1	Biochemical and Structural Insights Concerning Triclosan Resistance in a Novel YX7K
2	Type Enoyl-Acyl Carrier Protein Reductase from Soil Metagenome
3	
4	Running title: Triclosan resistant enoyl-ACP reductase in eukaryotes and prokaryotes
5	
6	Raees Khan ^{a,b} [‡] , Amir Zeb ^c [‡] , Kihyuck Choi ^a , Gihwan Lee ^c , Keun Woo Lee ^{c*} , Seon-Woo
7	Lee ^{a*}
8	
9	^a Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
10	^b Department of Biological Sciences, National University of Medical Sciences, Rawalpindi
11	46000, Pakistan
12	^c Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and
13	Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS),
14	Gyeongsang National University, Jinju 52828, Republic of Korea
15	
16	*Corresponding author Seon-Woo Lee
17	Email: seonlee@dau.ac.kr
18	TEL: +82-51-200-7551
19	FAX: +82-51-200-7505
20	or
21	Keun Woo Lee
22	Email: kwlee@gnu.ac.kr
23	TEL: +82-55-772-1360
24	FAX: +82-55-772-1359
25	[†] These authors contributed equally to this work.

[Fig. S1, Raees Khan et al.]

Fig. S1. Site-directed mutagenesis using overlap extension PCR to substitute A128V. The FabI2 gene sequence along with additional nucleotides on the 5' and 3' ends (for primer designing and promoter regions) were divided into two regions; A and B. Region "A" contain the A128 encoding region of FabI2 which will be substituted with V128, already incorporated in the RVYX7-A primer. Fragments "A" and "B" were amplified using mentioned primers which carries complementary overlapping nucleotide sequences (presented as gray overhangs) for the purpose of fusion PCR. Both fragments were finally fused using primers FWYX7-A and RVYX7-B to create mFabI2 with the A128V substitution.

[Fig. S2, Raees Khan et al.]

Fig. S2. Distance tree of FabI2 ENR. Fast minimum evolution method based phylogenetic tree was constructed using the "Distance tree of results" option of the NCBI blastp results. The closest 250 hits were selected, sharing 66-84% identity to FabI2. The maximum sequence difference was set at 0.85 and the scale bar represents 0.09 estimated amino acid substitutions per residue. Label color for the query is yellow, whereas for other closest hits various label colors has been assigned. The size of the leave represents the number of hits corresponding to it.

Fig. S3. Purification of Fab12 protein. (A) FPLC chromatogram of Fab12 protein. Red arrow indicates the chromatogram peak corresponding to desired fusion protein (B) Fab12 protein was purified by affinity chromatography. Gel electrophoresis indicate the purity of Fab12 protein. Lane 1, standards; lane 2, uninduced *E. coli* DE3 cultures (+ve control) carrying FabL2 in pET-30b(+); lane 3, Uninduced *E. coli* DE3 cultures carrying FabL2 in pET-30b(+); lane 4, *E. coli* DE3 cultures carrying FabL2 in pET-30b(+) 2 hours post IPTG (1 mM) induction; Lane 5, *E. coli* DE3 cultures carrying Fab12 in pET-30b(+) 4 hours post IPTG (1 mM) induction; Lane 7, *E. coli* DE3 cultures carrying Fab12 in pET-30b(+) 4 hours post IPTG (1 mM) induction; Lane 7, *E. coli* DE3 cultures carrying Fab12 in pET-30b(+) 4 hours post IPTG (1 mM) induction; Lane 8 purified Fab12 (37.74 kDa) protein (cropped from a separate SDS gel picture and merged here). (C) Enzyme activity of the purified Fab12 protein in 100 mM sodium phosphate buffer (pH; 6.5-8). (D) Enzyme activity of the purified Fab12 protein in 100 mM sodium phosphate buffer and at pH 6.2 for sodium citrate buffer. Orange bar represents enzyme unit (Unit/ml) of Fab12 and gray bar represents specific activity, whereas the blue bars represents change in absorbance per minute.

[Fig. S4, Raees Khan et al.]

Fig. S4. Validation of FabI2 and mFabI2 models. Ramachandran plots of phi/psi (Φ/Ψ) distribution of homology models, calculated by PROCHECK, of (A) FabI2 and (C) mFabI2. The Z-score plot for modeled structures of (B) FabI2 and (D) mFabI2. Both the analyses suggested that modeled structures of FabI2 and mFabI2 were reasonably accurate and were within the range typically observed for native proteins of similar size.

[Fig. S5, Raees Khan et al.]

