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Dear Editors of PLoS Computational Biology, 
 
Thank you for your consideration of our manuscript “Computational design and interpretation of 
single-RNA translation experiments (PCOMPBIOL-D-19-01011, by Luis U. Aguilera, William 
Raymond, Zachary Fox, Michael May, Elliot Djokic, Tatsuya Morisaki, Timothy J. Stasevich, and 
Brian Munsky) which we submitted for publication at PLoS Computational Biology. 
 
We have revised the manuscript to address all comments from the referees, and we believe that 
our manuscript and associated computational software has been substantially enhanced.  
 
We want to thank the reviewers for their suggestions, which greatly helped us to improve our 
manuscript and associated software package. We have carefully taken all of their comments into 
consideration in preparing our revision, and these have resulted in a manuscript that is more clear 
and more complete.  In the following pages, we provide point-by-point responses to all of the 
referee comments. 
 
Please do not hesitate to contact us if we can answer any additional questions about our 
manuscript. 
  
  
Kind regards, 
Dr. Brian Munsky. 
Dr. Luis Aguilera 
 
 
 
 
 
  



 

Reviewer's Responses to Questions 
 
Comments to the Authors: 
 
Reviewer #1:  
In this paper, the authors introduce a sequence-based stochastic model for simulating detailed 
translation process. Using this model, the authors generate synthetic data to evaluate three types 
of single-molecule translation experiment (FCS, ROA, and FRAP) and find that FCS is optimal for 
estimating translation kinetics. By fitting the model to experimental FCS data for three human 
genes (KDM5B, β-actin, and H2B), the authors capture the nascent protein statistics and temporal 
dynamics, and characterize how ribosome activities and translation dynamics vary with different 
kinetics parameters. To facilitate the application of the model, the authors develop an open-source 
software package, RNA Sequence to NAscent Protein Simulator (rSNAPsim), which allows 
simulating the single-molecule translation dynamics of any gene. 
 
I found the manuscript very suitable for PCB, in terms of both the subject matter and the 
methodology. There are only a few small points that I’d like the authors to address before 
publication: 
 
(1) In the title of the paper, it is not clear what “computational design” means. The term is not used 
or defined in the rest of the paper. Do the authors mean that they have applied the computational 
approach to compare three different experimental assays of measuring translation dynamics? 
Please clarify in the main text or change the title. 
 
We fully appreciate this observation. To clarify the use of “Computational design” from the title of 
this manuscript, we define our use the words “computational design” in the introduction and 
discussion as follows: 
 
Line 69 (new document): 
“As these experimental techniques rapidly evolve, they induce a growing need for precise and 
flexible computational tools to interpret the resulting data and to design the next wave of single-
RNA translation experiments. To help fill this gap, we present a versatile new set of computational 
design tools to estimate which specific single-mRNA translation dynamics experiments would 
provide the most accurate inference of model parameters.” 
 
Line 619 (new document) in the discussion: 
“On the one hand, our model can help to explain these differences (S11_Fig), but more 
importantly, the models themselves can be used to simulate and evaluate different computational 
designs to determine which are more likely to reveal important biophysical mechanisms or 
parameters. We envision that user-friendly simulations, such as those provided by rSNAPsim, 
can be used to optimize combinations of probe placement, gene length, codon usage differences, 
video frame rates, drug-based perturbations, or specifications of movie length.” 
 



 

(2) Equation 1 of the paper has several problems: (a) the term “w_i(x_2,…,x_nf+i)” should be 
“w_1(x_1,…,x_nf+1)”; (b) the term “w_i+1(x_i+1,…,x_nf+i+1)” should be “w_i(x_i,…,x_nf+i)”, (c) 
there should be ellipsis on the left side of “x_i”. 
 
Thank you for catching these typographical errors. These have been corrected. 
 
(3) There are multiple language issues in the manuscript. Following is a list of them. The authors 
and the editorial team will have to make sure all such errors are corrected. 
 

Thank you for helping us to detect misspelled sentences. We carefully checked the grammar and 

spelling in this revision, and fully copyedited the document. 

 
• In the abstract of the paper, “Finding that FCS analyses are optimal for short or long length 
genes” should be “Finding that FCS analyses are optimal for both short and long length genes”. 
 
Corrected. 
 
• In the abstract of the paper, “we introduce a new open-source software package, … (rSNAPsim) 
to easily simulate …” should be “we introduce a new open-source software package, … 
(rSNAPsim), to easily simulate …”. 
 
Corrected. 
 
• In the abstract of the paper, “…  
to easily simulate the single-molecule dynamics of any gene sequence …” should be “…  
to easily simulate the single-molecule translation dynamics of any gene sequence …”. 
 
