way, subtype-specific differences in gene mutation frequencies are considered when 

calculating level of mutual exclusivity expected by random chance. Then, these probability 

matrices were merged and used for mutual exclusivity testing. For mutual exclusivity testing, 

significance was defined as a P-value < 0.05. 

DATA AND SOFTWARE AVAILABILITY  

All data were obtained from publicly available sources. Somatic mutation data were obtained 

from The Cancer Genome Atlas (TCGA) Research Network (http://cancergenome.nih.gov/) and 

the first 10,000 patients of the Memorial Sloan Kettering MSK-IMPACT Cancer Center 

(MSKCC). For TCGA data, mutation calls of TCGA’s final project, the PanCanAtlas, were 

downloaded from Synapse (syn7824274, wiki 

https://www.synapse.org/#!Synapse:syn7214402/wiki/405297) on September 18th, 2017. These 

mutation calls were generated in a standard fashion across all samples, resulting in a uniform 

dataset. For MSKCC data, mutation calls were downloaded from the cBioportal for cancer 

genomics (http://cbioportal.org/msk-impact) on August 8th, 2017. TCGA copy number variation 

(CNV) data and GISTIC tumor-by-gene calls were accessed from the Broad Firehose Analysis 

Pipeline in January 2019. Colorectal cancer Consensus Molecular Subtypes (CMS) were 

obtained from the original paper (Guinney et al. Nature Med., 2015). 

http://cancergenome.nih.gov/)
https://www.synapse.org/%252523!Synapse:syn7214402/wiki/405297)
https://www.synapse.org/%252523!Synapse:syn7214402/wiki/405297)
https://www.synapse.org/%252523!Synapse:syn7214402/wiki/405297)
http://cbioportal.org/msk-impact


 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

Data analysis was done using Python 2.7  Python   

Seaborn Python library  https://seaborn.pyd
ata.org/ 

Pandas Python library https://pandas.pyd
ata.org/ 

Statsmodels Python library https://pypi.org/proj
ect/statsmodels/ 

Scipy Python library https://www.scipy.
org/install.html 

Matplotlib Python library https://pypi.org/proj
ect/matplotlib/ 

Rpy2 Python library https://pypi.org/proj
ect/rpy2/ 

DISCOVER (Canisius et al., 
2016) 

http://ccb.nki.nl/sof
tware/discover/#in
stallation 

MEMo (Ciriello et al., 2012) https://omictools.c
om/memo-2-tool 

WExT (Leiserson et al., 
2016) 

http://compbio.cs.b
rown.edu/projects/
wext/ 

MEGSA (Hua et al., 2016) http://dceg.cancer.
gov/tools/analysis/
megsa/ 
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