Fig. S5. Structure of BnENR (template) and superimposition of BnENR, FabI2 and mFabI2. (A) Crystal structure of *Brassica napus* Enoyl-acyl carrier protein reductase (BnENR, PDB ID: 1D7O) has been used as template for homology modeling of FabI2. NADH and TCL are depicted as sticks representations. (B) Superimposition of BnENR and FabI2 in complex with NADH and TCL. Structure of BnENR is shown as green wire representation, while FabI2 is depicted as magenta wire representation. Color scheme for NADH and TCL is tailing their respective protein partner and are shown as sticks representation. (C) Superimposition of BnENR and mFabI2 in complex with NADH and TCL. Structure of BnENR and its associated NADH and TCL is shown as green wire and sticks model, respectively. mFabI2 and its associated NADH and TCL are colored blue. (D) Superimposition of FabI2 and mFabI2 in complex with NADH and TCL are shown as sticks. Magenta and blue colors reflect FabI2 and mFabI2, respectively.

[Fig. S6, Raees Khan et al.]

FabI2	BTISLTYMASEKAVPG	YGG-GMSSAK	AALESDNRVLAWEAGRK	→ Metagenomic Fabl2
Q9SLA8	ASISLTYIASERIIPG	YGG-GMSSAK	AALESDTRVLAYEAGRK	
A0A061GSG8	SSISLTYIASERIIPG	YGG-GMSSAK	AALESDTRVLAFEAGRK	
A0A0A0LXD8	SSISLTYIASERIIPG	YGG-GMSSAK	AALESDTRVLAFEAGRK	
B8BXA1	NMLSLTYIASEKVIPG	YGG-GMSSAK	AQLESDTRTLAFEAGRK	Fabi2 nomologues having
B9T5D7	SSISLTYIASERIIPG	YGG-GMSSAK	AALESDTRVLAFEAGRK	YX ₇ K type catalytic domain
U6GHH8	AALALSYIASERVIPG	YGG-GMSSAK	AALESDCRTLAFEAGRQ	
Q6X5U8	SILSLTFIASERVVPG	YGG-GMSSAK	AQLESDTKVLAWEAGRK	
Q6TEI5	SVVSLTYQASQKVVPG	YGG-GMSSAK	AALESDTRVLAYYLGRK	
FabI	ALLTLSYLGAERAIPN	YNVMGLAK	ASLEANVRYMANAMGPE	Prototypic Fabl
067505	AIVTLSYYGAEKVVPH	YNVMGIAK	AALESTVRYLAYDIAKH	
C6J746	SIMTMTYMGSERVMRN	YNVMGVAK	AGLEASVRYLANDLGPK	
Q3A2X2	SVLTMTYLGAQRAVPN	YNVMGVAK	AALEASVRYLAAEVGSQ	
Q820V5	GIVTLTYLGSERAIPN	YNMMGIAK	ASLETAVKYLAFELAAD	Fahl homologues having
LORE87	SVMAMTYLGASKVITN	YNVMGVAK	AALEASVRYLSSDMGSS	VX K type catalytic domain
Q81GI3	NILTLTYLGGERVVKN	YNVMGVAK	ASLEASVKYLANDLGQH	176 type catalytic domain