Corrected. 
 
• In line 2 of the paper, “fluorescence time lapse microscopy” should be “time-lapse fluorescence 
microscopy”. 
 
Corrected. 
 
• In line 19 of the paper, “Yet, despite their overwhelming importance …” should be “Despite their 
overwhelming importance …”. 
 
Corrected. 
 
• In line 23 of the paper, “Imaging single-molecule transcription was first achieved …” should be 
“Single-molecule imaging of transcription was first achieved …”. 
 
Corrected. 
 



 

• In line 43 of the paper, “For example, Morisaki and Stasevich, [12] recently reviewed …” should 
be “For example, Morisaki and Stasevich recently reviewed … [12]”. 
 
Corrected. 
 
• In line 52 of the paper, “run off assay” should be “run-off assay”. 
 
Corrected. 
 
• In lines 80-81 of the paper, “single-molecule dynamics of any gene” should be “single-molecule 
translation dynamics of any gene”. 
 
Corrected. 
 
• In lines 145 of the paper, “Nascent Transcript Kinetics” should be “Nascent Translation Kinetics”. 
 
Corrected. 
 
• In lines 281-282 of the paper, “we obtained RMSE_ROA > 2.0 sec_-1 …, Fig 3B” should be “we 
obtained RMSE_ROA > 2.0 sec_-1 … (Fig 3B)”. 
 
Corrected. 
 
• In line 354 of the paper, the term “effects of parameters” is confusing. Do the authors mean 
“exploring how ribosome activities and translation dynamics vary with different parameters”? 
Please consider modifying the subtitle. 
 
We modified the subtitle in line 396 (new document) to : 
“Exploring How Translation Dynamics Vary With Different Parameters” 
 
• In line 400 of the paper, the term “lower fluorescence intensity distributions” is confusing, since 
the intensity distribution is a function, not a single value. Please clarify what property of the 
distribution is lower. 
 
Thanks for this observation. We simply refer to the overall value of the fluorescence intensity. 
Following the reviewer’s suggestions, we corrected the paragraph in line 438 (new document) to:   
 
“In all cases, optimized gene sequences speed-up ribosome dynamics, and de-optimized 
sequences cause a slower elongation rate that is observed in the auto-covariance plots given in 
S4_FigD, S5_FigD, and S6_FigD. Moreover, for constant initiation rates, faster elongation would 
lead to lower ribosome loading (S4_FigB, S5_FigB, S6_FigB) and therefore lower fluorescence 
intensities, as shown in the distributions given in S4_FigC, S5_FigC, and S6_FigC.” 
 



 

• At the end of line 515, the authors should start a new paragraph for the discussion of the FRAP 
experiment. 
 
Corrected. 
 
• In line 541 of the paper, “the the corresponding tRNA” should be “the corresponding tRNA”. 
 
Corrected. 
 
• In lines 561-562 of the paper, “all of the computational analyses describe above” should be “all 
of the computational analyses described above”. 
 
Corrected. 
 
• In line 563 of the paper, the term “multi-frame and multi-color translation” is confusing. Please 
clarify what it really means. 
 
We agree with the reviewer, the term “multi-frame and multi-color” was not well described in the 
previous manuscript. By ‘multi-frame’ translation, we refer to the frameshifting dynamics recently 
described by Lyon et al [14] and by ‘multi-color’ we refer to the new multi-color fluorescence 
system developed in [14] and [15]. We changed this paragraph to: 
 
“Furthermore, all of the computational analyses described above are easily adapted to allow for 
analysis of simultaneous multi-frame translation dynamics (e.g., when translation occurs on 
overlapping open reading frames as is the case during frame-shifted translation), as we 
implemented and described in [14]. Similarly, the code is easily extended to analyze translation 
of genes that contain more than one set of fluorescence tags in multiple colors, as has been 
explored experimentally in [15].” 
 
  



 

Reviewer #2:  
In this manuscript by Aguilera et al., the authors implement a method for analyzing single mRNA 
translation data using the SunTag/MS2 system. The approach is based on time-lapse imaging of 
fluorescence which corresponds to the synthesis of nascent protein. Experimentally, the data can 
be acquired for fluctuation analysis, fluorescence recovery after photobleaching, and run off, all 
of which are treated in the manuscript. Computationally, the data can be understood using a 
master equation approach which the authors then solve in a few limiting cases. Finally, they 
implement an analysis package based on stochastic simulations. This paper does not report any 
new biological findings per se, and the theoretical advance is minimal if any. They test their 
computational model on thousands of mRNA in silico and reach the conclusion that fluctuation 
analysis is the most versatile and accurate analysis tool. In summary, analyzing this type data is 
certainly nuanced and difficult, and there are already a number of experimental labs working in 
this area. Providing practitioners a tool to analyze fluorescence trajectories, be they from 
translation or transcription, solves a problem and makes a novel contribution. 
 
