Biophysical Journal, Volume 117

Supplemental Information

Quantitative Studies of an RNA Duplex Electrostatics by Ion Counting

Magdalena Gebala and Daniel Herschlag

Supplemental Information

Quantitative studies of an RNA duplex electrostatics by ion counting

Magdalena Gebala¹, Daniel Herschlag^{1,2,3,*}

¹ Department of Biochemistry, Stanford University, Stanford, CA, 94305 USA

² Department of Chemistry, Stanford University, Stanford, CA, 94305 USA

³ ChEM-H Institute, Stanford University, Stanford, CA, 94305 USA

Overview of the Supplementary Information

In this supplementary information, we provide a table with preferential ion interaction coefficients Γ_i (e.g. the number of associated ions, $i = Na^+$ or Br^-), around 24-bp RNA, 24-bp and 23-bp DNA (Table S1) for NaBr; a table summarizing the fraction of charge neutralization from attraction of Na⁺ measured by ASAX and BE-ICP-MS around dsRNA and dsDNA (Table S2); a table with preferential ion interaction coefficients from competition experiments between Na⁺:Mg²⁺ and Cs⁺:Mg²⁺ around 24-bp RNA. The results are consistent with observations in the main text and support the conclusions described therein.

	24 bp RNA			24 bp DNA			23 bp DNA		
С	Γ_{Na^+}	$\Gamma_{Br^{-}}$	total	Γ_{Na^+}	$\Gamma_{Br^{-}}$	total	Γ_{Na^+}	$\Gamma_{Br^{-}}$	total
0.01	39 ± 1.0	$\textbf{-6.0}\pm0.7$	45.0 ± 1.2	37.0 ± 1.0	$\textbf{-9.0}\pm0.5$	46.0 ± 1.0	36.0 ± 0.2	-8.0 ± 0.3	44.0 ± 0.3
0.02	39.5 ± 0.5	$\textbf{-6.5}\pm1.0$	46.0 ± 1.0	37.0 ± 0.2	$\textbf{-8.75}\pm0.2$	46.0 ± 0.3	35.0 ± 0.3	$\textbf{-8.6}\pm0.2$	44.0 ± 0.3
0.10	37.0 ± 1.0	-8.0 ± 1.2	45.0 ± 1.6	34.0 ± 1.0	$\textbf{-}11.5\pm1.0$	45.5 ± 1.4	32.0 ± 1.0	$\textbf{-12.0}\pm1.0$	44.0 ± 1.0
0.12	36.0 ± 1.0	-10.0 ± 1.5	46.0 ± 1.8	-	-	-			
0.26	-	-	-	-	-	-	27.0 ± 1.5	-17.5 ± 1.0	44.5 ± 1.8
0.50	31.0 ± 1.5	-13 ± 2.0	44.0 ± 2.5	24.6 ± 1.0	$\textbf{-21.5} \pm 1.5$	46.0 ± 1.8			
0.65	-	-	-				18.0 ± 0.5	-26 ± 0.5	44.0 ± 0.5

Table S1: Experimentally determined preferential interaction coefficients (Γ_i) for NaBr around 24-bp RNA, 24-bp DNA, and 23-bp DNA

		NaBr	
C M	Γ_{Na^+}	$\Gamma_{Br^{-}}$	total
0.010	37.0 ± 0.9	-9.0 ± 0.9	46 ± 1.3
0.050	36.0 ± 0.7	-8.7 ± 0.7	44.7 ± 1.0
0.100	35.0 ± 1.0	-10 ± 1.0	45 ± 1.4
0.200	32.0 ± 1.5	-14.5 ± 1.5	46.5 ± 2.0
0.350	28.0 ± 1.5 24.6 ± 1.0	-16.7 ± 1.2	44.7 ± 2.0
0.300	24.0 ± 1.0	-21.3 ± 1.3	40.1 ± 1.8

Table S2. Interaction coefficients for NaBr around 24-bp DNA obtained previously in reference

 (3)

Figure S1. Comparison of current (orange symbols) and previous (grey symbols) ion counting results for association of NaBr around 24-bp DNA from BE-ICP-MS measurements. Data point in grey are from reference (3) and values are given in Table S2.

Table S3: Experimentally determined fraction of charge neutralization (Γ_{Na}^*) for Na⁺ around dsRNA and dsDNA at 100 mM monovalent salt concentration.

	dsRN	NA	ds DNA		
С	Γ^{*ASAXS}_{Na}	$\Gamma^{*BE-ICPMS}_{Na}$	Γ^{*ASAXS}_{Na}	$\Gamma^*{}^{BE-ICPMS}_{Na}$	
[M]	Nu	Nu	Nu	Nu	
0.1	$0.73 \pm 0.06^{\ (a)}$	0.80 ± 0.02	$0.71 \pm 0.06^{(b)}$	0.74 ± 0.02	

a) Data taken from reference 1

b) Data taken from reference 2

Figure S2. Comparison of experimentally determined fraction of charge neutralization (Γ_{Na}^*) for Na⁺ around dsRNA and dsDNA from ASAXS and BE-ICP-MS. Data from Table S2.

Table S4: Experimentally determined preferential interaction coefficients and α value for **NaBr** and **CsBr** around 24-bp RNA in the presence of 6 mM MgBr₂.

