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A Rare Variant Nonparametric Linkage Method for
Nuclear and Extended Pedigrees with Application
to Late-Onset Alzheimer Disease via WGS Data

Linhai Zhao,1 Zongxiao He,1 Di Zhang,1 Gao T. Wang,2 Alan E. Renton,3 Badri N. Vardarajan,4

Michael Nothnagel,5,6 Alison M. Goate,3,7 Richard Mayeux,4 and Suzanne M. Leal1,4,8,*

To analyze family-based whole-genome sequence (WGS) data for complex traits, we developed a rare variant (RV) non-parametric link-

age (NPL) analysis method, which has advantages over association methods. The RV-NPL differs from the NPL in that RVs are analyzed,

and allele sharing among affected relative-pairs is estimated only for minor alleles. Analyzing families can increase power because causal

variants with familial aggregation usually have larger effect sizes than those underlying sporadic diseases. Differing from association

analysis, for NPL only affected individuals are analyzed, which can increase power, since unaffected family members can be susceptibil-

ity variant carriers. RV-NPL is robust to population substructure and admixture, inclusion of nonpathogenic variants, as well as allelic

and locus heterogeneity and can readily be applied outside of coding regions. In contrast to analyzing common variants using NPL,

where loci localize to large genomic regions (e.g., >50 Mb), mapped regions are well defined for RV-NPL. Using simulation studies,

we demonstrate that RV-NPL is substantially more powerful than applying traditional NPL methods to analyze RVs. The RV-NPL was

applied to analyze 107 late-onset Alzheimer disease (LOAD) pedigrees of Caribbean Hispanic and European ancestry with WGS data,

and statistically significant linkage (LOD R 3.8) was found with RVs in PSMF1 and PTPN21 which have been shown to be involved

in LOAD etiology. Additionally, nominally significant linkage was observed with RVs in ABCA7, ACE, EPHA1, and SORL1, genes that

were previously reported to be associated with LOAD. RV-NPL is an ideal method to elucidate the genetic etiology of complex familial

diseases.
Introduction

In recent years, there has been a great effort to understand

the genetic contribution of rare variants (RVs) to the etiol-

ogy of complex traits and diseases. The ability to study RVs

has been greatly influenced by the availability of massively

parallel sequencing, which led to the generation of whole-

genome and -exome sequence data for hundreds of thou-

sands of individuals. Most whole-genome and -exome

sequence-based complex trait studies are performed using

either case-control or population-based data,1,2 but several

studies have generated sequence data on families.3,4

Although there are many RV aggregate association

methods to analyze case-control and population-based

data,5–11 only a few have been developed to analyze fam-

ilies.4,12–16 In addition to using family-based RV associa-

tion methods to identify disease loci, linkage analysis can

also be performed. Although parametric linkage analysis

is inappropriate for complex trait analysis, non-parametric

linkage (NPL)17 (also known as model free or allele sharing

methods) is a powerful approach to identify disease loci in

families. Although RV parametric linkage methods have

been developed,18 this is not the case for NPL analysis.

Analyzing families segregating complex diseases can in-

crease power to detect association signals compared to
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analyzing simplex cases, because pathogenic susceptibility

variants segregating in pedigrees with multiple affected

family members tend to have larger effect sizes.19,20 Addi-

tional power can be obtained by analyzing multiple

affected family members since frequencies of RVs tend to

be increased and their heterogeneity reduced, compared

to analyzing samples of unrelated case and control sub-

jects. Therefore, when available, it is highly beneficial to

analyze family data for complex traits.

For family-based association analysis, unaffected family

members must be included in the analysis, but these unaf-

fected individuals may be asymptomatic carriers of suscep-

tibility variants because for complex traits penetrance can

be incomplete.21 This is even a greater problem for diseases

with late onset age, since many unaffected family mem-

bers will be below or within the age of onset. Additionally,

RVaggregate associationmethods are generally sensitive to

inclusion of non-causal variants.22

For NPL, the underlying assumption is that affected rel-

atives will share identical by descent (IBD) susceptibility

alleles or alleles that are in linkage disequilibrium (LD)

with pathogenic variants.23 Several NPL methods for com-

mon variants (minor allele frequency [MAF] > 0.05) have

been developed for nuclear and extended families. For

nuclear families, allele sharing is compared for affected
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sibpairs and it is determined if sharing deviates from the

expectation under the null using the chi-square goodness-

of-fit test,24,25 maximum LOD score test (MLS),26–28 mean

test,29 proportion test,30,31or minmax test.32 Methods for

extended pedigrees include the Affected Pedigree Member

(APM) method,33 which is obsolete since it analyzes iden-

tical-by-state (IBS) sharing, rather than IBD, and has

increased type I and II errors. Kruglyak and colleagues

developed an NPL approach,17 which is based upon IBD

sharing between affected family members. For this NPL

method, there are several sharing measures, which include

the commonly used SPairs, which measures IBD sharing

within and between relative pairs, and SAll, which

estimates the number of alleles from distinct affected

pedigree members that are IBD. NPL methods have also

been extended to perform multipoint linkage anal-

ysis.17,26,34–36 These methods, although widely used, had

limited success because causal susceptibility variants could

not be identified due to disease loci mapping to large

genetic intervals, e.g., > 50 Mb. Large intervals occur

within families due to long-range LD between common

variants. For common variants, locus heterogeneity is an

additional problem, because it can dilute the linkage signal

and increase the size of the mapped region.37–39 Despite

these limitations for the analysis of common variants,

applying NPL to analyze RVs can overcome these prob-

lems. To further increase the power of analyzing RV using

the NPL, an RV-specific method was developed, the

RV-NPL, which examines sharing of only RV minor alleles

to calculate the test statistic.

For the RV-NPL, an extension of the Kruglyak et al. NPL

approach,17 a regional locus is generated to analyze RVs in

aggregate using the collapsed haplotype pattern (CHP)

method.18 IBD sharing is determined using the pedigree-

specific regional locus and two IBD methods were devel-

oped: CHP-NPL and RV-NPL. As was performed for the

NPL method, the CHP-NPL estimates IBD sharing for

both major and minor alleles, i.e., haplotypes with at least

one RV and haplotypes without any RVs. The RV-NPL esti-

mates IBD sharing only for minor alleles, i.e., haplotypes

that carry at least one RV. Using simulation studies

and analyzing RVs (MAF < 0.01), the performance of

CHP-NPL, RV-NPL, and multipoint NPL was compared.

Although the power for the multipoint NPL and CHP-

NPL are similar, the RV-NPL is substantially more powerful.

When parental genotype data are missing, multipoint NPL

analysis can have considerable inflated type I error rates40

since the assumption that markers are in linkage equilib-

rium may be violated. Although markers can be pruned

to remove LD, this can lead to a loss in power.41 Therefore,

it is not advisable to use multipoint NPL analysis when

there is missing parental genotypes, which often occurs

in family-based studies. For CHP-NPL and RV-NPL, type I

error rates are well controlled. CHP-NPL and RV-NPL are

both robust to population substructure and admixture

between and within families, inclusion of nonpathogenic

variants, and allelic and locus heterogeneity. In contrast
The America
to performing NPL analysis with common variants, the

CHP-NPL and RV-NPL usually detect linkage to a small

region, e.g., a gene, due to the low levels of LD between

RVs. Both methods can also be used to analyze either

gene regions or complete genomes using recombination

events as boundaries for the regional locus. However, due

to the superior power of the RV-NPL, it is recommended

to use this method instead of the CHP-NPL.

The RV-NPL was applied to analyze whole-genome

sequence (WGS) data generated on 107 nuclear and

extended pedigrees with late-onset Alzheimer disease

(LOAD) from the Alzheimer disease Sequencing Project

(ADSP, dbGaP accession phs000572.v7.p4). Alzheimer dis-

ease (AD) is a neurodegenerative disease characterized by

dementia that typically begins with subtle or poorly recog-

nized failure of memory and slowly becomes more severe

and incapacitating (see GeneReviews in Web Resources).

AD is genetically heterogeneous with an estimated herita-

bility of h2 ¼ 60%–80%.43 Although genome-wide associa-

tion studies (GWASs) of common variants have success-

fully identified LOAD loci, with the exception of APOE,

each locus only accounts for a small fraction of disease sus-

ceptibility, and a large proportion of LOAD heritability

remains unexplained.44 Therefore, there is great interest

in investigating the role RVs play in the etiology of AD.

Application of the RV-NPL to ADSP WGS Caribbean

Hispanic and European-ancestry pedigree data found sig-

nificant evidence of linkage (LOD score > 3.8)45 between

LOAD and nonsynonymous RVs in PSMF1 (20p13 [MIM:

617858], GenBank: NM_178578.3, LOD ¼ 3.87) and

PTPN21 (14q31.3 [MIM: 603271], GenBank: NM_007039,

LOD ¼ 3.81). PSMF1 was previously shown to be associ-

ated with AD.46–48 PTPN21 was identified as a risk gene

for AD in a Bayesian machine learning mediation anal-

ysis.49 Functional studies suggest that both of these genes

are potentially involved in AD etiology neurons.50–53

Additionally, nominally suggestive linkage (p < 0.05)

was observed with RVs in ABCA7 (19p13.3 [MIM:

605414], GenBank: NM_019112.3), ACE (17q23.3

[MIM: 106180], GenBank: NM_000789.4), EPHA1 (7q35

[MIM: 179610], GenBank: NM_005232.5), and SORL1

(11q24.1 [MIM: 602005], GenBank: NM_003105.6). These

genes were previously reported to be associated at a

genome-wide significance level with AD.47,48,54–57
Material and Methods

Rare Variant Extension of NPL
For each pedigree, all variants are phased using an extension of the

Lander-Green Algorithm.58,59 After phasing, CHP-based regional

loci18 are constructed using RVs with MAFs below a given

threshold criterion, e.g., < 1%. Regional loci can include either

all RVs or only those that meet specific annotation specifications,

e.g., missense, CADD c-score > 20. When there are missing

founder or parental genotypes, regional loci genotypes are recon-

structed or inferred based uponCHP genotypes from offspring and

their family-specific CHP allele frequencies which are estimated
n Journal of Human Genetics 105, 822–835, October 3, 2019 823



based on MAFs obtained from databases, e.g., gnomAD.60 If the

analyzed families are from different populations, then ancestry-

specific MAFs should be used for each pedigree. Variants not

observed in the relevant database population are assigned a MAF

of (1� k)/2N, where N is the number of individuals for the specific

population in the database and k is the fraction of singletons

observed.61 If a sufficiently large sample is analyzed, MAFs can

be estimated from pedigree founders and reconstructed founders.