Major Comments: 
1. The model for single-molecule translation is the same as the model for single-molecule 
transcription published recently (PMID: 30554876). While I appreciate that the authors have 
tailored it to translation and parameterized it for codon usage, the math is the same as that 
presented in the supplement of that paper. At a minimum, the authors should indicate which 
equations are the same and which are different.  
 
We deeply thank the reviewer for sharing this with us. We were not aware of the model presented 
in the supplemental data of Rodriguez et al., earlier this year.  We have revised our manuscript 
first to acknowledge that existing article, both when we introduce our model (Lines 85 and 86) 
and later in the discussion (Line 506). 
 
We have also revised our manuscript to highlight the extensions that our efforts provide beyond 
that analysis. The main differences between previous transcription models and our model are as 
follows: 
 

● Our translation models (including the full stochastic simulations and our reduced 
theoretical expressions) are analyzed at single-codon resolution.  Although Rodriguez’s 
Master Equation model was formulated at single-nucleotide resolution, it was coarse-
grained prior to its solution (the final model in Rodrigues et al. consisted of 2 gene states 
and only 3 RNA elongation steps). 

● We introduce variability of translation with codon-dependent rates. While such 
mechanisms may not make as much sense for analysis of transcription, they can be 
highly relevant in translation, as we shown in our analyses of common/natural/rare 
codon usage (Fig S4 to S6) and of tRNA depletion (Fig. S7). 

● We analyze the overall ribosome association time, loading statistics (mean and 
variance), and auto-covariance function using this single-codon-resolution and codon-
dependent model. The Master Equation model specified in Rodriguez et al., could in 



 

principle be used to compute the ribosome loading statistics, but that model was not 
extended to the computation of auto-covariances. 

● We consider an adjustable ribosome exclusion volume (20 to 30 nucleotides or 9 to 10 
codons), compared to the nearest neighbor exclusion considered in Rodriguez et al.  

● Our introduction of the probe intensity vector (Eqn. 5) allows for analyses of arbitrary 
numbers and positions of tags in the gene construct, which has a real added value to the 
final user. Some example applications are: 

○ To simulate and compare the intensity fluctuations of two gene constructs, with 
different numbers of tags.  

○ To compare the effects to put the tag region in different locations, for example, N- 
versus C- terminus of the elongating protein. 

 
To address these issues in our previous manuscript, we have updated the text of our 
manuscript as follows: 
 

 
Line 84 
“To simulate translation with single-molecule resolution, we adopted a stochastic model of 
polymerization that is similar to those developed previously in references [Gorgoni2016, 
Bonnin2017, Rodriguez2019]. We then extend this model to allow for variable ribosome sizes, 
codon- and tRNA-dependent translation elongation rates, and arbitrary placement of fluorescent 
probe binding epitopes, and we analyze these models specifically in the context of single-mRNA 
translation as observed using time-lapse fluorescence microscopy experiments (e.g., Fig. 1).” 
 
Lines 501 to 513 
“Imaging translation in living cells at single-molecule resolution is a new experimental technology 
that has been applied to only a few genes so far [Morisaki2016, Wang2016, Wu2016, 
Pichon2016, Yan2016, Lyon2019, Boersma2019], but the number of such studies is expected to 
grow considerably in the near future [Morisaki2018]. Computational models can aid in this 
research by extracting improved biophysical understanding and parameters from single-molecule 
data. For example, in related analyses of transcription dynamics, Rodriguez et al., 
[Rodriguez2019] used a coarse grained stochastic model to capture the polymerase elongation 
process and reproduce transcription dynamics for a multi-state promoter. Here, we extended that 
theoretical framework to include the most widely accepted mechanisms affecting nascent protein 
translation, including codon-dependent elongation and ribosome interference [Bonnin2017] and 
with specific attention to the placement of fluorescent probes. To complement previous models 
that have sought to reproduce data from earlier bulk cellular assays [Gorgoni2016], and ribosome 
profiling data [Gritsenko2015,Duc2018], our focus has been to integrate single-mRNA stochastic 
dynamics models with data from in vivo single-RNA translation dynamics experiments.” 
 
2. There is real added value in comparing the different techniques for quantifying fluorescence 
time traces. One thing that wasn’t clear to me: is all the fitting done with the simulated Gillespie 
approach? It should be. In this era, there is really no point in using approximations when there 
are so many fast simulators. I imagine that is what is implied by this sentence: “this simulator 



 

performs stochastic simulations considering the widely accepted mechanisms ribosome 
elongation, such as codon usage and ribosome interference.” 
 
