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MODEL FRAMEWORK
The primary process which results in the formation of a nascent adhesion (NA) is the clustering of integrins (1). It has been
suggested that very small non-specific clusters of integrin spontaneously form even in the absence of ligand binding; however,
their size and spatial distributions were inconsistent with that of NAs formed in the presence of ligand binding (2). Generally
speaking, in the presence of ligand, NAs were about twice as large (compared to those generated in the absence of ligand),
exhibited high variability in their integrin content, and yet had a relatively restricted distribution in their size (2). This suggests
that (i) there is an intrinsic clustering mechanism for integrins, (ii) ligand binding enhances this clustering mechanism to
form NAs, and (iii) the area of the cluster is not directly proportional to its integrin content (i.e., there is a nonlinear relation
between NA-area and the number of integrins forming it). Interestingly, it has been observed that integrins exhibit reduced
diffusivity within adhesions (defined experimentally by the area underneath an adaptor protein plaque), by at least a factor of
three (3). This decrease was found to be dependent on interactions with adaptor proteins through the cytoplasmic domain of
integrins, suggesting that membrane-proximal adaptor proteins may exert a drag force on integrins (3). Integrins also undergo
extended periods of immobilization which further decreases their lateral mobility. The frequency of long-lived immobilization
is enhanced inside adhesions and has been found to be dependent on integrin’s interaction with both extracellular ligands and
adaptor proteins (3, 4). Thus we propose that the NA-area, as defined by the adaptor protein plaque, provides an environment
within which integrin lateral mobility is decreased due to both a reduced diffusion coefficient and increased likelihood of
binding to extracellular ligand.

Reduced integrin lateral mobility, due to their interactions with the adaptor protein and extracellular ligands plaque, may
explain aggregation of integrins into micron-scale clusters. This, however, does not explain the presence of the adhesion
plaque. Firstly, its was previously argued, from a theoretical perspective, that adhesion plaques must be self-assembling
structures in order to explain the stress-induced growth of adhesions (5). Meanwhile, the adaptor protein talin and its interaction
with integrins have been repeatedly found to be required for the formation of NAs (2, 6, 7). These results suggest, that the
self-assembly of adhesion plaques requires both integrin and adaptor proteins to be capable of forming complexes with one
another. Furthermore, increased extracellular ligand density (and thus integrin density inside the adhesion) has been shown
to increase the residence time of the adaptor protein FAK inside the adhesion plaque (8). Additionally, the diffusivity of the
adaptor protein paxillin shows significant heterogeneity in its value inside a single adhesion plaque, suggesting that paxillin may
exist in more than one association state within the adhesion (9–11). We propose that adaptor proteins form membrane-proximal
aggregates around a seed of a small number of integrins, and that subsequent retention of integrins inside the adhesion area (as
discussed above) allows for growth of the adhesion plaque due to the decreased mobility of adaptor proteins. This decreased
mobility manifests itself in the model as a decrease in the off-rate of adaptor proteins in the presence of integrins. The precise
nature of the mechanism which reduces the off-rate will depend on the specific adaptor protein in question. In the model
developed herein, we generically describe it as a reversible tethering to the membrane by integrin.

Together, these effects constitute a mechanism for the self-aggregation of cytoplasmic adaptor proteins and integrins,
a phenomenon we refer to hereafter as co-aggregation. More specifically, we propose that (i) integrin lateral mobility is
modulated locally by the presence of membrane-proximal adaptor proteins, and (ii) adaptor proteins are effectively tethered to
the membrane by integrins. In this manner, the presence of a protein of one type increases the probability that a protein of the
other type will be present in close proximity. This positive feedback between the two types of proteins would allow them to
serve as templates for one another in the formation of membrane-proximal aggregates of adaptor protein (i.e., an adhesion
plaque). We incorporate this mechanism into a mathematical model that satisfies the following assumptions (see Fig. 1A):

1. Adaptor proteins are modeled as either being in a well-mixed cytosolic bulk phase or in a spatially confined region
Ω (t) ∈ R2 which delimits the adhesion. Their density ρ inside NAs (i.e., the domain Ω) is assumed to be uniform.
Furthermore, we impose the conservation of matter by assuming that the adaptor protein content of a NA is drawn from a
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finite reservoir of NP adaptor proteins, and therefore the number of cytosolic adaptor proteins Ncyto is given by

Ncyto = NP − ρA, (S1)

where A B ‖Ω‖ is the surface area of the adhesion plaque. This means that, as NAs grow very large, they will deplete the
cytoplasmic pool of adaptor proteins until an equilibrium between their growth and shrinkage rates is reached. When
adaptor proteins are in the adhesion plaque, they can either be associated with the rest of the adaptor protein scaffold
or they may be bound to an integrin receptor where they become reversibly tethered to the membrane. We assume
that individual adaptor proteins leave the adhesion at a rate kof f and (1 − δ) kof f , where δ ∈ (0, 1), when they are
untethered and tethered to integrin, respectively. This difference in off-rate in the presence of integrins is what leads to
the aggregation of adaptor proteins around integrins.