Only haplotypes that are observed in a pedigree are considered

possible haplotypes to impute missing data for that pedigree.

Frequencies for CHP alleles are calculated from the M observed

RVs in the sample families, i.e.,
QM

i¼1ð1�fiÞ for the wild-type

CHP allele where fi is the MAF for ith observed RV. For alternative

CHP alleles, the occurrence of minor allele in a haplotype with

given haplotype pattern [x1,x2,.,xM], xk˛[0,1] can be approxi-

mated by a multivariate Poisson distribution (details on the

calculation can be found in Wang et al.18) and the individual

frequency for each of the H observed alternative CHP alleles in a

pedigree (i.e., RV-carrying haplotype hk) is calculated by
PðhkÞPH

k¼1
PðhkÞ

3½1�QM
i¼1ð1�fiÞ� where P(hk) is the probability from Pois-

son distribution for haplotype hk such that the cumulative MAF

for the alternative CHP alleles is 1� QM
i¼1ð1 � fiÞ. Based on the

CHP allele frequencies, the missing parental genotypes can be

reconstructed.

The alleles of the regional locus are scored to ensure that each

haplotype within a pedigree is unique, so there is no loss of linkage

information. Additional information on generating regional loci

can be found in Wang et al.18

Each CHP regional locus is used to examine IBD (0, 1, or 2) allele

sharing among affected pedigree members. For CHP-NPL, IBD

sharing is calculated using both haplotypes with at least one RV

and those haplotypes without any RVs. On the other hand, the

test statistics for the RV-NPL are calculated only based on sharing

of haplotypes that carry at least one RV, i.e., sharing of haplotypes

that do not contain a RV does not contribute to linkage signals.

Statistics are calculated using two different scoring functions,

NPLAll, and NPLPairs, for both CHP-NPL and RV-NPL.

For NPLPairs, the sum of pairwise IBD sharing for affected pedi-

gree members for the regional CHP locus is obtained for the jth

family with nj affected relative-pairs by calculating the score,

Spairs;j ¼
Xnj
p¼1

tp;

where tp is the IBD sharingvalue for the pth affected relative-pair, for

RV-NPL, tp is the sharing of RV carrying haplotypes, with the score

measuring the overall pairwise allele-sharing within the jth family.

When there is no allelic heterogeneity, an increase in power can

be obtained for families with more than two affected members us-

ing the all score which is implemented in the NPLAll test statistic.

The all score was proposed by Whittemore and Halpern.62 It can

be calculated as follows,

Sall;jðvÞ¼2�a
X
h

"Y2f
i¼1

biðhÞ!
#
;

where a is the number of affected individuals in the jth family, h is a
collection of alleles from the region loci obtained by choosing one

allele from each of the affected pedigree members (e.g., h ¼
[A11,A21,.,Aa1] with A11 representing the 1st allele selected from

1st affected member and h has a total of 2a possible combinations),

and bi(h) denotes the number of times that the ith founder (f) allele
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appears in h (for i ¼ 1,...,2f). The sum is taken over all 2a possible

ways to choose h. For RV-NPL, bi(h) will be set to 0 if the ith founder

has a wild-type CHP allele, i.e., haplotype that does not contain

any RVs. The score Sall is generated using an inheritance vector

v for the jth family, and the computation details of inheritance vec-

tor can be found in Whittemore and Halpern.62

To extend the analysis to the situation where precise IBD

sharing values are unknown, the expected values over all possible

inheritance patterns can be obtained by

Sj ¼
X
v

PjðvkÞ$SjðvkÞ;

where PjðvkÞ is the posterior probability of inheritance vector vk for

the jth family. For both approaches, a standardized score

Zj ¼
�
Sj � mj

�
sj

is calculated for the jth family, where Sj is the score for family j and

mj and sj represent themean and standard deviation of Sj under the

null hypothesis, respectively. The null distribution of Sj is deter-

mined by enumerating every possible inheritance vector under

the null for family j. Additionally, for RV-NPL, the null distribution

is determined while maintaining the CHP genotypes of founders,

since Sj for RV-NPL is dependent on the founder genotypes. The

overall Z score is obtained as a linear combination of Zj scores

for a total of all families m,

Z¼
Xm
j¼1

gjZj;

where the weight is gj ¼ 1=
ffiffiffiffiffi
m

p
. Using either the SAll or SPairs score,

the NPLAll or NPLPairs test statistic can be obtained.

When analyzing linkage across multiple RVs, unlike multipoint

NPL, which can provide an NPL score at any map positions, CHP-

NPL and RV-NPL give a single NPL score for a region. Moreover, in

contrast to traditional NPL methods, CHP-NPL and RV-NPL use

family-specific CHP allele frequencies enabling the inclusion of

correct allele frequencies when joint analysis of families from

different populations is performed. For the original version of

the NPL,17 it was demonstrated that the analytical p values were

overly conservative when descent information is incomplete,

i.e., missing genotype data.63 Therefore, for CHP-NPL the Kong

and Cox63 extensionwas implemented to correct for the conserva-

tive nature of the NPL. For RV-NPL, empirical p values are obtained

through permutations, by retaining founder haplotypes and then

based on Mendelian segregation randomly assigning haplotypes

to non-founders. For founders with missing genotypes, their hap-

lotypes are reconstructed using genotype information from

offspring and CHP marker allele frequencies obtained as described

above. These haplotypes are then assigned to offspring based on

Mendelian segregation. For family members with missing

sequence data, their simulated genotypes are removed before anal-

ysis. Adaptive permutation is used to reduce computational time;

p values are evaluated at pre-defined checkpoints, and permuta-

tion is terminated for tests that are not significant.

Simulation Framework
Type I error of RV-NPL and CHP-NPL were evaluated, through

simulation studies. Additionally, the power of RV-NPL, CHP-

NPL, andmultipoint NPL were assessed and compared. Genotypes

were simulated for 17,987 autosomal genes across the genome

based on the observed variant sites and their corresponding
r 3, 2019



Figure 1. Pedigree Structures Used in the
Simulation Studies
Three different pedigree structures were
used for the simulation studies to evaluate
type I error and power: Multi-generational
pedigree with three affected family mem-
bers (A), nuclear pedigree with three
affected siblings (B), and nuclear pedigree
with two affected siblings (C).
MAFs obtained from 33,370 Non-Finnish Europeans (NFE) re-

corded in the Exome Aggregation Consortium (ExAC)60 database.

Genetic maps distances and recombination rates were estimated

from the Rutgers Combined Linkage-Physical map64 using inter-

polation. Using RarePedSim,65 sequence variant data were gener-

ated for three pedigree structures: nuclear families with either

two or three affected siblings and an extended pedigree with two

branches and three affected family members (Figure 1). Data

were generated unconditional on affection status to evaluate

type I error and conditional on disease status and phenotype

model to evaluate power. Genotype phase information is removed

from the simulated data to mimic real-world sample sequences

and the data is phased using the Lander-Green Algorithm.58,59

For both the evaluation of type I and II errors, genes with at least

one variant with a ExAC NFE MAF % 0.01 were analyzed.

Type I Error Evaluation
To evaluate type I error, genotype data were simulated for all auto-

somal genes across the genome unconditional on the affection sta-

tus of the family members, i.e., odds ratio (OR) ¼ 1.0. Type I error

was evaluated for 100 extended families (Figure 1A); 300 nuclear

families with three affected siblings (Figure 1B); and 2,000 nuclear

families with two affected siblings (Figure 1C). Data were gener-

ated for pedigrees with no missing genotypes, and also for

pedigrees with a percentage of founders missing all variant data.

One thousand replicates of complete exomes were generated and

every gene with one or more RVs was analyzed in each exome. p

values were obtained both analytically (CHP-NPL) and empirically

(RV-NPL) using one million permutations. Nominal p values were

evaluated at 5.0 3 10�2 (LOD score 0.8), 5.0 3 10�3 (LOD score

1.45), and 1.53 10�5 (LOD score 3.8) levels and quantile-quantile

(QQ) plots with results from all exome replicates were also

generated. Type I error evaluation was performed for RV-NPLPairs,

RV-NPLAll, CHP-NPLPairs, and CHP-NPLAll.

Power Evaluation
Power was evaluated for 100 extended families; 2,000 nuclear fam-

ilies with two affected siblings; and 300 nuclear families with three

affected siblings. RV genotypes in each gene were generated con-

ditional on affection status of the pedigree members assuming a

multiplicative model for which each causal RV within a gene re-

gion has an OR of 5.0 and the disease has a prevalence of 0.01.

Although a complex trait is being studied, an OR ¼ 5.0 was

selected, since variants for which familial aggregation is observed

usually have larger effect sizes than susceptibility variants underly-

ing sporadic disease. For every power evaluation, an exome was

generated with 17,987 autosomal genes each linked to the disease,

i.e., genotypes generated conditional on the affection status. Every

gene with at least one RV was analyzed. It should be noted that

since each gene was analyzed individually, genotypes at the other

loci do not affect the results. For all analyses the power was

determined by the ratio of number of genes with LOD > 3.8
The America
(p value % 1.5 3 10�5), the genome-wide significance level pro-

posed by Lander and Kruglyak,45 to the total number of genes

analyzed. Power was evaluated for RV-NPLPairs, RV-NPLAll, CHP-

NPLPairs, and CHP-NPLAll and for comparison purposes RVs in

each gene region were also analyzed using multipoint NPLPairs
and NPLAll as implemented in MERLIN.58 p values were obtained

analytically for CHP-NPL and multipoint NPL, and empirically

using one million permutations for RV-NPL.

Simulations were performed under different scenarios to evaluate

and compare the power. To estimate the effect of non-causal vari-

ants on power, two different scenarios were used. First, all nonsense,

missense, and splice site variants were analyzed where 100%, 75%,

and 50% are susceptibility variants (OR ¼ 5.0) and the remaining

variants (0%, 25%, and 50%) are neutral (OR¼ 1). Here the number

of variants analyzed was kept constant and as the number of non-

causal variants increased the number of susceptibility variants

declined. Second, missense, nonsense, and splice site variants

were assigned an OR ¼ 5.0 and synonymous variants an OR ¼ 1.0

(non-causal). The data were analyzed including and excluding syn-

onymous variant to evaluate robustness of the methods to

including non-causal variants while keeping the number of causal

variants consistent. To evaluate the effect of missing data on power,

analyses were performed with 10%, 30%, and 50% of the pedigrees

having all founders missing their sequence data.