We thank the referee for raising this point, as it has helped us to clarify our intentions in this 
manuscript.   
 
Indeed, as the referee had expected, all of our analyses of real experimental data use the full 
non-linear stochastic simulations, which we have optimized to be exceedingly fast.  
 
However, we believe that there is substantial value in the development of simple (yet validated) 
theoretical analyses for two related objectives:   
 
First, reduced theoretical models allow us to gain a deeper understanding of the system 
dynamics. Equations 21 to 23 (numbering in new manuscript) give simple estimates for the 
sensitivity of observable traits (e.g., mean and variance of ribosome loading or characteristic 
elongation times) to mechanistic parameters (e.g., initiation rates or elongation rates for specific 
codons).  
 
Second, simple algebraic estimates like those in Equations 21 - 23 are orders of magnitude faster 
to compute than are the results of simulations.  Such efficiency is paramount when one seeks to 
perform parameter estimation for vast combinations of different genes (e.g., our considered library 
of 2,647 genes) and in different experiment designs (e.g., our consideration of 24 different 
combinations experiments, different frame rates, and different numbers of spots) as we 
accomplished in Fig 3. 
 
(Relocated from Referee Point 1) In a related point, some of the early reading is a bit tedious and 
could be condensed or included in a supplement. For example, the theory section builds to two 
equations (23, 24) which are quite similar to those reported in Ref. 2. 
 
As we replied above, we believe there is merit in simple theoretical analyses that are much more 
efficient than simulations.  But, before one can confidently use simplified analyses, it is necessary 
to demonstrate the validity of these simplifications. That verification was the main objective of the 
first part of our results section.  
 
However, we understand the concerns of the reviewer regarding flow of the paper.  To address 
her/his comments, we have moved the model development to a new section prior to our ‘Results” 
section, and we have added text to provide improved motivation and justification for our model 
simplifications as follows:  
 
Line 154: 
 
“Simplifications for combinatorial analyses of genes, parameters, and experiment designs. 
 



 

The model as defined above is sufficient to simulate fluorescence dynamics for any specified 
gene and for a vast range of potential time lapse microscopy experiments. However, these 
simulations become computationally intensive when studying combinations of thousands of 
genes, using thousands of different parameters sets, and for hundreds of different experiment 
designs. To ameliorate this concern, we next introduce model simplifications that progressively 
remove elements from the original model, such as ribosome exclusion and single-codon 
resolution, while retaining effects of codon-dependent translation rates and the geometric 
placement of fluorescent tags. We then test under what conditions (i.e., parameters and gene 
lengths) these simplifications are valid, and we compare these conditions to experimentally 
reported values.” 
 
3. Why is the autocorrelation always normalized by G(0)? This quantity contains the information 
about initiation rate. In a related point, why does the raw fluorescence trace have to be normalized 
by the individual intensity? The fluctuations should be sufficient to back out the occupancy. To be 
clear, what biophysicists call ‘autocorrelation’ is actually the ‘autocovariance’ and usually contains 
an un-normalized amplitude. 
 
We thank the referee for pointing out improper use of ‘auto-correlation’, and we have adjusted our 
manuscript to use ‘auto-covariance’ or ‘auto-covariance coefficients’ when we are discussing the 
normalized auto-covariance.  We believe that this is more precise. 
 
We agree with the reviewer that auto-covariance coefficients neglect information concerning the 
ribosome loading variance, and specifically the initiation rate. Indeed, we performed this 
normalization specifically to isolate our experimental evidence concerning ribosome loading 
distributions from that concerning fluorescence fluctuation time scales. To quantify ribosome 
loading distributions, we collected direct measurements of the fluorescence intensity distributions 
using large numbers (>100) independent spots, but at higher laser powers and for much shorter 
trajectories. These intensities were calibrated directly against a second construct with a single 
FLAG epitope at high enough laser powers to permit single-fluorophore detection. Through this 
analysis, we obtained more precise estimates of intensity distributions, and we fit our models to 
these full intensity distributions (e.g., Fig 4 middle plots). Unfortunately, at these high laser 
powers, it is not possible to quantify long trajectories due to excessive photo-bleaching and photo-
toxicity.  At lower laser powers, we could perform single-mRNA tracking and obtain estimates of 
the auto-covariance, but the signal-to-noise is worse, and the variance of fluorescence intensity 
becomes dominated by shot noise.  Therefore, to make simultaneous use of high laser power 
distribution data and low laser power fluctuation data, we normalized out the variance from the 
auto-covariance plots. 
 
