SUPPLEMENTARY MATERIAL

Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells

Joseph J. Kim ^{1,2#}, Luqia Hou ^{1,2#}, Guang Yang^{1,2#}, Nicholas P. Mezak ², Maureen Wanjare ^{1,2}, Lydia M. Joubert³, and Ngan F. Huang ^{1,2,4 *}

 ¹ Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
² Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
³ Cell Sciences Imaging Facility, Stanford University Medical School, Stanford, CA, USA
⁴ Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA

[#] contributed equally to this work

*Address for Correspondence:

Ngan F. Huang, PhD Assistant Professor Department of Cardiothoracic Surgery Stanford University Address: 300 Pasteur Drive, Stanford, CA 94305-5407 Tel: (650) 849-0559 Fax: (650) 725-3846 Email: ngantina@stanford.edu

Supplementary Fig. 1. Schematic overview of PCL scaffold fabrication into randomly oriented or aligned microfibrous scaffolds.

Supplementary Fig. 2. Endothelial differentiation time course. Shown is the normalized relative CD31 intensity in 3D randomly oriented or aligned scaffolds. CD31 intensity was normalized to total nuclei (n=3).