To appraise the effect of locus heterogeneity, data were generated

under linkage homogeneity (a ¼ 1.0) and heterogeneity (a ¼ 0.67)

and the power was compared. First pedigrees were generated with

linkage (all nonsense, missense, and splice site variants have an

OR ¼ 5.0) with RVs in every autosomal gene generated conditional

on the affection status and then an additional dataset 50% of the

sample size of the linked families was generated under the null (all

RVs unlinked with an OR ¼ 1.0, i.e., generated unconditional on

the pedigree affection status). For the extended pedigrees, 100 were

generated with linkage and 50 unlinked. The linked pedigrees were

first analyzed separately and then together with the unlinked ones.

Families with intra-familial heterogeneity (inclusion of simplex

case subjects) were also simulated to evaluate the performance of

RV-NPLPairs andRV-NPLAll. ExomedatawithRVs inevery autosomal

gene were generated conditional on disease status for extended

families with one branch containing two affected siblings and the

other branch with an unaffected and affected sibling (Figures

S1A). For the analysis, all children had an affected disease status

(Figure S1B), to generate data with intra-familial heterogeneity.

Application to Alzheimer Disease Data
The RV-NPL was used to analyze families segregating LOAD. WGS

data from 107 LOAD families with 486members of which 446 have

a LOAD diagnosis were available for analysis. The ADSP data were

obtained from dbGaP (accession phs000572.v7.p4). WGS data for

ADSP were generated at Baylor College of Medicine Human

Genome Sequencing Center, Broad Institute Genome Center, and

Genome Institute at Washington University. This dataset consists
n Journal of Human Genetics 105, 822–835, October 3, 2019 825



Table 1. Power of CHP-NPL and RV-NPL

Pairs All

Sibpaira Tripletb Extendedc Sibpair Triplet Extended

CHPd RVe CHP RV CHP RV CHP RV CHP RV CHP RV

100% causalf 0.801 0.954 0.817 0.932 0.789 0.859 0.801 0.954 0.817 0.930 0.780 0.858

75% causal 0.693 0.918 0.729 0.893 0.711 0.798 0.693 0.918 0.729 0.890 0.703 0.798

50% causal 0.521 0.825 0.588 0.797 0.580 0.672 0.521 0.825 0.588 0.793 0.569 0.671

NS & Sg 0.686 0.890 0.771 0.901 0.761 0.856 0.686 0.890 0.771 0.899 0.756 0.856

Locus Het 0.778 0.947 0.808 0.925 0.787 0.858 0.778 0.947 0.808 0.924 0.778 0.858

10% MFh 0.798 0.953 0.815 0.931 0.788 0.859 0.798 0.953 0.815 0.930 0.779 0.858

30% MF 0.791 0.952 0.813 0.930 0.786 0.858 0.791 0.952 0.813 0.929 0.776 0.858

50% MF 0.784 0.951 0.808 0.929 0.780 0.857 0.784 0.951 0.808 0.928 0.769 0.858

Abbreviations: Het, heterogeneity; MF, missing founders; NS, nonsynonymous; and S, synonymous.
a2,000 nuclear families with 2 affected siblings
b300 nuclear families with 3 affected siblings
c100 extended families
dCHP-NPL method
eRV-NPL method
fPercentage of causal functional variants
gAnalysis of causal nonsynonymous (NS) and non-causal synonymous (S) RVs
hPercentage of founders with missing genotypes
of 112 LOAD pedigrees from different populations: African Amer-

ican (1), Dominican (64), European ancestry (44), and Puerto Rican

(3). For the analysis, family members were considered affected if

their phenotype was defined as ‘‘definite AD,’’ ‘‘probable AD,’’

‘‘possible AD,’’ and ‘‘family-reported AD.’’ The mean age of onset

for AD was 72.63 years with a standard deviation of 8.46. APOE

(MIM: 107741) status was also obtained for all family members

and families were selected for WGS sequencing if no more than

75% of affected family members were heterozygous for APOE ε4

allele and none were homozygous. The African American family

was excluded from the analysis, due to only a single family being

available from this ancestry group. Three additional pedigrees

were also excluded due to only one affected family member with

availableWGS data,making these families incompatible for linkage

analysis. An additional pedigree was also excluded due to a high

level of missing genotype data. A total of 42 families of European

ancestry and 65 Caribbean Hispanic families (62 Dominican and

3 Puerto Rican) were analyzed. The pedigree structures and their

ancestries are displayed in Figure S2 and Table S1, respectively.

In addition to the initial quality control (QC) performed by the

ADSP QC working group,4 genotypes with a genotype quality score

(GQ) < 20 were removed. Only variant sites that were flagged as

‘‘PASS’’ for both the Broad and BCM pipelines, had a missing rate

% 10%, and had no Mendelian inconsistencies were included in

analysis. Gene regions were assigned using RefSeq definitions.

MAFs were annotated using the gnomAD database from the NFE

andLatino (AMR)populations. Formissinggenotypes,CHP regional

markers were constructed using gnomAD allele frequencies that

corresponded to the family’s ancestry, i.e., NFE or AMR. ANNOVAR

was used to perform functional annotations.66 RV-NPLAll and RV-

NPLPairs were used to analyze every gene that had at least one RV

site. Analysis was performed constructing regional markers within

gene regions using frameshift, missense, nonsense, and splice sites

variants with a MAF < 0.01 in gnomAD. European and Caribbean

Hispanic families were analyzed jointly and separately to elucidate

whether there were any association specific to one ancestry.
826 The American Journal of Human Genetics 105, 822–835, Octobe
Results

Type I Error Evaluation

For nuclear (with two or three affected siblings) and

extended pedigrees simulated under the null hypothesis

of no association, nominal p values were evaluated at

5.03 10�2, 5.03 10�3, and 1.53 10�5 (Table S2) and quan-

tile-quantile (QQ) plots were also generated (Figures S3–S6).

These results suggest that type I error is well controlled for

RV-NPLAll, RV-NPLPairs, CHP-NPLAll, and CHP-NPLPairs. It

was also demonstrated that the type I error for CHP-NPL

and RV-NPL (all and pairs) is well controlled when founder

data were missing (Table S2 and Figures S3–S6).
Power Evaluation

Power was evaluated for nuclear (two and three affected sib-

lings) and extended families analyzing RVswithMAF< 0.01

for RV-NPLPairs, RV-NPLAll, CHP-NPLPairs, CHP-NPLAll, multi-

point NPLPairs, and multipoint NPLAll. Performance of the

NPL methods was investigated when sequence data were

missing for founders, when non-causal variants were

included intheanalysis, and inthepresencesof intra- and in-

ter-familial heterogeneity. Since it has been established that

multipoint NPL has increased type I error when there are

missing parental data and LD is ignored,40 analyses were

not performed using multipoint-NPL when founders had

their genotype data missing. For multipoint NPL and CHP-

NPL for both Sall and Spairs statistics, the power was identical

for various scenarioswhennodataweremissing (Table 1 and

Figures 2 and S7–S10). For example, when simulated

missense, nonsense, frameshift, and splice variants (MAF <

0.01 and all causal) were analyzed for 300 nuclear families
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Figure 2. Exome-wide Power Comparison for RV-NPLPairs
Genotypes were generated for 100 extended families, conditional on affection status assuming a multiplicative model in which each
causal variant within a gene region has an OR of 5.0. Analysis was performed using RV-NPLPairs, CHP-NPLPairs, and Multipoint-NPL:
with 100%, 75%, and 50% of the variant being causal and the remaining non-causal (OR ¼ 1) (A); with only causal nonsynonymous
(NS) variants as well as with causal nonsynonymous (NS) and non-causal synonymous (S) variants (B); with 0%, 10%, 30%, and 50%
of the founders missing all genotype data (C); and with no heterogeneity (NH), i.e., 100 linked families as well as with locus heteroge-
neity (H), i.e., 100 linked and 50 unlinked families (D).
with three affected siblings, the power for multipoint

NPLPairs and CHP-NPLPairs are both 0.817. Similarly, for

extended families, the power for both multipoint NPLPairs
and CHP-NPLPairs are 0.789. Since NPLPairs and NPLAll give

identical results for affected sibpairs, the power is only dis-

played for NPLPairs.

For each scenario, the power for RV-NPL is consistently

higher than for CHP-NPL and multipoint NPL for both
The America
Sall and Spairs. The power is displayed for affected sibpairs,

nuclear families with three affected siblings, and extended

families in Table 1 and Figures 2 and S7–S10. When rare

causal missense, nonsense, and splice site variants were

analyzed for all autosomal genes for 2,000 affected sibpairs,

the power for RV-NPLPairs is 19.1% higher than for CHP-

NPLPairs and multipoint NPLPairs. For the same scenario,

the power increases by 14.2% (300 nuclear families with
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three affected siblings) and 8.8% (100 extended pedigrees)

when RV-NPLPairs instead of CHP-NPLPairs or multipoint

NPLPairs was used to analyze the data (Table 1 and Figures

2, S7, and S8). Similar results are observed for NPLAll (Ta-

ble 1 and Figures S9 and S10).

For 100 extended pedigrees when 50% of the founders

are missing their genotype data and all variants are causal,

there is a 10.1% increase in power for RV-NPLPairs
compared to CHP-NPLPairs. Similarly, for 2,000 affected sib-

pairs when 50% of founders are missing all genotype data

and all variants are causal, the power for RV-NPLPairs is

21.3% higher than for CHP-NPLPairs (Table 1, Figures 2C

and S8C).

The impact of non-causal variants on power was also

examined. In the first scenario, there is a set number of

nonsynonymous variants, but the proportion that are

causal was reduced from 100% to 50%. In the second sce-

nario, all nonsynonymous variants are causal and analyzed

and then both the causal nonsynonymous and non-causal

synonymous variants were analyzed together so that the

ratio of nonsynonymous (causal) to synonymous (non-

causal) variants is 2:1, to mimic observed ratios of nonsy-

nonymous to synonymous variants.60 The first scenario

was designed to evaluate a lower-powered yet possibly

more realistic etiology for complex traits; the second sce-

nario was designed to assess robustness of the methods

to non-causal variants.

In the first scenario, when there is a set number of

nonsynonymous variants, for RV-NPL, CHP-NPL, andmul-

tipoint NPL, the power decreases with decreasing propor-

tion of causal variants and increasing non-causal variants.

