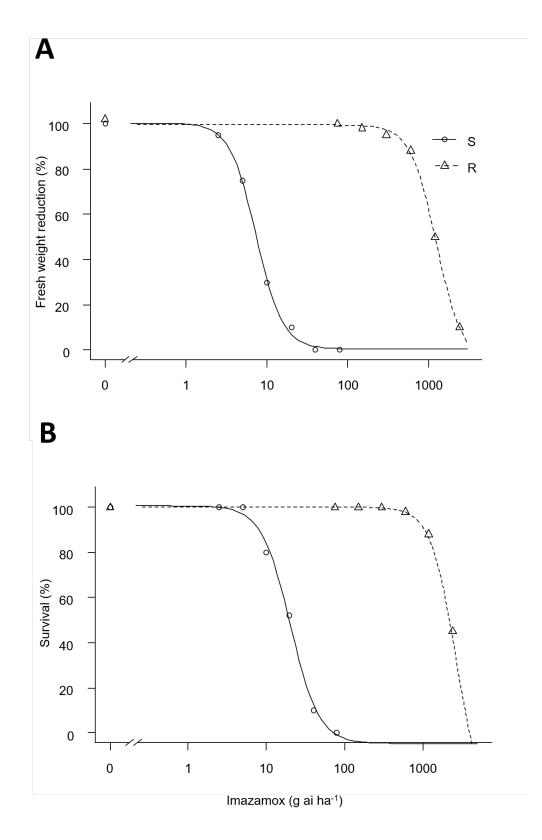
Target site as the main mechanism of resistance to imazamox in a *Euphorbia heterophylla* biotype

Antonia M. Rojano-Delgado^{1*}, João M. Portugal², Candelario Palma-Bautista¹, Ricardo Alcántara de la Cruz³, Joel Torra⁴, Esteban Alcántara⁵, Rafael De Prado¹

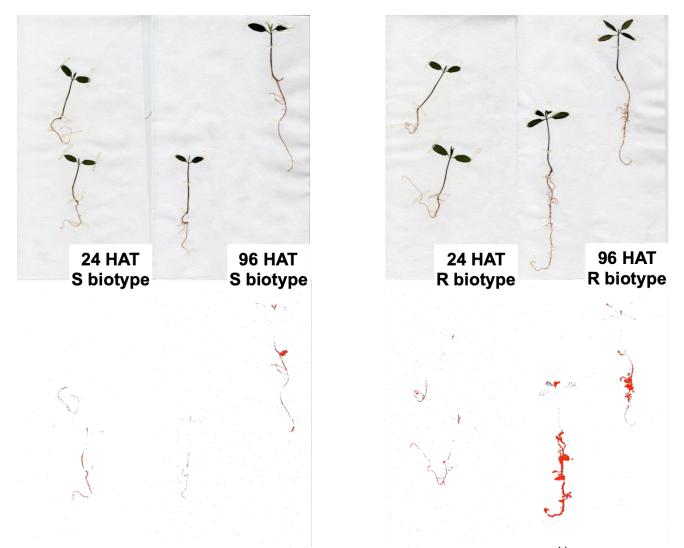
¹Department of Agricultural Chemistry and Edaphology, University of Córdoba, Córdoba, Spain


²Department of Biosciences, Research Center for Endogenous Resource Valorization's, Polytechnic Institute of Beja, Beja, Portugal

³ Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil.

⁴Department d'Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Lleida, Spain

⁵Department of Agronomy, University of Córdoba, Córdoba, Spain


* Corresponding author: Antonia M. Rojano-Delgado q92rodea@uco.es

Supplementary Fig. S1. Log–logistic curves of imazamox-susceptible and -resistant *E. heterophylla* biotypes evaluated at 21 DAT. (A) Dose–response curves with respect to percentage of fresh weight reduction. (B) Dose–response curves with respect to percentage of survival.

Supplementary Fig. S2. Representative images at 96 HAT with foliar application demonstrating the movement of ¹⁴C-imazamox in plants of the S (left) and R (right) biotypes *of E. heterophylla*. A greater intensity of the red color indicates a higher concentration of ¹⁴C-imazamox. The arrows indicate the treated leaves.

Supplementary Fig. S3. Representative images demonstrating the movement of ¹⁴C-imazamox in plants of the S (left) and R (right) biotypes *of E. heterophylla*. The images were recorded at different times in the root-application assay. A greater intensity of the red color indicates a higher concentration of ¹⁴C-imazamox

Л