2. We model integrins as 2-dimensional (2D) Brownian particles that diffuse freely outside the adhesion, and exhibit reduced
mobility within the adhesion domain Ω. This reduced mobility is implemented through two biophysical mechanisms. In
the first, we assume that the diffusion coefficient of integrins is lower when they are underneath the adhesion plaque, i.e.,

D (x) =

{
Din x ∈ Ω
Dout otherwise

, (S2)

where Din ≤ Dout are the diffusion coefficients inside and outside the adhesion domain Ω, respectively (3). In the second,
we make the simplifying assumption that only the adhesion environment provides the necessary ingredients for the
long-lived immobilization of integrin, which we attribute to ligand binding (3). Therefore, we assume that integrins
inside Ω may bind to an extracellular ligand and become reversibly immobilized with a binding affinity Kbind .

Spatial Assumptions
We consider a periodic array of adhesions on a square lattice with an inter-adhesion spacing h. This simplifying assumption of
periodicity allows us to study the problem on a small h × h square patch of membrane that is assumed to receive no net flux of
matter from adjacent patches (see Fig. 1B) because they are all in equilibrium. We further consider that the h × h square patch
contains NI integrins and sits under the adhesion plaque consisting of NP adaptor proteins. Integrins are assumed to diffuse in a
2-dimensional plane (i.e., the membrane), and a circular aggregation of adaptor proteins centered at the origin with an area A

that delimits the region defining the adhesion plaque (i.e., Ω =
{(

x, y
)

: π
(
x2 + y2

)
≤ A

}
).

Integrin Reaction-Diffusion Model
In order for the force transmission through an adhesion to the ECM to be effective, its integrins must bind to their extracellular
ligands. When bound to their ligand, integrins exhibit a diverse range of mobilities (3, 12, 13). Generally, we can expect the
integrins to have a reduced mobility upon binding to ligand. We consider the extreme case of complete immobilization in order
to understand what can be expected at most from the ligand binding process. Within an adhesion, only a certain proportion of
integrins are bound to ligand (3, 4, 14). We denote the total number of integrins inside the adhesion area by Nin, while Lin and
Min denote the number of liganded and mobile integrins, respectively (i.e., Nin = Lin + Min). If we assume that ligand-binding
induced immobilization happens only within the adhesion, then the dynamics of Min is given by

ÛLin (t) = kunbind (KbindMin − Lin) B Rbind ,

where kunbind is the unbinding rate of an integrin, and Kbind is its binding affinity, given by

Kbind =
kbind

kunbind
,

with kbind denoting the first order binding rate of a single integrin (assuming fixed extracellular ligand density). In order to
account for variations in the density of extracellular ligand, denoted

[
Ligand

]
, we use the expression

kbind = kbind

[
Ligand

]
, (S3)

where kbind is a the second order binding rate.
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An unbound integrin is assumed to diffuse freely in the cellular membrane. We use the Fokker-Planck (FP) diffusion
equation to describe the spatiotemporal evolution of the unbound integrin density I (x). Such a model has a local flux j (x),
given by

j (x) = ∇
(
D (x) I (x)

)
, (S4)

where ∇ is the gradient operator and D(x) is the diffusion coefficient. In situations with inhomogeneous diffusion coefficient,
such as Eq. S2, this FP flux equation is more applicable than the more widely used Fick’s law (15). We are interested in the
time-invariant (equilibrium) behaviour of the adhesion; we therefore assume zero-flux boundary conditions on the outer edge
of the membrane patch. This corresponds to finding a solution where the flux is zero everywhere. For a piecewise constant
diffusion coefficient, such a solution is expected to be piecewise constant at equilibrium, given by

I (x) =

{
Iin x ∈ Ω
Iout otherwise,

where Iin (Iout ) is the density of unbound integrins inside (outside) the adhesion (16). However, the discontinuity in Eq. S2
leads to to a singular flux at the interface between the adhesion plaque boundary and the rest of the membrane, given by

j0 = (Dout Iout − DinIin) r̂ ,

where r̂ is the radial unit vector (17). As time tends towards infinity, diffusion smooths out all concentration gradients such that
the non-singular portion of the flux in Eq. S4 becomes zero irrespective of the integrin densities in and out of the adhesion.
Therefore, near equilibrium, we take the total flux of free integrins into the adhesion due to diffusion to be the integral along the
interface of the singular component of the flux