For example, compared to 100% causal variants, when

only 50% of variants are causal and the rest non-causal,

the power of RV-NPLPairs decreases by 13.5%, 14.5%, and

21.7% for 2,000 affected sibpairs, 300 nuclear families

with three affected siblings, and 100 extended families,

respectively. For CHP-NPLPairs and multipoint NPLPairs,

the power for 300 nuclear families with three affected sib-

lings both dropped from 0.817 to 0.588 (by 28.0%) when

the proportion of causal variants decreased from 100% to

50% and non-causal variants increased from 0% to 50%.

Similarly, for extended families, the power for both CHP-

NPLPairs and multipoint NPLPairs decreased from 0.789 to

0.580 (by 26.5%). Regardless of the proportion of causal

variants, RV-NPL consistently displayed higher power

than CHP-NPL andmultipoint NPL, e.g., when the propor-

tions of causal and non-causal variants are each 50%, the

power for RV-NPLPairs is 58.2%, 35.5%, and 15.9% higher

than for CHP-NPLPairs and multipoint NPLPairs for affected

sibpairs, nuclear families with three affected siblings, and

extended families, respectively (Table 1 and Figures 2A,

S7A, and S8A). Similar results were observed for NPLAll (Ta-

ble 1 and Figures S9A and S10A). There is a greater loss of

power for CHP-NPL and multipoint NPL compared to

RV-NPL as the proportion of causal variants decreases

and the non-causal variants increases, e.g., for affected sib-

pairs when the proportion of causal variants were reduced
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from 100% to 75%, RV-NPLPairs displays a modest 3.7%

reduction in power while the power for CHP-NPLPairs and

multipoint NPLPairs is reduced by 13.4%; when the propor-

tion of causal variants was further decreased from 100% to

50%, RV-NPLPairs has a 13.5% reduction in power, while

the power reduction, 34.9%, for the CHP-NPLPairs andmul-

tipoint NPLPairs is again more severe, which results in an

increased power discrepancy between RV-NPL and CHP-

NPL from 19.1% to 58.2%. Similarly, for extended pedi-

grees, when the proportion of causal variants was reduced

from 100% to 75%, the power loss for RV-NPLPairs is 7.1%

compared to a 9.9% for CHP-NPLPairs and multipoint

NPLPairs, and similar results were observed when the pro-

portion of causal variants was reduced from 100% to

50%. This same trend is also observed for affected nuclear

families with three affected siblings as well as for NPLAll,

suggesting that RV-NPL is more robust to a reduction in

causal variants and an inclusion of non-causal variants

than CHP-NPL and multipoint NPL (Table 1, Figures 2A,

S7A, S8A, S9A, and S10A).

In the second scenario, inclusion of non-causal synony-

mous variants in the analysis causes substantial reductions

in power for CHP-NPLPairs and multipoint NPLPairs, yet RV-

NPL power remains robust to the inclusion of non-causal

variants. For example, the initial power for RV-NPLPairs
was 29.8%, 16.8%, and 12.4% higher than for CHP-

NPLPairs andmultipoint NPLPairs for 2,000 affected sibpairs,

300 nuclear families with three affected siblings, and 100

extended families, respectively. The reduction in power

for RV-NPLPairs when non-causal variants were included

in the analysis is 6.6% (2,000 affected sibpairs), 3.4%

(300 nuclear families with three affected siblings), and

0.4% (100 extended families) while for both CHP-NPLPairs
and multipoint NPLPairs the drop in power when non-

causal variants were included in the analysis is 14.4%

(2,000 affected sibpairs), 5.5% (300 nuclear families with

three affected siblings), and 3.5% (100 extended families),

respectively (Table 1 and Figures 2B, S7B, and S8B) and

similar results for NPLAll can be found in Table 1 and

Figures S9B and S10B. These results again support that

RV-NPL is more robust to non-causal variants than CHP-

NPL and multipoint NPL.

Furthermore, the power of RV-NPL is largely maintained

when there is missing genotype data. When simulating

10%, 30%, and 50% of families with all founders missing

their sequence data, the power of both RV-NPL and CHP-

NPL decreases as the proportion of pedigrees missing

founder data increases. For all pedigree structures, while

the power loss for RV-NPL and CHP-NPL are both very mi-

nor, RV-NPL is still more robust to missing genotype data.

For example, for each of the three pedigree structures, RV-

NPLPairs loses 0.1% power on average when 30% of the

pedigrees are missing sequence data for all founders

compared to when no data is missing, while CHP-NPLPairs
loses 0.7% power on average. When 50% of the pedigrees

with all founders missing all sequence data, RV-NPLPairs
loses 0.2% power on average compared to when there is
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Figure 3. Manhattan Plots Displaying the RV-NPL Results for the Analysis of the ADSP Pedigrees
The results from analyzing functional RVs in 107 ADSP pedigrees with European and Hispanic origin for RV-NPLPairs (A) and RV-NPLAll
(B) are displayed with the red line indicating the significance threshold of LOD ¼ 3.8.
no missing data, and on average the power loss for CHP-

NPLPairs was 1.4% for each of the pedigree structures (Table

1, Figures 2C, S7C, and S8C).

Simulation results for all pedigree structures also demon-

strate that RV-NPL is robust to locus heterogeneity, e.g.,

with only a 0.7% loss in power when 3,000 affected sib-

pairs were analyzed (1/3 [1,000 pedigrees] unlinked to

the disease locus and 2/3 [2,000 pedigrees] linked to all

simulated disease loci [a ¼ 0.67]) compared to when only

2,000 affected sibpairs with linkage (a ¼ 1.0) were

analyzed. For this same scenario, CHP-NPL andmultipoint

NPL have< 3% loss of power. Additionally, only very small

decreases in power were observed for the analysis of RVs

when there was locus heterogeneity for nuclear families

with three affected siblings and the extended pedigrees

regardless of whether the analysis was performed using

RV-NPL, CHP-NPL, or multipoint-NPL (Table 1, Figures

2D, S7D, S8D, S9D, and S10D).

For RV-NPLAll and RV-NPLPairs, there is no difference in

power for affected sibpairs, since for this family structure

themethods are equivalent. For nuclear families with three

affected siblings and extended families, the power for Spairs
was slightly higher than for Sall, e.g., when analyzing 100%

causal variants for nuclear families with three affected sib-

lings, the power of RV-NPLPairs is 0.932 compared to 0.930

for RV-NPLAll. This slight difference is due to intra-familial

heterogeneity since there can be simplex case subjects in

the families due to the OR and disease prevalence used to

generate the RV data conditional on the affection status.

The power discrepancy between RV-NPLPairs and RV-NPLAll
increases when the proportion of causal variants was

decreased from 100% to 50% causal, e.g., for 300 nuclear

families with three affected siblings, the difference in

power changed from 0.2% (0.932 for RV-NPLPairs and

0.930 for RV-NPLAll) to 0.5% (0.797 for RV-NPLPairs and
The America
0.793 for RV-NPLAll). A similar trend was observed in

extended families (Table 1, Figures S7A and S10A). Due to

the design of the test, Sall is less robust to intra-familial

heterogeneity than Spairs. However, in the absence of

intra-familial heterogeneity, Sall can provide higher test

statistics than Spairs. It was observed that 69.1% of the

generated genes have a higher test statistic for Sall than

Spairs (Figure S1 and Table S3). Additionally, we used the

proportion of families that have only one type of RV

haplotype (i.e., all RV haplotypes observed in a family are

the same) as a proxy of allelic homogeneity within a family

to further demonstrate its impact on the power of Sall and

Spairs. It was observed that for genes with a higher test sta-

tistic for Sall than Spairs, 79% of the family have only one RV

haplotype, while for genes with a higher test statistic for

Spairs than Sall, 66% of families have only one RV

haplotype. We also evaluated power for RV-NPLPairs and

RV-NPLAll when 100 extended pedigrees were generated

with intra-familial heterogeneity (changing the affection

status to increase the number of simplex cases) were

analyzed, and observed that pairs is more powerful than

Sall, with the power of RV-NPLPairs being 4.4% higher

than that of RV-NPLAll when all simulated nonsynony-

mous RVs are causal.

Analysis of Alzheimer Disease Sequencing Project Data

Joint analysis of the Caribbean Hispanics and Europeans

identified linkage with two genes, PSMF1 (LOD: 3.87)

and PTPN21 (LOD: 3.81), observed reaching the signifi-

cance threshold of a LOD score R 3.845 (Figure 3). No

genes reached a significant LOD score of R 3.8 when ana-

lyses were performed separately for Caribbean Hispanics

and Europeans.

Additionally, nominal significance was observed for

several genes that were demonstrated to be associated
n Journal of Human Genetics 105, 822–835, October 3, 2019 829



with LOAD: ABCA7 (RV-NPLPairs p ¼ 3.03 10�2, RV-NPLAll
p ¼ 6.0 3 10�3) and EPHA1 (RV-NPLPairs p ¼ 7.0 3 10�3,

RV-NPLAll p ¼ 6.0 3 10�3) display nominal significance

in Caribbean Hispanic families while ACE (RV-NPLPairs
p ¼ 2.8 3 10�2, RV-NPLAll p ¼ 2.8 3 10�2) and SORL1

(RV-NPLPairs p ¼ 1.6 3 10�2, RV-NPLAll p ¼ 1.5 3 10�2)

are nominally significant in European families.

For PSMF1 (RV-NPLPairs p ¼ 1.2 3 10�5, RV-NPLAll p ¼
1.6 3 10�4), seven out of eight missense RVs observed

segregate in 14 families with increased RV minor allele

sharing, and five RVs are located in conserved nucleotide

sites (Table S4). For PTPN21 (RV-NPLPairs p ¼ 9.5 3 10�5,

RV-NPLAll p ¼ 1.43 10�5), six missense RVs were observed

segregating in eight families with enhanced minor RV

allele sharing (Table S5). For ABCA7, 13missense RVs segre-

gate in 20 pedigrees with RV allele sharing greater than ex-

pected under the null hypothesis of no linkage (Table S6).

For ACE, three missense RVs were observed in three linked

pedigrees, and two of these RVs are conserved and deemed

deleterious by at least six bioinformatics tools (Table S7).

