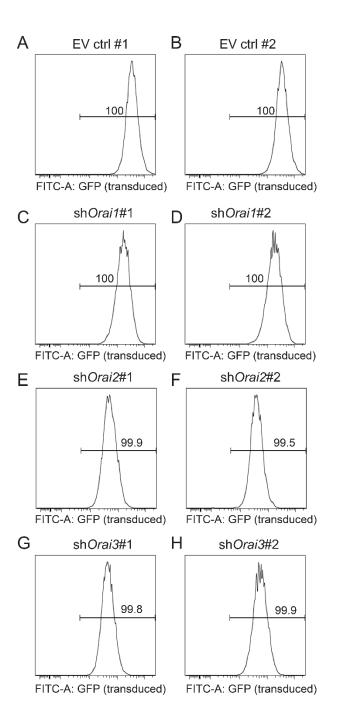
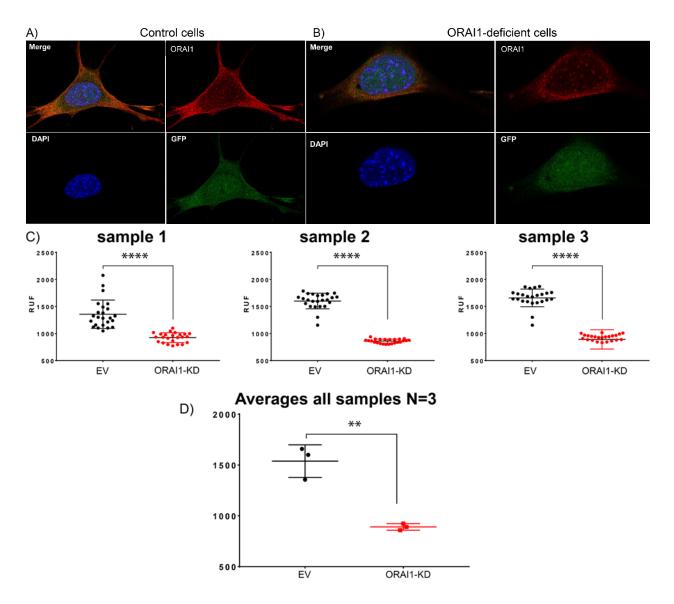
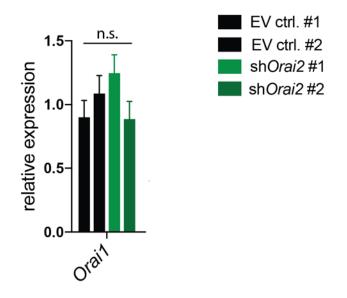
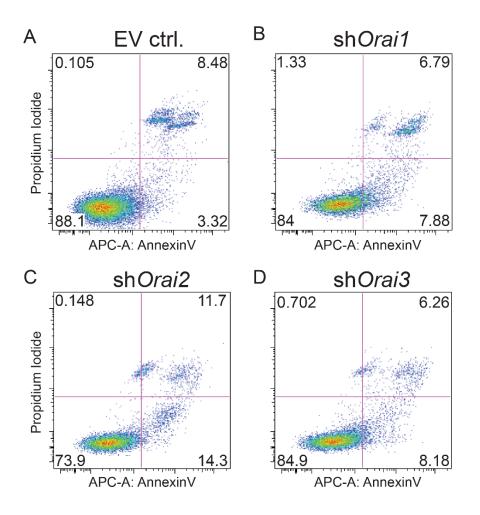
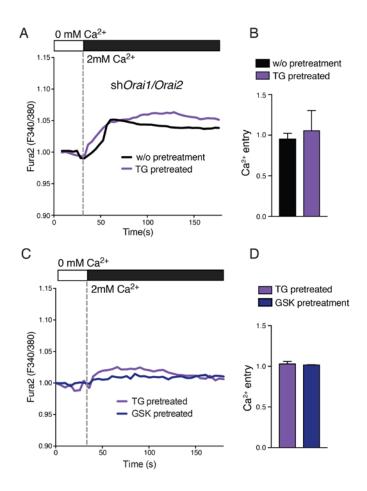

Supplementary Figures

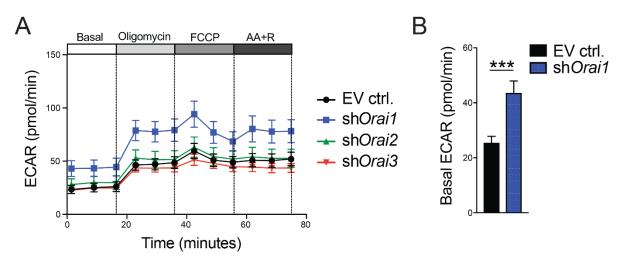

Supplementary Figure 1. Unchanged expression of ameloblastin in ORAI-deficient cells. The expression of the ameloblastin gene (*Ambn*) was analyzed in enamel organ cells of *Orai1*^{K14} (A) and *Orai2*^{-/-} mice (B) by RT-PCR showing no significant differences. Data represent averages (+/- SEM) of N=5 mice analyzed using Mann-Whitney (A) or Welch's t-test (B).