Jin =

2πˆ

0

j0 · r̂rdθ = (Dout Iout − DinIin) 2πr ,

where r is the radius of the adhesion. We note that Iin = Min/A and thus, by imposing conservation of matter, we eliminate
the variable Iout to obtain the relation Iout = (NI − Nin)/(h2 − A). Finally, the rate of change of unbound integrins inside the
adhesion is given by the difference between the integrated diffusive flux and the binding reaction rate, i.e.,

ÛMin = Jin − Rbind . (S5)

We have assumed in the derivation of Eq. (S5) that diffusion reaches its equilibrium within NAs. Although it is often
assumed that NAs are far from equilibrium due to their short stability period (18–21), recent evidence suggests that conditions
preventing NA-disassembly produces integrin clusters with very similar properties (in terms of number and size) to those that
do disassemble (2). This indicates that NAs come very close to their equilibrium before disassembling, and motivates the
treatment of integrin dynamics near the equilibrium of the diffusion process in this study.

Adhesion Plaque Adsorption Model
To capture the kinetics of adaptor protein aggregation into a membrane-proximal plaque, we adapt the “Bulk-on/Bulk-off”
model of adsorption (22), where adhesions are assumed to be able to grow (shrink) from any point in its interior by addition
(subtraction) of adaptor proteins that are incorporated into the adhesion with a uniform density ρ. Adaptor proteins are assumed
to be added to an adhesion at a rate

γ (A) = Ak0
onPout , (S6)

where Pout =
Ncyto

h2 is the density (per unit area) of free adaptor proteins. Furthermore, we consider that integrins inside
the adhesion stabilize the adhesion plaque leading to less adaptor proteins leaving the adhesion per unit time. In the model,
this is implemented by assuming that adaptor proteins can exist in two states within the adhesion, one which is reversibly
tethered to the membrane by integrins and the other loosely associated with adjacent adaptor proteins. Adaptor proteins can
leave the adhesion plaque with a rate kof f and (1 − δ) kof f for the untethered and tethered states, respectively. Assuming that
fast kinetics govern the association of integrins and adaptor proteins within the adhesion, we prescribe a phenomenological
Hill-function expression for the off-rate of an adaptor protein, given by

κ
(
Nin/A

)
= kof f

(
(1 − δ) + δ

bn

bn +
(
Nin/A

)n )
, (S7)
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where Nin/A is the total integrin density in the adhesion, kof f is the maximal observed degradation rate of the adhesion, δ is
the magnitude of the co-aggregation between integrins and adaptor proteins (a value of 0 indicating no co-aggregation while a
value of 1 indicating full co-aggregation), n is the degree of cooperativity between integrins for the tethering of adaptor proteins
(n = 1 indicates no cooperativity while n > 1 indicates positive cooperativity), and b is the integrin density needed to tether
50% of adaptor proteins. Based on this, we obtain the following dynamic equation for adhesion area

dA
dt
=

1
ρ

(
γ (A) − Aρκ (Iin)

)
= A

[
k0
onPout

ρ
− κ

(
Nin/A

) ]
.

Geometric Constraints
The complete set of equations governing NA dynamics are given by Eqs. 1a-1c (see main text). The equilibria of the system lie
at the intersection of its nullsurfaces. The plane A = 0 is one of the A-nullsurfaces, while

L∗in = KbindM∗in (S8)

is the Lin-nullsurface, and

M∗in =
A∗CIKinh2

A∗β + h2 (S9)

is the Min-nullsurface, where Kin = Dout/Din and β =
(
Kin (1 + Kbind) − 1

)
. At the intersection of these nullsurfaces, we

have the steady state Z = (A, Min, Lin) = (0, 0, 0), representing the unclustered configuration of adhesion proteins (with both
adaptor proteins and integrin receptors uniformly distributed in space). The second A-nullsurface (see Eq. 2) forms with the
other nullsurfaces a steady state where adhesion proteins are co-aggregated into a dense cluster. The conditions which cause the
system to switch between the unclustered and the clustered steady states are analyzed in the main text. Nonetheless, from Eq. S9,
we can see that Nin →∞ as CI →∞ provided that A , 0. In this limit, integrins have their maximum effect on the aggregation
of adaptor proteins, and thus the clustered steady state will reach some maximum area A∞. According to the second term in Eq.
1a, this maximum area is given by

A∞ B h2
(
CP

ρ
−

1 − δ
Kon

)
, (S10)

where Kon = k0
on/kof f . The first term in Eq. (S10) is the maximal fractional area the adhesion plaque can attain if all adaptor

proteins become stuck to the membrane, while the second term is a correction factor that accounts for the finite binding affinity
of adaptor proteins being absorbed into the plaque. This indicates that A∞ depends linearly on the adaptor protein density, and
remains finite regardless of the integrin density. It is important to consider the geometric assumptions of our model, in order to
ensure that its predictions are physically meaningful. By letting φ = [(CP/ρ) − ((1 − δ)/Kon)], we obtain A∞ = h2φ. For a
circular adhesion lying strictly within a square lattice cell, we must have φ ∈