Two missense RVs in EPHA1 were observed in three pedi-

grees with linkage, and both RVs are located in conserved

sites and deemed deleterious by at least six bioinformatics

tools (both have CADD scaled C-scores ¼ 35, Table S8). For

SORL1, seven missense RVs were segregating in seven ped-

igrees with increased sharing. Five of the segregating RVs

are conserved and deemed deleterious by at least four of

seven bioinformatics tools (Table S9). Pedigrees segregating

variants in ABCA7, ACE, EPHA1, PSMF1, PTPN21, and

SORL1 are shown in Figure S2 and Table S1.
Discussion

We developed the RV-NPL, to perform aggregated rare-

variant NPL analysis, using the CHP method.18 Based on

simulation studies, we demonstrated that RV-NPL has

well-controlled type I error. It is a powerful approach to

map complex trait loci with familial aggregation and is

robust to locus and allelic heterogeneity as well as inclu-

sion of non-causal variants.

Parametric linkage analysis should be used for Mende-

lian traits, since NPL methods will be less powerful.

However, when the genetic model is unknown (which is

usually the case for complex traits), NPL is more powerful

than parametric linkage analysis,67 since for parametric

linkage analysis incorrect specification of the disease and

penetrance model will lead to a severe loss in power. The

power of the NPL is not affected by an unknown underly-

ing genetic model, since it is not specificed.17 Therefore for

the analysis of complex trait family data, NPL and not

parametric linkage analysis should be used.

RV-NPL has several major advances over traditional NPL

methods. First, it is more powerful than traditional

multipoint NPLmethods under a variety of simulation sce-

narios. Additionally, analyzing RVs instead of common

ones provides better resolution of the linkage region, usu-
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ally to within a gene or a small genomic region, which is

demonstrated in the analysis of the ADSP pedigrees.

Applying NPL methods to analyze common variants led

to large genetic intervals, due to their LD structure in fam-

ilies.68,69 In contrast, two factors that aid in fine mapping

of loci for RVs are their low levels of LD and the fact that

linked variants often differ between families. Moreover,

resolution can be further refined when recombination

events occur within a gene region, allowing linkage signals

to be mapped to sub-units of a gene divided by

recombination.

Unlike for parametric linkage analysis where locus het-

erogeneity can be modeled in the linkage framework,

NPLmethods do not allow for the incorporation of linkage

admixture into the analysis, which for common variant

analysis can greatly attenuate power. For RV linkage anal-

ysis, there is very little loss in power with the presence of

locus heterogeneity because unlinked regions usually do

not contain informative variants and thus do not

contribute to confounding RV-NPL analysis. This is advan-

tageous for the analysis of complex traits due to extensive

locus heterogeneity.

It has previously been demonstrated that NPL methods

are robust to population substructure and admixture be-

tween and within families.20 For linkage analysis, in the

presence of missing data, type I error can be increased

when incorrect allele frequencies are used in the anal-

ysis.40 For each family, population-specific allele

frequencies should be used. For example, when the ADSP

admixed Caribbean Hispanic families were analyzed, allele

frequencies were obtained from the gnomAD AMR popula-

tion while for the ADSP European-Americans allele fre-

quencies from the NFE were used, to avoid an increase in

type I error due to the use of incorrect allele frequencies.

No inflation of type I error was observed when mega-anal-

ysis was used to analyze families of European and Carib-

bean Hispanic ancestry. Although for family-based RV

aggregate association analysis type I error can be well

controlled when there is population admixture and sub-

structure,20,70 an additional problem is that inclusion of

non-causal variant can attenuate the signal when the un-

derlying genetic etiology varies by ancestry. Using RV-

NPL, families of different ancestries can be analyzed

jointly, since linkage is robust to inclusion of families

that are not linked to the same loci and non-causal

variants.

Though family data can provide several benefits in map-

ping causal RVs, family-based studies do have drawbacks.

The recruitment of probands and their relatives is more

time consuming and expensive compared to the ascertain-

ment of unrelated individuals. Pedigrees often have diverse

structures and so it is necessary to be able to analyze multi-

plex pedigrees. The NPLmethod lends itself well to this sit-

uation. Additionally, parental data are often unavailable

for families, in particular for late-onset diseases. RV-NPL

has only a minimal power loss when founders and parents

were missing their genotype data, and for the analysis of
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the ADSP pedigrees that include complex multi-genera-

tional pedigrees that have a large proportion of founders

missing all variant data, type I error was well controlled.

As suggested by Lander and Kruglyak,45 a LOD score of

3.8 was used as the significance threshold to control the

family-wise error rate and provide a genome-wide signifi-

cance level of 0.05 regardless of the marker loci density.

Although Lander and Kruglyak proposed different thresh-

olds depending on the observed pedigree relationships,

e.g., sibpairs or uncle-nephew, and then weighting signifi-

cance levels based on the proportion of each family type,

here we apply the most stringent level suggested, a LOD

score of 3.8 (p ¼ 1:53 10�5) regardless of pedigree

structure.

Our study observed excess RV sharing for PSMF1 among

affected members of fourteen pedigrees and for PTPN21

among affected members of eight pedigrees (Table S1).

None of the affected RV carriers in these pedigrees are pos-

itive for the APOE ε4 allele. For PSMF1, there are three

European families and eleven Caribbean Hispanic families

with RV allele with increased minor allele sharing. Among

the eight pedigrees with increased minor allele sharing in

PTPN21, seven are Caribbean Hispanic and one is Euro-

pean. Different RVs were found in Caribbean Hispanic

and European pedigrees: in PSMF1, seven of the eleven

Caribbean Hispanic pedigrees and none of the European

pedigrees displayed linkage to rs79465651 which is a

conserved nucleotide site. For PTPN21, rs150736820 had

increased minor allele sharing in the European pedigree,

but was not observed in the seven Caribbean Hispanic ped-

igrees; while rs3825676 had increased minor allele sharing

in three out of seven Caribbean Hispanic pedigrees. For

both genes, the linkage signals from ancestry specific ana-

lyses are weaker than those from the combined pedigrees,

suggesting the potential benefit of performing mega-

analysis.

LOAD associations with common and rare variants in

PSMF1 were previously reported. A small LOAD GWAS

study (124 cases) of Israeli Arabs with a low frequency of

APOE ε4 carriers reported several common variants associ-

ations in the PSMF1 gene region with the most significant

SNV having a p ¼ 3.6 3 10�5.46 Associations were also

observed in the Alzheimer disease Genetics Consortium

(ADGC) and the International Genomics of Alzheimer’s

Project (IGAP) datasets. For the ADGC study with 1,968

African- American LOAD cases an association was observed

with variant rs35517343 (MAF 0.014 p ¼ 1.9 3 10�6)

which is in the splice region of PSMF1.47 Rs35517343 is

extremely rare in non-African populations. The discovery

stage of the IGAP study in individuals of European ancestry

observed a nominal significance of p ¼ 1.63 10�3 with RV

rs202107404 (MAF ¼ 0.00002) which lies in the intronic

region of PSMF1.48 Functional studies also provide support

to PSMF1 potential role in AD etiology. PSMF1 encodes a

protein that, through the 11S and 19S regulators, inhibits

the activation of the 26S proteasome, which regulates Ab

metabolism and tau degradation. The functional impair-
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ment of 26S proteasome, especially in neurons, decreases

the activity of a-secretase and leads to the production

and accumulation of Ab,52 which is an important feature

of AD, therefore suggesting the potential involvement of

PSMF1 in AD etiology via inhibiting the function of 26S

proteasome. For PTPN21, a previous causalmediation anal-

ysis combining large-scale GWAS and brain gene expres-

sion data for Europeans, identified this gene as a strong

causal mediator for AD.49 It has also been found to pro-

mote neuron survival through ErbB4/NRG3 pathway and

increase neuritic length,53 which is vital for maintaining

normal neuronal function, suggesting a potential impor-

tant role in neural development. A previous GWAS study

found PTPN21 significantly associated with schizo-

phrenia,51 suggesting its involvement in the pathogenesis

of neural diseases.

Four known AD-associated genes (ABCA7, ACE, EPHA1,

and SORL1) displayed linkage signals with nominal signif-

icance in RV-NPL analysis of the ADSP data. A variety of

common variants inABCA7 have been identified as suscep-

tibility loci for LOAD through several GWAS analyses in

European and African American populations.47,48,54,56

For Europeans, RVs were also reported in several associa-

tion analyses of LOAD that were performed using targeted

sequencing of AD- associated genes.71–73 In a French case-

control sample, gene-level RV association analysis

identified a significance association between ABCA7 and

early-onset AD.74 In our study, ABCA7 displayed nominal

significance in Caribbean Hispanic, but not in European

families. Only weak association with RVs in ABCA7 were

previously reported for LOAD in Caribbean Hispanics72

and our finding lend support to its involvement in this

population. ACE was identified as a risk gene for LOAD

with significant association in European population48

and an Israeli Arab community,75 it could also impact the

risk of LOAD by regulating the level of Ab.76 ACE reached

nominal significance only in the analysis of the European

pedigrees. Previous associations for ACEwere only for com-

mon variants and this study suggests that functional rare

variants may also be involved. EPHA1 was first implicated

in LOAD etiology through the association of rs11767557, a

common variant in the promoter region, which was re-

ported in two LOAD GWAS meta-analyses of European

populations.54,55 Another associated common variant

was later found by a GWAS in European population.56

Additionally, a targeted sequencing study identified RV

rs202178565 to be significantly enriched in Caribbean

Hispanics LOAD patients.72 In our study, although

rs202178565 was not present, EPHA1 still displayed nom-

inal significance in Caribbean Hispanic pedigrees, support-

ing its involvement in Hispanics. Evidence of linkage in

Europeans was not observed for RVs in EPHA1. SORL1 is

associated with increased risk of both early- and late-onset

AD77,78 and it is involved in the AD etiology through aber-

rant trafficking and metabolism of the amyloid precursor

protein (APP)79 that could increase Ab. Both common var-

iants and RVs have been reported as LOAD risk loci in
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SORL1. In a family-based joint linkage and association

study on targeted sequence data, SORL1 RV rs143571823

showed significant segregation with disease in 87

Caribbean Hispanic LOAD families.57 For Europeans,

several GWAS meta-analyses identified significant associa-

tions between common variants in SORL1 and LOAD.56,77

Although none of the known risk variants were present in

ADSP analysis, SORL1 displayed nominal significance in

European but not in Caribbean Hispanic pedigrees. For

pedigrees that display linkage to ABCA7, ACE, EPHA1,

and SORL1 none of the affected pedigree members are pos-

itive for the APOE ε4 allele. Considering that the applica-

tion of RV-NPL in ADSP pedigrees focused on RVs, these

findings suggest that genes implicated with ADmay harbor

both common and rare susceptibility variants.