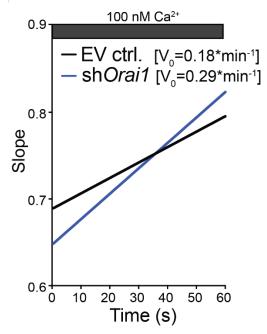

Supplementary Figure 2. Enamel cells of $Orai1^{K14}$ mice do not show increased expression of unfolded protein response (UPR) markers. The expression of GRP78 (gene name *HSPA5*) associated with UPR was analyzed in enamel organ cells of $Orai1^{K14}$ mice by RT-PCR showing no significant differences. Data represent averages (+/- SEM) of N=5 mice analyzed using unpaired Student's t-test.


Supplementary Figure 3. Normal dental phenotype in ORAI2-deficient mice. (A, C) Macroscopic images of incisors of WT (A) and $Orai2^{-/-}$ (C) mice. (B, D) Scanning electron microscopy (SEM) images of cross-sections from incisors of WT (B) and $Orai2^{-/-}$ (D) mice imaged one millimeter from the tip. Data in (A-D) are representative of three mice per group.


Supplementary Figure 4. Transduction efficiency in LS8 cells. Cells were transduced with either empty vector (EV ctrl., **A** and **B**) or shRNAs against *Orail* (sh*Orail*, **C** and **D**), *Orai2* (sh*Orai2*, **E** and **F**), and *Orai3* (sh*Orai3*, **G** and **H**) and analyzed for GFP expression by flow cytometry. Data are representative of N=3 experiments.


Supplementary Figure 5. Immunofluorescence analysis showing downregulation of ORAI1 in GFP positive sh*Orai1* **cells. A-B**) Downregulation of ORAI1 protein was confirmed by blinded immunofluorescence in GFP positive control cells (A) and sh*Orai1* cells (B) using anti-ORAI1 (Sigma SAB3500126) following protocols reported in (1). **C-D**) Quantification of differences in fluorescence between control and sh*Orai1* cells following protocols reported in (2). Three independent experiments were performed with p<0.01 (**) and p<0.0001 (****) using Mann-Whitney (C) or unpaired Student's t-test (D)


Supplementary Figure 6. *Orai1* expression is not significantly altered in shOrai2 cells. The expression of Orai1 was analyzed in shOrai2 cells showing no significant differences. Data represent averages (+/- SEM) of N= 3 independent experiments analyzed using unpaired Student's t-test.


Supplementary Figure 7. Apoptosis and cell death. Apoptosis and cell death were analyzed in LS8 cells transduced with either empty vector (EV ctrl., **A**) or shRNAs against *Orai1* (sh*Orai1*, **B**), *Orai2* (sh*Orai2*, **C**), and *Orai3* (sh*Orai3*, **D**). Cells were stained with Annexin V and propidium iodide (PI) and analyzed by flow cytometry. Representative dot blots shown in this Figure are the basis of data shown in main Fig.4I.

Supplementary Figure 8. Small Ca²⁺ leak is present in sh*Orai1/Orai2* cells. (A) Cytosolic Ca²⁺ uptake was measured in Fura2-loaded LS8 cells transduced with shRNA against *Orai1* and *Orai2* (sh*Orai1/Orai2*) using a Flexstation III. Purple tracings are sh*Orai1/Orai2* cells that had been pretreated with thapsigargin as described in our SOCE measurements shown in Fig 5. Black tracings represent Ca²⁺uptake in sh*Orai1/Orai2* cells but without prior thapsigargin treatment. This minor uptake results from a change in the external Ringer solution of 0 mM Ca²⁺ with a solution containing 2mM Ca²⁺, thus potentially reflecting a plasma membrane leak. (B) Statistical analyses of Ca²⁺ leak in sh*Orai1/Orai2* cells. (N=3) independent experiments; data are mean +/- SEM. (C) In a separate experiment, re-addition of Ca²⁺ to thapsigargin stimulated sh*Orai1/Orai2* showed a similar elevation to that observed in cells preincubated with the CRAC channel inhibitor GSK-7975A. (D) Statistical analyses of Ca²⁺ peak in sh*Orai1/Orai2* cells. (N=3) independent experiments; data are mean +/- SEM.