024990	SVLTLSYLGSTKYMAH	YNVMGLAK	AALESAVRYLAVDLGKH	
WP 037465251	TIVTLTHMGSERVLPH	YHVMGVAK	AGLESSIRYLANELGPA	
B9M6K7	SILALTYYGGQKVFPN	YNVMGVAK	AALEMSIRYLAEAVGPE	
P73016	SIITLTYFGGVKVIPN	YNLMGVAK	AGLEMTVRYLAAELGPQ	
FABL bas sub	HIVSISSLGSIRYLEN	YTTVGVSK	AALEALTRYLAVELSPK	Prototypic FabL
B3QVF0	KIVALSSIGSLRCLPA	YAAVGTAK	AGLEAMVKYLAVELGPK	1
A0A098G835	RVVALSSLGASRAIPN	YAFIGASK	AALESLVRSLSLELAIY	
WP 038326851	RIVAMSSLGAQRAMPH	YGFIGASK	AALESLVRTLAQELGPR	
A0A098GBD7	RVIALSSLGAHRAIPN	YGFIGASK	AALEALVRSLSLELAEY	
WP 044743084	KIVSISSLGSIRYLEN	YTAVGVSK	AALEALTRYLAVELAPK	Fabl nomologues having
A0A0E0T904	KIVSISSLGSIRYLEN	YTAVGVSK	AALEALTRYLAVELAPK	YX ₆ K type catalytic domain
WP 035487157	AMLALSSFGSERVFPY	YTSVGASK	AALEALVRYLAVELAPR	
J9HD84	AMLALSSFGADRVFPY	YVSVGSSK	AALESIVRYFAIELAPR	
WP 028582575	RIITISSLGSVRALPD	YTAVGASK	AALESLVRHLAVELGPK	
W7B1Y2	KIIGVSSIGAIRYLEN	YTTVGVSK	AAVESLTRYLAVELAPL	
FabL2	AVVTMSSTGNLIYIEN	YAGHGINK	AAVEAM SRY AAVELGEM	→ Prototypic FabL2
CJ-lab7alpha	SIISISSTGNLVYIEN	YSGHGTAK	AAVEAMA RY AATELGEK	1
HPLAB-7ALP	AIVSLSSTGNLVYMPN	YAGHGNSK	NAVETMVKYAAVDLGEF	
Q17WU6	AIVSLSSTGNLVYMPN	YAGHGNSK	NAIETMVKYAAVDLGEF	Fabi 2 hamala maa haada a
IOETE1	AIVSLSSTGNLVYMPN	YAGHGNSK	NAVETMVKYAATDLGEF	FabL2 nomologues having
T2SLB2	AIVSLSSTGNLVYMPN	YAGHGNSK	NAVE	YX ₆ K type catalytic domain
WP 029520276	KIIAISSTGTRDYMPN	YAIНGААК	SALEALVRYAAVEFGPK	
WP 029523144	KIIAISSTGTRDYMPN	YAIНGААК	SALEALVRYAAVEFGPK	
FabV Vib Albensis	KTVAYSYIGTELTWPI	YWDGALGRAK	MDLDRAATALNEKLAAK	Prototypic FabV
A0A0H6Q9B8	KTVAYSYIGTELTWPI	YWDGALGRAK	MDLDRAATALNEKLAAK	1
Q2P9J6	RSVAFSYIGTEITWPI	YWHGALGKAK	VDLDRTAQRLNARLAKH	
A0A160SZK9	KTISYSYIGTSITWPI	YRHGTLGKAK	EHLENTAKNINKKLKFN	
Q62L02	KTTAFTYLGEQVTHDI	YWNGSIGEAK	KDLDRTVLALRGKLAAR	FabV homologues having
H9UIZ3	VTLALSYIGPEITTAV	YRDGTIGQAK	KHLEKTAHSLSESLKDI	VX K type catalytic domain
A0A098G1G8	ITVAYSYIGPPVSHAI	YKDGTIGKAK	EHLQQTAHKLNQKLEKI	inght type catalytic utilidin
Q73Q47	ITLAYSYIGPEATOAL	YRKGTIGKAK	EHLEATAHRLNKENPSI	
Q6LP67	KTVAYSYVGPKATYSI	YHQGTLGRAK	AHLHATADQLNDKMSEM	
A0A143XGL5	RTVAYSYIGPEMTYPI	YTEGTIGOAK	QHLYHTALQLNAEGI	l