We have updated the manuscript to be more clear on this choice and its motivation.  Moreover, 
we also note that in our simulations, we normalize auto-covariances by the simulated variance, 
G(0), which we can compute directly.  For the experimental data, we cannot measure G(0) directly 
because it is dominated by shot noise, so we instead interpolate G(0) using a linear extrapolation 
from the first four points of the measured auto-covariance function. This new normalization 
resulted in improved fits as shown in Figure 4, with new estimated parameters, line 395 and Eq. 



 

31. To maintain consistency in our analyses, we repeated the experiments for the right patel in 
figure 3, obtaining almost identical results as the previous version of the paper, lines 291 to 294. 
Finally, with simply updated figures S4 to S11 to consider the new optimized parameters values. 
 
4. Averaging experimental autocorrelations is not trivial and was discussed in Ref. 35. Specifically, 
for image-based analysis (as done here), the traces are often short and of variable length and 
may contain few translation events. The sparseness of the data represents a problem for 
fluctuation analysis. As such, the arithmetic average is not strictly correct. If the goal is to generate 
a broadly useful analytic tool, I strongly recommend implementing an averaging scheme which is 
specific to the translation data in the distributed program. 
 
We fully appreciate the observation concerning the normalization of the autocorrelation. We have 
updated all analyses in our GUI implementation to provide the user option to implement each of 
the normalization approaches described in Ref 30 (Coulon and Larson 2016, previously Ref. 35). 
Specifically, the user can calculate the auto-covariances using the intensity mean (Equation 6 in 
Reference 30), or the global intensity mean (Equation 7 in Reference 35).  We have also included 
our experimental data as a test set in our GUI toolkit, so that it is clear to the user how these 
choices affect the presentation of the experimental data.  Screenshots of this comparison are 
shown below in Figures 1 A and B. 
 

Figure 1A. GUI screenshot. Calculating the 
autocorrelation function by normalizing the 
intensity by the mean intensity of each trace.  

Figure 2B. GUI screenshot. Calculating the 
autocorrelation function by normalizing the 
intensity by global mean intensity. 

  
 
For our particular data sets, we found that use of the global mean would problematic due to 
substantial variability in the mean intensities for different spots. Because laser powers were tuned 
to the lowest possible settings to allow tracking of long trajectories, we encountered substantial 
variations in levels of illumination for spots contained in different cells (e.g., with different shapes 
and sizes), different locations within cells, or from imaging cells on different days. Despite 
dissimilarities in the means and variances of intensity levels among different trajectories, the 



 

fluctuation timescales for each gene were well-conserved from spot-to-spot for a given mRNA 
time yet distinct from one mRNA type to another. 
 
In addition to these changes, we include a more rigorous approach to compare the model and 
data. Specifically, we included the likelihood functions given in Eqs. 28 and 29, to compare auto-
covariances, similar analyses are also used in Ref 30 (Coulon and Larson 2016, previously Ref. 
35).  For intensity distributions we used the likelihood function given by Eqs. 26 and 27. 
 
5. How is translational bursting accommodated in the model? 
 
We have not specifically incorporated bursty kinetics into the model as described here because 
bursty translation is not as well understood for translation kinetics as it is for transcription kinetics, 
and bursting behavior is not necessary to reproduce any of the data contained in this manuscript. 
However, bursty dynamics can be incorporated easily into our full models as well as into our 
simplified analysis of auto-covariances. This can be accomplished by adding two additional 
mRNA states (for the simplest case) corresponding to ‘ON’ or ‘OFF’ mRNA species and two 
reactions to represent activation and inactivation of the translation initiation mechanisms. This 
would require a couple straightforward changes to Eqns. 2 (add linear dependence on the ON 
state) and Eqns. 6 and 8 (two new rows and columns in S, W_0 and W_1 corresponding to new 
species and new reactions).  Everything else in our analyses would be unaffected. We speculate 
that bursty dynamics are an important mechanism taking place during translation initiation, but at 
this point, the parameters for our reported genes are still unknown. Therefore, in the absence of 
specific experimental need to include bursting kinetics at this time, and in the interest of simplicity, 
we have opted not to include bursting kinetics in the current manuscript.  
 
 
Have all data underlying the figures and results presented in the manuscript been 
provided? 
 
Reviewer #1: Yes 
 
Reviewer #2: No: image data is not provided 
All data and source code used in this project are available in the following repositories. 
https://github.com/MunskyGroup/Aguilera_PLoS_CompBio_2019.git 
https://github.com/MunskyGroup/rSNAPsim.git  