Although RV-NPL was used to analyze gene regions in

genomes, it can also be implemented to analyze complete

genomes, using recombination events as boundaries for

the regional locus. The ability to use recombination events

to aggregate variants is an advantage to RV association

methods where prior knowledge or a sliding window are

necessary to aggregate RVs outside of gene regions.

RV-NPL is a robust and powerful tool to map RVs for

complex disease segregating in families. Results from

extensive simulation studies and the analysis of the

ADSP data demonstrate the power and robustness of RV-

NPL, as well as its ability to finemap loci and to detect link-

age to individual genes. These characteristics make RV-NPL

an ideal method to elucidate the genetic etiology of com-

plex familial diseases. RV-NPL is implemented primarily

in Python with Cþþ extensions, and the software package

is publicly available online.
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Figure S1. Pedigree structures used for evaluation of intra-familial locus heterogeneity 

 

Pedigrees with intra-familial locus heterogeneity were simulated by generating genotypes on extended families with 

two branches with three of the four children in the last generation being affected (panel A) and analyzing pedigrees 

with all children affected (panel B), to mimic intra intra-familial locus heterogeneity 

 
A                                              B  

 
  



Figure S2. Pedigrees included in the analysis from the Alzheimer’s Disease Sequencing Project 

 

The 107 pedigrees (42 European pedigrees and 65 Hispanic pedigrees) which were analyzed. Squares represent males 

and circles females. Filled symbols are individuals affected Alzheimer’s disease and open symbols represent 

unaffected family members.  Those individuals shown in red have whole genome sequence data available, while those 

in black do not have available genotype data.  

 
1. European pedigrees  







 



 
2. Hispanic Pedigrees  











 

 



Figure S3. QQ plots for CHP-NPLPairs under the null hypothesis of no linkage 

 

One-thousand replicates of exomes were generated under the null hypothesis of no linkage for 2,000 affected sib-pairs 

without missing genotype date (panel A); 2,000 affected sib-pairs with founders missing all exome data (panel B); 

300 nuclear families with three affected siblings without missing genotype data (panel C); 300 nuclear families with 

three affected siblings with founders missing all exome data (panel D); 100 extended families without missing 

genotype data (panel E); and 100 extended families with founders missing all exome data (panel F); and analyzed 

using CHP-NPLPairs obtaining analytical p-values.   

 
 
  



Figure S4. QQ plots for CHP-NPLAll under the null hypothesis of no linkage 

 

One-thousand replicates of exomes were generated under the null hypothesis of no linkage for 2,000 affected sib-pairs 

without missing genotype date (panel A); 2,000 affected sib-pairs with founders missing all exome data (panel B); 

300 nuclear families with three affected siblings without missing genotype data (panel C); 300 nuclear families with 

three affected siblings with founders missing all exome data (panel D); 100 extended families without missing 

genotype data (panel E); and 100 extended families with founders missing all exome data (panel F); and analyzed 

using CHP-NPLAll obtaining analytical p-values.   

 
  



Figure S5. QQ plots for RV-NPLPairs under the null hypothesis of no linkage 

 

One-thousand replicates of exomes were generated under the null hypothesis of no linkage for 2,000 affected sib-pairs 

without missing genotype date (panel A); 2,000 affected sib-pairs with founders missing all exome data (panel B); 

300 nuclear families with three affected siblings without missing genotype data (panel C); 300 nuclear families with 

three affected siblings with founders missing all exome data (panel D); 100 extended families without missing 

genotype data (panel E); and 100 extended families with founders missing all exome data (panel F); and analyzed 

using RV-NPLPairs obtaining empirical p-values using 1,000,000 permutations. The observed plateau is due to the 

number of permutations performed. 

 
 
 
 
 
 
  



Figure S6. QQ plots for RV-NPLAll under the null hypothesis of no linkage  

 

One-thousand replicates of exomes were generated under the null hypothesis of no linkage for 2,000 affected sib-pairs 

without missing genotype date (panel A); 2,000 affected sib-pairs with founders missing all exome data (panel B); 

300 nuclear families with three affected siblings without missing genotype data (panel C); 300 nuclear families with 

three affected siblings with founders missing all exome data (panel D); 100 extended families without missing 

genotype data (panel E); and 100 extended families with founders missing all exome data (panel F); and analyzed 

using RV-NPLAll obtaining empirical p-values using 1,000,000 permutations. The observed plateau is due to the 

number of permutations performed. 

 
 
 

 

 

 

 



Figure S7. Power comparison for NPLPairs for nuclear families with three affected siblings 

 

Genotypes were generated for 300 nuclear families with three affected siblings conditional on affection status 

assuming a multiplicative model in which each causal variant within a gene region has an OR of 5.0. Analysis was 

performed using RV-NPLPairs, CHP-NPLPairs, and Multipoint-NPLPairs: with 100%, 75% and 50% of the variant being 

causal and the remaining non-causal (OR=1.0) (panel A); with only causal  nonsynonymous (NS) variants as well as 

with causal nonsynonymous (NS) and non-causal synonymous (S) variants (panel B); with 0%, 10%, 30%, and 50% 

of the founders missing all genotype data (panel C); and with no heterogeneity (NH), i.e. 300 linked families as well 

as with locus heterogeneity (H), i.e., 300 linked and 150 unlinked families (panel D). 
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Figure S8. Power comparison for NPLPairs on affected sibpairs 

 

Genotypes were generated for 2,000 nuclear families with affected sibpairs conditional on affection status assuming 

a multiplicative model in which each causal variant within a gene region has an OR of 5.0. Analysis was performed 

using RV-NPLPairs, CHP-NPLPairs, and Multipoint-NPLPairs: with 100%, 75% and 50% of the variant being causal and 

the remaining non-causal (OR=1.0) (panel A); with only causal  nonsynonymous (NS) variants as well as with causal 

nonsynonymous (NS) and non-causal synonymous (S) variants (panel B); with 0%, 10%, 30%, and 50% of the 

founders missing all genotype data (panel C); and with no heterogeneity (NH), i.e. 2,000 linked families as well as 

with locus heterogeneity (H), i.e., 2,000 linked and 1,000 unlinked families (panel D). 



 
 
 
  

Multipoint−NPLPairs CHP−NPLPairs RV−NPLPairs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10
0% 75

%
50
%

10
0% 75

%
50
%

10
0% 75

%
50
%

Po
we

r
A

Multipoint−NPLPairs CHP−NPLPairs RV−NPLPairs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NS
&S NS

NS
&S NS

NS
&S NS

Po
we

r

B

CHP−NPLPairs RV−CHPPairs CHP_rvibd

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 10
%

30
%

50
% 0% 10

%
30
%

50
%

Po
we

r

C

Multipoint−NPLPairs CHP−NPLPairs RV−NPLPairs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NH H NH H NH H

Po
we

r
D



Figure S9. Power comparison for NPLAll on extended families 

 

Genotypes were generated for 100 extended families conditional on affection status assuming a multiplicative model 

in which each causal variant within a gene region has an OR of 5.0. Analysis was performed using RV-NPLAll, CHP-

NPLAll, and Multipoint-NPLAll: with 100%, 75% and 50% of the variant being causal and the remaining non-causal 

(OR=1.0) (panel A); with only causal  nonsynonymous (NS) variants as well as with causal nonsynonymous (NS) and 

non-causal synonymous (S) variants (panel B); with 0%, 10%, 30%, and 50% of the founders missing all genotype 

data (panel C); and with no heterogeneity (NH), i.e. 100 linked families as well as with locus heterogeneity (H), i.e., 

100 linked and 50 unlinked families (panel D). 
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Figure S10. Power comparison for NPLAll on nuclear families with three affected siblings 

 

Genotypes were generated for 300 nuclear families with three affected siblings conditional on affection status 

assuming a multiplicative model in which each causal variant within a gene region has an OR of 5.0. Analysis was 

performed using RV-NPLAll, CHP-NPLAll, and Multipoint-NPLAll: with 100%, 75% and 50% of the variant being 

causal and the remaining non-causal (OR=1.0) (panel A); with only causal  nonsynonymous (NS) variants as well as 

with causal nonsynonymous (NS) and non-causal synonymous (S) variants (panel B); with 0%, 10%, 30%, and 50% 

of the founders missing all genotype data (panel C); and with no heterogeneity (NH), i.e. 100 linked families as well 

as with locus heterogeneity (H), i.e., 300 linked and 150 unlinked families (panel D). 
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Table S1: The Ethnicities of Alzheimer’s disease families included in the analysis 
Ethnicity Number of Families Family IDs 
Dominican 62 CU0002F, CU0003Fa, CU0004F^, CU0005Fa, CU0006F*a, 

CU0007F, CU0008F, CU0009Fc, CU0010F, CU0012F, 
CU0013Fa, CU0014F, CU0015F, CU0016Fa, CU0017F^, 
CU0018F, CU0019F^a, CU0020F, CU0022F, CU0023F*, 
CU0024F, CU0025F, CU0026F, CU0029F, CU0030F*a, 
CU0033F, CU0035F^, CU0036F, CU0037F, CU0038F*, 
CU0039Fa, CU0040Fa, CU0041Fa, CU0043Fc, CU0044Fa, 
CU0045Fc, CU0046F, CU0047F, CU0048F^, CU0049F*, 
CU0050F, CU0052F, CU0053F, CU0055F^, CU0057F, 
CU0058F, CU0059F, CU0060Fa, CU0064Fa, CU0065F, 
CU0067F*a, CU0068F^, CU0070F^a, CU0071Fa, CU0073F^a, 
CU0075F^, CU0076F*, CU0078Fa, CU0079F^, CU0081Fa, 
CU0082F, CU0083Fa 

European 
Descent 

41 LD0168F, LD0179F, LD0223F, LD0232F, LD0241Fd, 
LD0254F, LD0307F, LD0856F, LD0949F, LD1012Fd, 
LD1223F, LD1260F, LD1265F, LD1315Fb, LD1329F*, 
LD1579Fd, NC0049F, NC0131F, NC0205F^, NC0302F, 
UM0002F, UM0146F^b, UM0147Fd, UM0152F, UM0170F, 
UM0196Fd, UM0304F, UM0453F, UM0458F, UM0460F, 
UM0463F^b, UM0464F, UP0001F, UP0002F, UP0003F, 
UP0004Fd, UP0005F, UP0006F, UP0007F, UP0008F, 
VU0072F 

Puerto Rican 3 CU0032F, CU0042F, CU0051F 
Dutch Isolate 1 203d 

^Pedigrees with excess RV sharing for gene PSMF1. 
*Pedigrees with excess RV sharing for gene PTPN21. 
aPedigrees with excess RV sharing for gene ABCA7; bPedigrees with excess RV sharing for gene ACE;  
cPedigrees with excess RV sharing for gene EPHA1; dPedigrees with excess RV sharing for gene SORL1. 