Supplementary Figure 9. Increased extracellular acidification rate (ECAR) in shOrai1 cells. (A-B) Extracellular acidification rates (ECAR) in LS8 cells transduced with either empty vector (EV ctrl.) or shRNAs against *Orai1, Orai2* or *Orai3*. ECAR was analyzed using a Seahorse XFe analyzer and sequential treatment with Oligomycin, FCCP and Antimycin A / Rotenone. Representative ECAR traces (A) and quantification of basal ECAR values (B). Data represent 4 independent experiments (mean +/- SEM). p<0.001 (***) using using Mann-Whitney test (B).

Supplementary Figure 10. Quantification of velocity (slope) of ER Ca²⁺ refilling. The slope of Ca²⁺ refilling in EV ctrl. and sh*Orai1* cells was analyzed during the first 60s after tBHQ application in 100 nM Ca²⁺ (V₀). Data represent the mean +/- SEM of 3 independent experiments. sh*Orai1* cells showed a significant faster refilling (V₀ = $0.29 \times \min^{-1} \pm 0.00137$) compared to ctrl cells (V₀ = $0.18 \times \min^{-1} \pm 0.00059$) with p<0.05 (*) using an unpaired Student's t-test).

Table S1. Primer and shRNA sequences used in this study.

Specific mouse Primers designed for Genotyping

Primer	Forward sequence	Reverse sequence
Cre	ACGACCAAGTGACAGCAATG	CTCGACCAGTTTAGTTACCC
Orai1	CAGCGTGCATAATATACCTAACT	GTATTGATGAGGAGAGCAAGCGT
	CTACCCG	GAATC
Orai2	CTCGGCAGTTGCCTGTTTG	ACAGCCACCACGCTCATC

shRNA sequences for stable knowdown of Orai1-3

Target	shRNA sequences	
gene		
Orai1 #1	TGCTGTTGACAGTGAGCGCGGAGATTTTCTTCTGTGAGAATAGTGAAGCCACAGATGT	
	ATTCTCACAGAAGAAAATCTCCATGCCTACTGCCTCGGA TGCTGTTGACAGTGAGCGCCCTGGCGCAAGCTCTACTTAATAGTGAAGCCACAGATGT	
Orai1 #2	ATTAAGTAGAGCTTGCGCCAGGATGCCTACTGCCTCGGA	
Orai2 #1	TGCTGTTGACAGTGAGCGACGCCACAACCGTGAGATCGAATAGTGAAGCCACAGATGT ATTCGATCTCACGGTTGTGGCGCTGCCTACTGCCTCGGA	
Orai2 #2	TGCTGTTGACAGTGAGCGCGAGCAACATCCACAACCTCAATAGTGAAGCCACAGATGTA	
	TTGAGGTTGTGGATGTTGCTCATGCCTACTGCCTCGGA TGCTGTTGACAGTGAGCGCCAGCTGGAGAACGATCATGAATAGTGAAGCCACAGATGTA	
Orai3 #1	TTCATGATCGTTCTCCAGCTGTTGCCTACTGCCTCGGA	
Orai3 #2	TGCTGTTGACAGTGAGCGCCTCCCTTAGTTTAGCTTCTAATAGTGAAGCCACAGATGTAT TAGAAGCTAAACTAAGGGAGATGCCTACTGCCTCGGA	

Specific mouse Primers designed for qPCR

Primer	Forward sequence	Reverse sequence
Hprt1	GCTGACCTGCTGGATTACAT	TTGGGGCTGTACTGCTTAAC
Orai1	AGACTGCCTGATCGGATGGC	TTGTCCCCGAGCCATTTCCT
Orai2	GCAGCTACCTGGAACTCGTC	GTTGTGGATGTTGCTCACCG
Orai3	CAGTCAGCACTCTCTGCGG	TGGCCACCATGGCGAAG
Enam	TATGGTCTTCCACCAAGGAA	TAGGCACACCATCTCCAAAT
AmelX	CCCTGAGCTTCAGACAGAAA	CTGCCTTATCATGCTCTGGT
Atp2a2	CAGCCTGTCTGAGAACCAGT	CTCCAGATAGTTCCGAGCAA
Hspa5	ACTTGGGGACCACCTATTCCT	ATCGCCAATCAGACGCTCC