Fig. S6. The YX₇K catalytic domain was unique to metagenomic FabI2 ENR and its homologs from UniRef50

database. Multiple alignment (partial) of metagenomic FabI2 ENR and its homologs with prototypic well characterized ENRs and their homologs from UniRef50 database. The YX_7K catalytic domain (boxed in red) was unique to FabI2 ENR and was strictly conserved among its homologs. On the other hand, other prototypic ENRs has different catalytic domains; FabI (YX_6K type, boxed in green), FabL (YX_6K type, boxed in dark yellow), FabL2 (YX_6K type, boxed in dark brown), and FabV, (XX_6K type, boxed in green).

 $(YX_8K type, boxed in cyan).$

·	310	320	330	340	350
FabT2	MNAGGSTIS	LTYMASEKAVPO	YGGGMSSAK	AALESDNRVL	AWEAGRKWG
WP 032125249.1	LNAGGSALS	LTYLASEKIIPO	YGGGMSSAK	AALESDTRTL	AWEAGRKWS
WP 059060327.1	LNAGGSALS	LTYLASEKIIPO	YGGGMSSAK	AALESDTRTL	AWEAGREWS
AUX13448.1 eno	MEDGGSAIN	LTILASERAVPO	YGGGMSSAK	AALESDTRTL AALESDTRTL	AWEAGREWN
OGN53367.1 eno	MPALGASLS	LSYIASERAIPO	YGGGMSSAK	AALESDTRTL	AFEAGRKWG
PIS02783.1 eno	MNQGGSVLS	LTYIASERVIPO	YGGGMSSAK	AALESDTRTL	AWEAGRKWN
OJV07209.1 eno	MNPGGATLS	LTYIASEKAIPO	YGGGMSSAK	AALESDTRSL	AWEAGRKWN
WP 041418840.1	MPPGSSALN	LTYLASERAVPO	YGGGMSSAK	AALESDTRTL	AWEVGRKWG
WP 042239046 1	INAGGATLS	LTYIASEKAIPO	YGGGMSSAK	AALESDIRIL	AWEAGREWN
WP 044882332.1	INAGGATLS	LTYIASEKAIPO	YGGGMSSAK	AALESDTRTL	AWEAGRKWN
KIC73781.1 Eno	INAGGATLS	LTYIASEKAIPO	YGGGMSSAK	AALESDTRTL	AWEAGRKWN
WP 039384665.1	INAGGATLS	LTYIASEKAIPG	YGGGMSSAK	AALESDTRTL.	AWEAGRKWN
WP 042103672 1	MPPGSSCIS	LTYIAAEKVIPO	YGGGMSSAK	AALESDTOVL	AFEAGREWN
WP 088245030.1	MREGGSVLS	LTYLASERVVPO	YGGGMSSAK	AALESDTRTL	AWEAGRKWG
PCI94168.1 eno	MSHGGSCLT	LTYIASERAVPO	YGGGMSSAK	AALESDTRTL	AFEAGRKWG
WP 013925330.1	MNAGGSTLS	LTYIASEKAIPO T.TVIASEKAIPO	YGGGMSSAK	AALESDTRTL	AWEAGREWN
OGN56192.1 eno	MNEGGAALC	LTYIASERAIPS	YGGGMSSAK	AALESDTRTL	AWEAGRKWN
CCB91849.1 Eno	MNAGGSAIS	LTYFASERAVPO	YGGGMSSAK	AALESDTRIL:	SWEAGRKWK
WP 013181731.1	MNAGGSAIS	LTYFASERAVPO	YGGGMSSAK	AALESDTRIL:	SWEAGRKWK
GAQ86187.1 Pla	MTQGGATVS	LTYFASEKVIPC T.TYTASERTIPC	YGGGMSSAK	AALESDTQVL	AWEAGREYG
CDZ80974.1 Eno	MNEGAATIS	LTYAASEKAIPO	YGGGMSSAK	AALESDTRVL	AYEAPRKFG
PNR39341.1 hyp	MNPGGSSLS	LTYVASEQUIPO	YGGGMSSAK	AALESDTRVL	AFEVGRKYG
CDP10132.1 unn	MNPGGATIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHR
XP 015898944.1	MNPGGATIS	TULITASERTIPO TULITASERTIPO	YGGGMSSAK	AALESDTRVL AALESDTRVL	AFEAGERHN
XP 001768068.1	MNPGGSSLS	LTYVASEQUIPO	YGGGMSSAK	AALESDTRVL	AFEVGRKYG
XP 022020754.1	MNRGGATIS	LTYIASERIIPO	YGGGMSSAK	AALESDTQVL	AFEAGRKHG
XP 023914015.1	MNPGGASIS	LTYIASERIIPO	YGGGMSSAK	AALESDTQVL	AFEAGRKHK
WP 013/12/5/.1 PON52209 1 Clu	MNPGGASTS	LTYIASMKAVPG LTYIASEKTTPG	YGGGMSSAK	AALESDTKTL AALESDTRVU	AFEAGREHE
WP 021756559.1	MNSGGCTIS	LTYLASMRAVPO	YGGGMSSAK	AALESDIKTL	AWEAGRRWN
POF25828.1 eno	MNPGGASIS	LTYIASERIIPO	YGGGMSSAK	AALESDTQVL	AFEAGRKHK
ACZ06071.1 eno	MNPGGSSIS	LTYIASEKIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKRK
XP 004142140.1 WP 063329268 1	MNSGGCTIS	LTYLASMRAVPO	YGGGMSSAK	AALESDIKUL	AWEAGRRWN
PON81019.1 Glu	MNPGGASIS	LTYIASEKIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHK
XP 017623717.1	MNPGGSSIS	LTYIASERVIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHK
AJQ20621.1 Eno XP 008449761 1	INPGGSSIS	LTYIASERIIPG	YGGGMSSAK	AALESDTRVL	AFEAGRAHA
XP 022944685.1	INPGGSSLS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHK
XP 017430721.1	LNPGGSSIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKRK
ACJU/149.1 eno VP 012472974 1	MNPGGSSIS	LTYIASERIIPG LTYIASERIIPG	YGGGMSSAK	AALESDTRVL	AFEAGRARA
XP 014502579.1	LNPGGSSIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKRK
KTF28607.1 eno	MNSGGCTIS	LTYLASMRAVPO	YGGGMSSAK	AALESDTKTL	AWEAGRRWN
XP 006660484.1	MAPGGATIS	LTYLASERTIPO TTYLASOBATPO	YGGGMSSAK	AALESDTRVL. AALESDTRVL.	AYEAGREGE
XP 011078829.1	MNPGGATIS	LTYIASEKIIPO	YGGGMSSAK	AALESDIKVL	AFEAGRKHN
XP 017433127.1	LNPGGSSIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKRK
ACJ07148.1 eno	MNPGGSSIS	LTYLASEKIIPC LTYLASMRAVPC	YGGGMSSAK	AALESDTRVL	AFEAGREEK.
XP 019450932.1	LNPGGASIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKRK
WP 068470377.1	MNPHGSALS	LTYLASERVIPO	YGGGMSSAK	AALESDTQTL	AWEAGRKWN
XP 022985712.1	MNSGGCTIS	LTYLASERIIPC TTYLASMRAVPC	YGGGMSSAK	AALESDTRVL	AFEAGRERE
XP 023513365.1	INPGGSSLS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHK
XP 010265894.1	MNPGGSAIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHK
WP 011175702.1	LNSQGSALT	LTYLASEKIIPO	YGGGMSSAK	AALESDTRTL	AWEAGREWN
XF 022154116.1 WP 010883049 1	MNRGGSTTS	LTYLASMRAVPO	YGGGMSSAK	AALESDTRVL	AWEAGRRWG
XP 009348968.1	MNPGGASLS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHN
WP 080126519.1	MNEGASTIS	LTYLASTRAVPO	YGGGMSAAK	AALESDTKVL	AWEAGRRWG
XP 009348967.1 XP 014492520 1	INPGGASLS	TUTTIASERTIPO TUTYTASERTIPO	YGGGMSSAK	AALESDTRVLA AALESDTRVLA	AFFAGRKHN
BAT81583.1 hvp	LNPGGSSIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKRK
WP 035405642.1	MNEGASTIS	LTYLASMRAVPO	YGGGMSAAK	AALESDTKVL	AWEAGRRWG
WP 080124232.1	MNEGASTIS	LTYLASMRAVPO LTYTAGEDTTDC	YGGGMSAAK	AALESDTKVL	AWEAGRRWG
AP 009369620.1 ADV16377 1 ere	MNPGGASIS	LTYIASERTIPO	YGGGMSSAK	AGLESDTOVL	AFEAGREER
KZV36401.1 NAD	MNPGGSTIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHN
XP 008387259.1	MNPGGASLS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHN
XP 011025228.1	MNRGGSSIS	LTYIASERIIPC LTYIASERIIPC	YGGGMSSAK	AALESDTRVL	AFEAGRENE AFFAGRENN
WP 010230294.1	MNEGASTIS	LTYLASMRAVPO	YGGGMSAAK	AALESDTKVL	AWEAGRRWG
WP 009873559.1	MNAGASTIS	LTYLASMRAVPO	YGGGMNAAK	AALESDTKVL2	AWEAGRRWG
XP 022859433.1	MNPGGSSIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHK
WP 080124763.1 XP 011015301.1	MNRGGSSIS	LTYIASERIIPO	YGGGMSSAK	AALESDIRVL	AFEAGRKNR
XP 022018336.1	MNPGGASIS	LTYIASERIIPO	YGGGMSSAK	AGLESDTQVL	AFEAGRKHG
AMY26631.1 red	MNPGGATIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHK
ENT46//1.1 hyp XP.002297662 2	MNPGGSSIS	LTYIASERTTPO	YGGGMSSAK	AALESDTRVLA	AFEAGRKNR
XP 008350273.1	MNPGGASLS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHN
XP 021621700.1	MNPGGSSIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHK
NP 001280885.1	MNPGGASLS	LTYLASERIIPO LTYLASERIIPO	YGGGMSSAK	AALESDTRVL	AFFACERNE
WP_080122016.1	MNEGASTIS	LTYLASTRAVPO	YGGGMSAAK	AALESDTKVL	AWEAGRRWG
WP 011006351.1	MHPGGSSIS	LTYLASSRAVPO	YGGGMSAAK	AALESDTKML	AWEAGRKWG
XP 002304026.1	MNPGGSSIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRENR
XP 009376124 1	MEPGGASLS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHN
WP 080128631.1	MNEGASTIS	LTYLASMRAVPO	YGGGMSAAK	AALESDTKVL	AWEAGRRWG
XP 004304370.1	MNPGGASIS	LTYIASERIIPO	YGGGMSSAK	AALESDTRVL	AFEAGRKHR
AF 021830626.1	TREGORDIN	TTTROERTTRO	ARCOMODOR	A THOMAS A T	HT FROKVUN