  



 
Table S2. Type I error rate of CHP-NPL and RV-NPL at a-level of 0.05 and 0.005 
  Nuclear pedigree with two 

affected siblings  Nuclear pedigree with 
three affected siblings  Extended pedigree 

 a-level 5.0x10-2 5.0x10-3 1.5´10-5  5x10-2 5.0x10-3 1.5´10-5  5.0x10-2 5.0x10-3 1.5´10-5 

No 
missing 
genotype 

CHP-
NPLPairs 4.8´10-2 4.5´10-3 1.0´10-5  4.9´10-2 4.8´10-3 1.5´10-5  5.0´10-2 5.0´10-3 1.5´10-5 

CHP-
NPLAll 4.8´10-2 4.5´10-3 1.0´10-5  4.9´10-2 4.8´10-3 1.5´10-5  5.0´10-2 4.9´10-3 1.3´10-5 

RV-
NPLPairs 4.6´10-2 4.3´10-3 1.4´10-5  4.9´10-2 4.8´10-3 1.7´10-5  4.9´10-2 4.8´10-3 1.7´10-5 

RV-
NPLAll 4.6´10-2 4.3´10-3 1.4´10-5  4.9´10-2 4.9´10-3 1.6´10-5  4.9´10-2 4.9´10-3 1.0´10-5 

All 
founders  
missing 
genotype 

CHP-
NPLPairs 4.6´10-2 4.8´10-3 1.4´10-5  4.6´10-2 4.5´10-3 1.0´10-5  5.1´10-2 5.3´10-3 1.4´10-5 

CHP-
NPLAll 4.6´10-2 4.8´10-3 1.4´10-5  4.6´10-2 4.5´10-3 1.0´10-5  5.1´10-2 5.2´10-3 1.7´10-5 

RV-
NPLPairs 5.1´10-2 5.2´10-3 1.7´10-5  5.1´10-2 5.2´10-3 1.7´10-5  4.9´10-2 4.6´10-3 1.5´10-5 

RV-
NPLAll 5.1´10-2 5.2´10-3 1.7´10-5  5.1´10-2 5.2´10-3 1.6´10-5  5.0´10-2 4.8´10-3 1.5´10-5 

Exome-wide type I error was evaluated using data generated for 1000 exomes and analyzing each gene. Three 
different values for a-level are shown here: 5.0x10-2, 5.0x10-3 and 1.5´10-5. Type I error rate was calculated by 
dividing the total number of genes with a p-value equal or smaller than the a-level value by the number of genes 
analyzed across all 1000 generated exomes.  

  



Table S3. Power comparison of NPLPairs and NPLAll in intra-familial locus heterogeneity 
 RV-NPLPairs RV-NPLAll ZAll > ZPairs

a 

Without intra-familial 
locus heterogeneity 

0.6410 0.6411 69.08% 

With intra-familial  
locus heterogeneity 

0.2997 0.2870 38.52% 

Power was compared between RV-NPLPairs and RV-NPLAll in extended families with and without intra-familial 
locus heterogeneity.  
aProportion of total genes that have Z-scores of RV-NPLAll higher than that of RV-NPLPairs 

  
 



 
Table S4: Bioinformatic evaluation and frequencies of analyzed rare variants within PSMF1 
dbSNP rsID rs751905514*^ rs35236223*^   rs148476395*   rs146300768^    rs146612629 rs79465651*        rs148156083*^ rs758812434* 

hg19 position 20:1106192 20:1106214 20:1115798 20:1115864 20:1115870 20:1143797 20:1145081 20:1145111 
Reference Allele A G A C T T G G 
Alternate Allele G A G T A C A A 
cDNA change c.181A>G c.203G>A c.400A>G c.466C>T c.472T>A c.575T>C c.725G>A c.755G>A 
ACC p.Asn61Asp p.Arg68Gln p.Ile134Val p.Arg156Trp p.Phe158Ile p.Val192Ala p.Arg242His p.Ser252Asn 
MAFa 7.22x10-6 3.61x10-5 6.90x10-5 4.08x10-4 2.78x10-4 5.61x10-3 1.49x10-3 3.66x10-5 
MAF (NFE)b 1.58x10-5 3.16x10-5 1.07x10-4 5.53x10-5 3.95x10-4 7.26x10-4 2.50x10-3 0 
MAF (AMR)c 0 2.91x10-5 5.96x10-5 3.20x10-4 5.23x10-4 3.31x10-3 9.30x10-4 0 
GERP score 4.93 4.93 4.12 2.07 5.03 5.26 5.11 4.12 
PhyloP score 3.37 6.37 2.02 0.27 0.81 4.56 8.44 3.37 
CADD scored 18.7 34.0 6.0 23.9 22.6 12.7 28.4 12.1 
FATHMM tolerated tolerated tolerated tolerated tolerated tolerated tolerated tolerated 
MutationTaster disease causing disease causing disease causing polymorphism disease causing polymorphism disease causing polymorphism 
Polyphen-2 HVAR possibly 

damaging 
probably 
damaging 

benign probably 
damaging 

benign benign benign benign 

PROVEAN neutral deleterious neutral deleterious neutral neutral deleterious neutral 
SIFT tolerated damaging tolerated damaging tolerated tolerated tolerated tolerated 
LRT deleterious deleterious deleterious neutral neutral neutral deleterious deleterious 
Abbreviations: ACC, amino acid change; MAF, minor allele frequency; NFE, Non-Finnish European; AMR, Latino; CADD, Combined Annotation Dependent Depletion; 
FATHMM, Functional Analysis through Hidden Markov Models; PROVEAN, Protein Variation Effect Analyzer; SIFT, Sorting Intolerant From Tolerant. 
aMAFs are from gnomAD (Genome Aggregation Database) combining all populations; bMAFs are from gnomAD NFE population; cMAFs are from gnomAD AMR population; 
dScaled CADD score. 
*Variant is deemed as conserved nucleotide (both GERP and PhyloP scores > 1). 
^Variant is deemed damaging by at least four of seven bioinformatics tools (variant with CADD scaled C-score >15 is deemed to be deleterious). 

 
  



 Table S5: Bioinformatic evaluation and frequencies of analyzed rare variants within PTPN21 
dbSNP rsID rs141951135*^ rs150736820*^ rs143571855 rs3825676*^ rs149927113 rs138752198* rs146847601*^ 
hg19 position 14:88935348 14:88935351 14:88945312 14:88945407 14:88945485 14:88974290 14:89016641 
Reference Allele G G G C C T C 
Alternate Allele A A C G G C A 
cDNA change c.3308C>T c.3305C>T c.2463C>G c.2368G>C c.2290G>C c.425A>G c.121G>T 
ACC p.Pro1103Leu p.Pro1102Leu p.Asp821Glu p.Gly790Arg p.Val764Leu p.Gln142Arg p.Val41Leu 
MAFa 5.41x10-5 1.61x10-3 1.95x10-3 1.84x10-2 2.17x10-4 3.58x10-4 4.94x10-4 
MAF (NFE)b 3.58x10-5 2.73x10-3 1.85x10-5 1.95x10-2 0 6.00x10-4 7.90x10-6 
MAF (AMR)c 2.08x10-4 1.16x10-4 7.87x10-4 3.86x10-3 3.74x10-5 2.06x10-4 1.16x10-4 
GERP score 5.90 5.90 -6.17 4.66 -2.01 5.36 5.50 
PhyloP score 9.48 3.71 -1.29 5.10 0.88 2.42 7.60 
CADD scored 34.0 22.9 0.04 19.8 0.1 7.9 23.6 
FATHMM tolerated tolerated tolerated tolerated tolerated tolerated tolerated 
MutationTaster disease_causing disease causing polymorphism disease causing polymorphism disease causing disease_causing 
Polyphen-2 HVAR probably damaging benign benign probably damaging benign benign probably damaging 
PROVEAN deleterious deleterious neutral neutral neutral neutral neutral 
SIFT damaging damaging tolerated damaging tolerated tolerated tolerated 
LRT deleterious deleterious deleterious deleterious neutral neutral deleterious 
Abbreviations: ACC, amino acid change; MAF, minor allele frequency; NFE, Non-Finnish European; AMR, Latino; CADD, Combined Annotation Dependent Depletion; 
FATHMM, Functional Analysis through Hidden Markov Models; PROVEAN, Protein Variation Effect Analyzer; SIFT, Sorting Intolerant From Tolerant. 
aMAFs are from gnomAD (Genome Aggregation Database) combining all populations; bMAFs are from gnomAD NFE population; cMAFs are from gnomAD AMR population; 
dScaled CADD score. 
*Variant is deemed as conserved nucleotide (both GERP and PhyloP scores > 1). 
^Variant is deemed damaging by at least four of seven bioinformatics tools (variant with CADD scaled C-score >15 is deemed to be deleterious). 