NaBr	24-bp RNA			CsBr	24-bp RNA				
C [M]	Γ_{Na^+}	$\Gamma_{Mg^{2+}}$	$\Gamma_{Br^{-}}$	total	C [M]	Γ_{Cs^+}	$\Gamma_{Mg^{2+}}$	$\Gamma_{Br^{-}}$	total
0.00	0	21.0 ± 0.5	-3.0 ± 1.0	46.0 ± 1.0	0	0	21.0 ± 0.5	-4.0	46.0 ± 0.7
0.0015	0.6 ± 0.5	22.0 ± 0.5	$\textbf{-2.0}\pm0.5$	46.8 ± 0.8	0.02	3.6 ± 1.0	19.0 ± 0.5	-5.4 ± 1.0	47.0 ± 1.5
0.01	2.9 ± 0.8	20.0 ± 0.4	-3.0 ± 1.6	45.6 ± 1.4	0.03	8.0 ± 1.0	16.0 ± 0.3	$\textbf{-5.0}\pm0.6$	45.6 ± 1.2
0.02	3.9 ± 0.6	18.5 ± 0.4	-5.4 ± 1.4	46.5 ± 1.6	0.06	10.0 ± 0.5	16.0 ± 0.6	$\textbf{-4.0} \pm 1.0$	46.0 ± 1.2
0.03	6.5 ± 1.0	17.4 ± 0.4	-4.7 ± 1.8	46.0 ± 2.0	0.10	11.5 ± 1.0	13.5 ± 0.8	-7.0 ± 1.0	45.6 ± 1.6
0.05	9.3 ± 2.0	15.5 ± 1.4	$\textbf{-6.0} \pm 1.2$	46.3 ± 2.7	0.2	19.0 ± 0.9	8.1 ± 1.4	-10.0 ± 1.0	45.0 ± 1.7
0.08	10.0 ± 1.0	13.5 ± 1.0	$\textbf{-9.0} \pm 1.0$	46.0 ± 1.7		-	-	-	-
0.11	12.5 ± 2.0	11.0 ± 1.3	$\textbf{-}11.0\pm1.0$	46.0 ± 2.7		-	-	-	-
0.20	19.8 ± 1.5	7.2 ± 0.4	-13.3 ± 1.3	47.5 ± 2.0		-	-	-	-
		$\alpha_{Na}^* = 1$	7.0 ± 1.7				$\alpha_{Cs}^* = 18$	3.3±2.5	

*Defined in the main text

MX	24-bp DNA						
С	Γ_{M^+}	$\Gamma_{M^{2+}}$	$\Gamma_{X^{-}}$	total			
0.00	0	21.14	-3.7	46.0			
0.005	2.5	19.5	-4.5	46.0			
0.01	4.5	18.2	-5.1	46.0			
0.02	7.53	16.16	-6.15	46.0			
0.03	9.85	14.6	-6.95	46.0			
0.04	11.73	13.32	-7.63	46.0			
0.045	12.5	12.8	-7.95	46.0			
0.05	13.23	12.26	-8.25	46.0			
0.06	14.45	11.36	-8.83	46.0			
0.08	16.45	9.85	-9.84	46.0			
0.10	17.9	8.73	-10.7	46.0			
0.15	20.0	6.68	-12.6	46.0			
0.20	21.0	5.37	-14.26	46.0			
0.30	21.27	3.79	-17.15	46.0			
	$\alpha_{M^+}^* = 7.5$						

Table S5: Poisson Boltzmann calculations of preferential interaction coefficients and α value for monovalent salt (MX) around 24-bp DNA in the presence of 6 mM divalent salt (MX₂).

*Defined in the main text

Table S6: Poisson Boltzmann calculations of preferential interaction coefficients and α value for monovalent salt (MX) around 24-bp RNA in the presence of 6 mM divalent salt (MX₂).

MX	24-bp RNA						
C [M]	Γ_{M^+}	$\Gamma_{M^{2+}}$	$\Gamma_{X^{-}}$	total			
0.00	0	21.45	-3.1	46.0			
0.001	0.44	21.13	-3.3	46.0			
0.01	3.5	19.1	-4.3	46.0			
0.02	5.86	17.5	-5.14	46.0			
0.03	7.62	16.32	-5.74	46.0			
0.04	9.0	15.4	-6.2	46.0			
0.05	10.24	14.5	-6.76	46.0			
0.08	12.84	12.6	-7.96	46.0			
0.10	14.13	11.62	-8.64	46.0			
0.20	17.9	8.3	-11.5	46.0			
0.3	19.5	6.3	-13.9	46.0			
0.5	19.72	3.93	-18.43	46.0			
	$\alpha_{M^+}^* = 13.3$						

*Defined in the main text

Figure S3. Poisson-Boltzmann calculations of electrostatic surface potential of the DNA and RNA duplexes. Calculations were carried out as described in the main text and Figure 3 in the main text.

REFERENCES:

- Pabit, S. A., S. P. Meisburger, L. Li, J. M. Blose, C. D. Jones, and L. Pollack. 2010. Counting Ions around DNA with Anomalous Small-Angle X-ray Scattering. J. Am. Chem. Soc. 132(46):16334-16336.
- 2. Kirmizialtin, S., S. A. Pabit, S. P. Meisburger, L. Pollack, and R. Elber. 2012. RNA and Its Ionic Cloud: Solution Scattering Experiments and Atomically Detailed Simulations. Biophys. J. 102(4):819-828.
- 3. Gebala, M., G. M. Giambaşu, J. Lipfert, N. Bisaria, S. Bonilla, G. Li, D. M. York, and D. Herschlag. 2015. Cation-anion interactions within the nucleic acid ion atmosphere revealed by ion counting. J. Am. Chem. Soc. 137(46):14705-14715