Fig. S7. The YX₇K catalytic domain was unique to metagenomic FabI2 ENR and its top 100

homologs from NCBI database. Multiple alignment (partial) of metagenomic FabI2 ENR and its

catalytic domain (boxed in red) was unique to FabI2 ENR and was strictly conserved among its

[Fig. S8, Raees Khan et al.]

1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	VMASEKAVDC-	VCCCMSSAK	A A LESDNDVI.	Metagenomic Fabl2
2 UniRef50 A0A061GSG8	YTASERTTPG-	YGGGMSSAK	AALESDIRVLA	
3 UniRef50 A0A0A0LXD8	YTASERTIPG-	YGGGMSSAK	AALESDIRVLA	
4 UniPef50 A0A0S3G5D1	VLASERVIPG-	YCCCMSSAK	AALESDIKULA	
5 UniRef50 A0A142XNM6	YVAGERVVPH-	YGGGMGTCK	AALOMDAKOLS	
6 UniRef50 B8BXA1	YTASEKVIPG-	YGGGMSSAK	AOLESDIRTLA	
7 UniRef50 09SLA8	YTASERTTPG-	YGGGMSSAK	AALESDIRVLA	
8 UniBef50 B9T5D7	YTASERTTPG-	YGGGMSSAK	AALESDIRVLA	United 50 Fabl2 homologues
9. UniRef50 F0VRC4	EYWSSALIPVG	YGGGMSSAK	AALESDTRTLA	having YX-K type catalytic domain
10. UniRef50 O6TEI5	YOASOKVVPG-	YGGGMSSAK	AALESDTRVLA	<i>o , , , , , , , , , , , , , , , , , , ,</i>
11. UniRef50 Q6X5U8	FIASERVVPG-	YGGGMSSAK	AQLESDTKVLA	
12. UniRef50 U6GHH8	YIASERVIPG-	YGGGMSSAK	AALESDCRTLA	
13. UniRef50 Q620I4	YIASERAIPG-	YGGGMSSAK	AALESDIKVLA	
14. UniRef50 A0A067CC20	YLGAVKAIPN-	YN-IMGPAK.	AALEATCRALA	
15. UniRef50 A0A068NVM5	YLGSTRAMKN-	YN-VMGVCK	AALEASVRYLA	
16. UniRef50 A0A098G8M8	YYGSQKVILN-	YN-LMGVVK	AALEASVRYLA	
17. UniRef50 A0A0F6A7R7	YLGSERAVQN-	YN-VMGPVK.	SALDSSVRYLA	
18. UniRef50 A0A0S4PDV7	YLGSERVVPG-	YN-VMGVAK.	AALEASVRYLA	
19. UniRef50 A0A0U5BK22	YYGSEKVVTN-	YN-VMGVAK.	AALESSIRYLA	
20. UniRef50 A0A0W0WIB4	YYGAEKVIKN-	YN-LMGPVK.	AALEASVRYLA	
21. UniRef50 A0A142WRH8	YLGGEKVIPG-	YN-LMGLCK	SALESATEYCA	
22. UniRef50 A0A167IRJ7	YLGSQRAIQN-	YN-VMGPVK.	SALDSSVRYLA	
23. UniRef50 A0A177W1C0	YLGAQKVMQN-	YN-MMGPIK.	AALEASIKYLA	
24. UniRef50 A0A1C7PE22	YLGAEKVVPN-	YN-LMGVSK	AALEATTRYLA	
25. UniRef50 A0A1E5GRH2	YLGSERAIPN-	YN-MMGIAK.	ASLETAVKYLA	
26. UniRef50 A0A1F3SNZ3	YLGGDRVLPG-	YG-IMGPAK.	AALESCVRYLS	
27. UniRef50 A0A1F3VNS9	YHGSQKVLKG-	YN-VMGSAK.	AALESAIRYLA	
28. UniRef50 A0A1F8SC12	YYGAEKVVTH-	YN-VMGVAK:	AALEASVRYLA	
29. UniRef50 A0A1F9KZF7	HEGSRRAVPG-	YC-TMGVAK	AALESTVRYLA	