 
  



Table S6: Bioinformatic evaluation and frequencies of analyzed rare variants within ABCA7 
dbSNP rsID rs146597357 rs151054304   NA*^   rs138055574    rs76282929^ rs149949633*^       rs111940546* 

hg19 position 19:1041922 19:1042353 19:1043175 19:1044672 19:1048898 19:1048950 19:1051209 
Reference Allele C C A G G G G 
Alternate Allele A T G A C A T 
cDNA change c.253C>A c.455C>T c.715A>G c.1144G>A c.2274G>C c.2326G>A c.2740G>T 
ACC p.Leu85Met p.Pro152Leu p.Asn239Asp p.Gly382Ser p.Gln758His p.Gly776Arg p.Ala914Ser 
MAFa 3.08x10-4 1.42x10-3 . 5.34x10-5 4.28x10-3 1.13x10-4 1.86x10-4 
MAF (NFE)b 4.95x10-5 2.44x10-5 . 2.38x10-5 6.58x10-5 1.95x10-4 0 
MAF (AMR)c 2.41x10-4 7.63x10-4 . 0 1.59x10-3 8.91x10-5 1.75x10-4 
GERP score 1.68 2.06 3.04 2.83 3.99 3.99 3.4 
PhyloP score 0.83 -0.85 2.17 0.73 -5.34 6.44 1.39 
CADD scored 13.4 7.4 20.4 8.8 25.3 28.6 8.16 
FATHMM damaging damaging damaging damaging damaging tolerated tolerated 
MutationTaster polymorphism polymorphism polymorphism polymorphism polymorphism disease_causing polymorphism 
Polyphen-2 HVAR benign benign probably 

damaging 
benign probably 

damaging 
probably 
damaging 

benign 

PROVEAN neutral neutral deleterious neutral deleterious deleterious neutral 
SIFT tolerated tolerated damaging tolerated damaging damaging tolerated 
LRT . . . . . . . 
Abbreviations: ACC, amino acid change; MAF, minor allele frequency; NFE, Non-Finnish European; AMR, Latino; CADD, Combined Annotation Dependent Depletion; 
FATHMM, Functional Analysis through Hidden Markov Models; PROVEAN, Protein Variation Effect Analyzer; SIFT, Sorting Intolerant From Tolerant. 
aMAFs are from gnomAD (Genome Aggregation Database) combining all populations; bMAFs are from gnomAD NFE population; cMAFs are from gnomAD AMR 
population; dScaled CADD score. 
*Variant is deemed as conserved nucleotide (both GERP and PhyloP scores > 1). 
^Variant is deemed damaging by at least four of seven bioinformatics tools (variant with CADD scaled C-score >15 is deemed to be deleterious). 

 
  



Table S6: Bioinformatic evaluation and frequencies of analyzed rare variants within ABCA7 (continued) 
dbSNP rsID rs947668738* rs114614802^ rs369849959 rs184590335*^   rs73505232*^ rs114782266^       
hg19 position 19:1053401 19:1054324 19:1056127 19:1057919 19:1058635 19:1059056 
Reference Allele G G G C C G 
Alternate Allele C A A T T A 
cDNA change c.3294G>C c.3710G>A c.4301G>A c.4886C>T c.5168C>T c.5435G>A 
ACC p.Glu1098Asp p.Arg1237His p.Arg1434His p.Ser1629Leu p.Ser1723Leu p.Arg1812His 
MAFa 6.37x10-5 2.38x10-3 2.52x10-5 1.29x10-3 1.21x10-2 1.06x10-2 
MAF (NFE)b 0 2.49x10-5 1.60x10-5 0 1.74x10-4 6.41x10-3 
MAF (AMR)c 1.19x10-3 1.03x10-3 8.76x10-5 9.47x10-3 5.01x10-3 5.35x10-3 
GERP score 1.25 3.64 -2.23 4.22 4.23 0.81 
PhyloP score 2.42 0.36 -0.98 7.64 2.03 4.26 
CADD scored 22.9 32.0 2.8 35.0 33.0 21.8 
FATHMM tolerated damaging damaging damaging damaging damaging 
MutationTaster polymorphism polymorphism polymorphism disease_causing polymorphism polymorphism 
Polyphen-2 HVAR benign probably damaging benign benign benign benign 
PROVEAN neutral deleterious neutral deleterious deleterious deleterious 
SIFT tolerated damaging tolerated damaging damaging damaging 
LRT . . . . . . 
Abbreviations: ACC, amino acid change; MAF, minor allele frequency; NFE, Non-Finnish European; AMR, Latino; CADD, Combined Annotation Dependent Depletion; 
FATHMM, Functional Analysis through Hidden Markov Models; PROVEAN, Protein Variation Effect Analyzer; SIFT, Sorting Intolerant From Tolerant. 
aMAFs are from gnomAD (Genome Aggregation Database) combining all populations; bMAFs are from gnomAD NFE population; cMAFs are from gnomAD AMR 
population; dScaled CADD score. 
*Variant is deemed as conserved nucleotide (both GERP and PhyloP scores > 1). 
^Variant is deemed damaging by at least four of seven bioinformatics tools (variant with CADD scaled C-score >15 is deemed to be deleterious). 

 
  



Table S7: Bioinformatic evaluation and frequencies of analyzed rare variants within ACE 
dbSNP rsID rs148943954*^ rs3730043*^   rs765069550 
hg19 position 17:61560846 17:61568577 17:61574683 
Reference Allele C C C 
Alternate Allele G T T 
cDNA change c.1513C>G c.2747C>T c.3877C>T 
ACC p.Pro505Ala p.Thr916Met p.His1293Tyr 
MAFa 5.37x10-4 4.02x10-3 2.26x10-5 
MAF (NFE)b 1.24x10-4 6.50x10-3 4.38x10-5 
MAF (AMR)c 7.34x10-4 1.55x10-3 0 
GERP score 4.90 4.25 -0.28 
PhyloP score 3.27 2.39 0.93 
CADD scored 25.4 28.8 15.1 
FATHMM damaging tolerated tolerated 
MutationTaster disease_causing disease_causing polymorphism 
Polyphen-2 HVAR possibly damaging probably damaging benign 
PROVEAN deleterious deleterious neutral 
SIFT damaging damaging damaging 
LRT deleterious deleterious neutral 
Abbreviations: ACC, amino acid change; MAF, minor allele frequency; NFE, Non-Finnish European; AMR, Latino; CADD, Combined Annotation Dependent Depletion; 
FATHMM, Functional Analysis through Hidden Markov Models; PROVEAN, Protein Variation Effect Analyzer; SIFT, Sorting Intolerant From Tolerant. 
aMAFs are from gnomAD (Genome Aggregation Database) combining all populations; bMAFs are from gnomAD NFE population; cMAFs are from gnomAD AMR 
population; dScaled CADD score. 
*Variant is deemed as conserved nucleotide (both GERP and PhyloP scores > 1). 
^Variant is deemed damaging by at least four of seven bioinformatics tools (variant with CADD scaled C-score >15 is deemed to be deleterious). 

  



Table S8: Bioinformatic evaluation and frequencies of analyzed rare variants within EPHA1 
dbSNP rsID rs139482378*^ rs139711610*^ 

hg19 position 7:143088584 7:143091417 
Reference Allele C C 
Alternate Allele T T 
cDNA change c.2897G>A c.2372G>A 
ACC Arg966His p.Arg791His 
MAFa 6.01x10-4 3.26x10-4 
MAF (NFE)b 1.12x10-3 1.55x10-5 
MAF (AMR)c 3.67x10-4 3.11x10-4 
GERP score 5.24 4.67 
PhyloP score 2.51 7.56 
CADD scored 35.0 35.9 
FATHMM tolerated damaging 
MutationTaster disease_causing disease_causing 
Polyphen-2 HVAR probably damaging probably damaging 
PROVEAN deleterious deleterious 
SIFT damaging damaging 
LRT deleterious deleterious 
Abbreviations: ACC, amino acid change; MAF, minor allele frequency; NFE, Non-Finnish European; AMR, Latino; CADD, Combined Annotation Dependent Depletion; 
FATHMM, Functional Analysis through Hidden Markov Models; PROVEAN, Protein Variation Effect Analyzer; SIFT, Sorting Intolerant From Tolerant. 
aMAFs are from gnomAD (Genome Aggregation Database) combining all populations; bMAFs are from gnomAD NFE population; cMAFs are from gnomAD AMR 
population; dScaled CADD score. 
*Variant is deemed as conserved nucleotide (both GERP and PhyloP scores > 1). 
^Variant is deemed damaging by at least four of seven bioinformatics tools (variant with CADD scaled C-score >15 is deemed to be deleterious). 

 
  



Table S9: Bioinformatic evaluation and frequencies of analyzed rare variants within SORL1 
dbSNP rsID rs1051430452*^ rs150609294*^ rs139710266*^   rs62617129 rs62622819  rs140327834*^       rs142884576*^ 

hg19 position 11:121360768 11:121384931 11:121384991 11:121444958 11:121485599 11:121495816 11:121498300 
Reference Allele A A A A T A C 
Alternate Allele G C G G A T T 
cDNA change c.707A>G c.1112A>C c.1172A>G c.3346A>G c.5439T>A c.6194A>T c.6401C>T 
ACC p.Asp236Gly p.Asn371Thr p.Tyr391Cys p.Ile1116Val p.His1813Gln p.Asp2065Val p.Thr2134Met 
MAFa 3.98x10-6 1.37x10-3 3.18x10-5 5.31x10-3 4.99x10-3 2.54x10-3 3.29x10-4 
MAF (NFE)b 8.79x10-6 2.17x10-3 4.40x10-5 8.25x10-3 8.97x10-3 4.10x10-3 5.89x10-4 
MAF (AMR)c 0 1.41x10-4 0 2.65x10-3 1.89x10-3 1.53x10-3 5.64x10-5 
GERP score 5.68 5.66 5.56 -5.57 -8.35 5.32 5.74 
PhyloP score 8.73 9.24 9.24 -0.74 -1.34 8.64 2.63 
CADD scored 33.0 24.1 25.0 0.05 9.4 25.5 23.9 
FATHMM tolerated tolerated tolerated damaging tolerated tolerated damaging 
MutationTaster disease_causing disease_causing disease_causing polymorphism disease_causing disease_causing disease_causing 
Polyphen-2 HVAR probably 

damaging 
possibly 
damaging 

probably 
damaging 

benign benign probably 
damaging 

benign 

PROVEAN deleterious deleterious deleterious neutral neutral deleterious neutral 
SIFT damaging damaging tolerated tolerated tolerated tolerated damaging 
LRT deleterious deleterious deleterious neutral neutral  deleterious neutral 
Abbreviations: ACC, amino acid change; MAF, minor allele frequency; NFE, Non-Finnish European; AMR, Latino; CADD, Combined Annotation Dependent Depletion; 
FATHMM, Functional Analysis through Hidden Markov Models; PROVEAN, Protein Variation Effect Analyzer; SIFT, Sorting Intolerant From Tolerant. 
aMAFs are from gnomAD (Genome Aggregation Database) combining all populations; bMAFs are from gnomAD NFE population; cMAFs are from gnomAD AMR 
population; dScaled CADD score. 
*Variant is deemed as conserved nucleotide (both GERP and PhyloP scores > 1). 
^Variant is deemed damaging by at least four of seven bioinformatics tools (variant with CADD scaled C-score >15 is deemed to be deleterious). 
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