30. UniRef50 A0A1G3LCV0	YIGSIKALPS-	YN-AMGVAK.	AALESAVRYLA	
31. UniRef50 A0A1J5F0K6	YLGATAVVQN-	YN-VMGVAK.	AALESCVRYLA	
32. UniRef50 A0A1Q3SQ15	FHGSQKIVEH-	YN-LMGPVK.	AALESAVRYMA	
33. UniRef50 A1K/E2	YLGSEKVIPH-	YG-VMGLCK.	AALEAATRYMA	
34. UNIREISU A421H2	IIGADKVVNN-	IN-INGLAK.	ASLEASVEILA	
35. UniRelSU AGDINS	VYCSERUISN-	YN-YNGVAK. YN-YNGDAN	AGLECSIRILA	
37 UniPef50 C1CV09	VHASOOVVPK-	VN-VMCVAK	ALFALTDVLA	
38 UniRef50 C6XEV3	YGGSMRVVPN-	YN-AMAPAK.	SALESSTRYLA	Uniref 50 Fabl2 homologues
39. UniRef50 D8IVG6	YIGAEEVVVN-	YG-VMGPVK	AALESAVRYLA	YX ₆ K type catalytic domain
40. UniRef50 E018M3	YLGSNRVCAG-	YN-VLGIAK.	SALETTCKYLA	
41. UniRef50 E0XQH6	YAASNRFVPS-	YG-IMSMAK	AALECWTRELA	
42. UniRef50 G7Q4C7	YYGSGRVVAN-	YN-AMGVAK.	SALEASVRYLA	
43. UniRef50 G8NCG2	YYASEKVVPK-	YN-VMAIAK	AALEASVRYLA	
44. UniRef50 I0IG62	YYGGEKVAPG-	YN-VMGVAK.	ACLEHTTRYLA	
45. UniRef50 IOIPP1	YLGSERVVPH-	YN-VMGVAK.	AALESAVRYLA	
46. UniRef50 ISBTJ8	YYGAEKVMPH-	YN-VMGVAK.	AALEASVRYLA	
47. UniRef50 KOABY2	YLGGEKMVPN-	YN-VMGVAK.	AALDASVRYLA	
48. UniRef50 M1X3I0	YLGSIRAVPN-	YN-IMGVAK.	AALEASVRYLA	
49. UniRef50 N9WGL0	YLGSERVIPN-	YN - VMGVAK	AALEASVRYLA	
50. UniRef50 067505	YYGAEKVVPH-	YN-VMGIAK.	AALESTVRYLA	
51. UniRef50 P54616	YLGGELVMPN-	YN-VMGVAK.	ASLDASVKYLA	
52. UniRef50 P73016	YFGGVKVIPN-	YN-LMGVAK:	AGLEMTVRYLA	
53. UniRef50 Q05069	YLGGVRAVPN-	YN-VMGVAK:	AGLEASVRYLA	
54. UniRef50 Q1LQX5	YDGANRVVPN-	YD-LMGPVK:	AALEASCRYLA	
55. UniRef50 Q1RH28	YYGAEKVIPN-	YN-VMGVAK	AALEASVRYLA	
56. UniRef50 Q2BKW9	YLGSALATCD-	YN-IMGCAK	ASLEAATRYLA	
57. Unikef50 Q2FZQ3	YLGGEFAVQN-	YN-VMGVAK.	ASLEANVKYLA	
58. Unikef50 Q3A2X2	YLGAQRAVPN-	IN-VMGVAK	HALKASVRYLA	
59. Unikers0 Q70K85	YYGGEKCVPG-	IN-VMGVCK	AALDASMRYLA	
60. UniRef50 Q81GI3	YLGGERVVKN-	YN-VMGVAK.	ASLEASVKYLA	

Fig. S8. The YX₇K catalytic domain was unique to metagenomic FabI2 ENR and its closely related homologs from

UniRef50 database. Multiple alignment (partially shown) of metagenomic FabI2 ENR and its homologs with best hits from UniRef50 database. The YX7K catalytic domain (boxed in red) was unique to FabI2 ENR and was strictly conserved among

[Fig. S9, Raees Khan et al.]

Fig. S9. Comparative growth assay for FabI2 and mFabI2 under various concentrations of TCL. All strains were grown in LB broth supplemented with various TCL concentrations (0–600 μg/ml). (A) Growth assay of *Escherichia coli* carrying FabI2 in pUC119. (B) Growth assay of *E. coli* carrying mFabI2 in pUC119. Two negative controls included were; (C) *E. coli* carrying prototypic FabI in pUC119 from *E. coli* K12 MG1655, and (D) *E. coli* carrying pUC119 vector only. Both of the negative controls were unable to grow at higher TCS concentrations (2.5–600 μg/ml). Legends are overlapped for higher TCL concentrations indicating no growth.

Table S1. Comparative identity of the metagenome derived novel FabI2 ENRs to known prototypic ENRs.

	Identity of FabI2 to known ENRs					
<i>Ec</i> FabI	VcFabV	BsFabL	FabL2	S.pneFabK	<i>Ct</i> FabI	<i>Tg</i> FabI
30%	Partial	27%	24%	Partial	67%	64 %

Symbols and abbreviations; Partial, these ENRs showed very low levels of similarity, only to a small region of the target prototypic ENR; *Ec*FabI, FabI ENR from *Escherichia. coli*; *Vc*FabV, FabV ENR from *Vibrio Cholera*; *Bs*FabL, FabL from *Bacillus Subtillis*; FabL2, previously identified novel FabL like metagenomic ENR, *S.pne*FabK, FabK from *Streptococcus pneumonia*; *Ct*FabI, FabI from *Chlamydia trachomatis*; *Tg*FabI, FabI from *Toxoplasma gondii*.

Substrate/cofacotr	Km (µM)	Kcat (min ⁻¹)	Kcat/Km (µM ⁻¹ min ⁻¹)	Vmax (µM/min)
Crotonyl-CoA	13.85	0.19396	0.014	4.441
NADH	18.21	0.9546	0.052	14.67

Table S2. Kinetics of the metagenomic FabI2 ENR.

ENR	Catalytic domain type	Reference
Most SDR members	YX ₃ K	[1, 2]
FabI (Eschericia coli)	YX ₆ K	[3]
FabL (Bacills subtilis)	YX ₆ K	[4]
FabL2 (Metagenome/	VV V	[5]
Epsilonprtoeobacteria)	1 Λ ₆ Κ	
FabV (Vibrio cholerae)	YX ₈ K	[6]
FabK (Streptococcus pneumoniae)	FMN type	[7]
Brassica napus ENR		[3]
Arabidopsis thaliana ENR	YX ₇ K	
Nicotinia tabacum ENR		
FabI2	YX ₇ K	[This study]

Table S3: Comparison of the type of YX_nK catalytic domain of various enoyl-ACP reductases.

Symbols and abbreviations; X in YX_nK is any amino acid

Clone	TCL concentration in LB agar growth media (µg/ml)							
	5	20	50	100	200	400	600	
mFabI2	+	+	+	+	+	+	+	
FabI2	+	+	-	-	-	-	-	

 Table S4: MIC of TCL for wild type FabI2 and its mutant mFabI2 (A128V).

Symbols and Abbreviations: +; Positive growth, -; No growth

References

- Jornvall, H. *et al.* Short-chain dehydrogenases/reductases (SDR). *Biochemistry*. 34, 6003–6013 (1995).
- 2. Filling, C. *et al.* Critical residues for structure and catalysis in shortchain dehydrogenases/reductases. *J. Biol. Chem.* **277**, 25677–25684 (2002).
- Rozwarski, D. A., Vilcheze, C., Sugantino, M., Bittman, R. & Sacchettini, J. C. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. *J. Biol. Chem.* 274, 15582–15589 (1999).
- Heath, R. J., Su, N., Murphy, C. K. & Rock, C. O. The enoyl-[acyl-carrier-protein] reductases FabI and FabL from *Bacillus subtilis*. J. Biol. Chem. 275, 40128–40133 (2000).
- Khan, R., Zeb, A., Roy, N., Magar, R. T., Kim, H. J., Lee, K. W. & Lee, S-W. Biochemical and structural basis of triclosan resistance in a novel enoyl-acyl carrier protein reductase. *Antimicrob. Agents Chemother.* 62, e00648–18 (2018).
- Massengo-Tiasse, R. P. & Cronan, J. E. Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. *J. Biol. Chem.* 283, 1308–1316 (2008).
- Massengo-Tiassé, R. P., & Cronan, J. E. Diversity in enoyl-acyl carrier protein reductases. Cell. *Mol. Life Sci.* 66, 1507–1517 (2009).