[
0, π/4

)
in order for the results of our model to

remain biophysically relevant.
Generally, if we were to formulate this model for some other lattice with a unit cell area Amax (e.g., Amax = h2 for the

square lattice), we can adapt all our results by replacing h2 with the particular value of Amax . In such a case, the upper bound
on φ will depend on the geometry of the lattice and the adhesion; however, in general, we will always have φ < 1 as a maximum
upper bound. For φ ≥ 1, our circular adhesions will take up more area than is available for the given lattice, and thus the
membrane will be saturated with adhesion plaque on the length scale h. Because φ is independent of the lattice geometry, we
interpret this upper bound as being set by the biophysical and chemical properties of the proteins involved rather than an artifact
of the periodic lattice assumption.

Transcritical Bifurcation

The switch between the unclustered Z = (0, 0, 0) and clustered S∗ =
(
A∗, M∗in, L∗in

)
steady states occurs at a transcritical

bifurcation point. In what follows, we analyze the stability properties of this steady state. As discussed in the main text, for
simplicity we focus on the case n = 1. Under these conditions, the Jacobian matrix of the system evaluated at the unclustered
steady state has three eigenvalues, two of which are strictly negative and one that can change its sign, given by

λ1 = k0
on

(
φ −

bδ

bKon + ĈI

)
.
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Hence, the unclustered steady state is unstable if λ1 > 0. A switch in the sign of λ1 can occur when certain parameters of the
model cross a threshold. For the intracellular densities CI and CP , these thresholds are given by

CI > C‡I B
b
(
δ − φKon

)
φKonKin (1 + Kbind)

(S11)

and

CP > C‡P B
ρ
(
b + Kin (1 + Kbind)CI (1 − δ)

)
Kon

(
b + Kin (1 + Kbind)CI

) ≥ 0, (S12)

respectively. Moreover, the threshold for the binding affinity Kbind is given by

Kbind > K‡
bind
B

bδ − φKon (b + CIKin)

φCIKinKon

which, according to Eq. S3, can produce the following threshold for ligand concentration[
Ligand

]
>

[
Ligand

]‡
B

kunbind
kbind

bδ − φKon (b + CIKin)

φCIKinKon
. (S13)

Once the system passes through the transcritical bifurcation, the model gives birth to the clustered steady state S∗ representing a
stable adhesion plaque with area A∗ that contains N∗in = M∗in + L∗in integrins.

Integrin Mechanosensitivity
Integrin mechanosensitivity is thought to arise from mechanically-induced conformational changes. It has been suggested that
the mechanical extension and separation of the extracellular legs of integrin receptors results in a long-lived bound state (23,
24). We incorporate these ideas into our model as a force-dependent ensemble average lifetime

〈
τ
(
f
)〉
, where f is the force

applied on the integrin. This is modeled using the two-pathway model of bond-dissociation (25), given by〈
τ
(
f
)〉
= τ0

(
de f̂ (c+d) + c

) 1
ce f d + de f̂ (c+d)e−c f

, (S14)

where τ0 is the bond lifetime with zero applied force, f̂ is the force which optimizes the bond lifetime, and c, d > 0 are
coefficients. These coefficients are determined numerically by first setting

d =
cτ̂

τ0ec f̂ − τ̂
+

1
f̂
×W

©­­­«−
c f̂ τ0e

−
c f̂ τ̂

τ0ec f̂ −τ̂

τ0ec f̂ − τ̂

ª®®®¬ ,

where τ̂ =
〈
τ
(

f̂
)〉

is the optimal bond lifetime and W (·) is the W-Lambert function, followed by varying c in such a way that〈
τ
(
60 pN

)〉
≈ 0.1 s (see Fig. S1 for profile and Parameter Estimation for numerical values). Finally, this give the numerical

expression 〈
τ
(
f
)〉
=

1
0.666667exp(−0.0876215F) + 6.60165 × 10−8 exp(0.313789 f )

(S15)

In order to incorporate the mechanosensitive properties of integrins into our binding model, we set the integrin unbinding
rate kunbind to be the reciprocal of

〈
τ
(
f
)〉
, the ensemble bond lifetime. This means that

Kbind = kbind
〈
τ
(
f
)〉

, (S16)

(i.e., all bound integrins are assumed to bear an equal load). The numerical value of f is determined by assuming that the NA
experiences a fixed stress (force per unit area), given by

σ =
f Lin

A
. (S17)
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Figure S1: Integrin-ligand bond lifetime,
〈
τ
(
f
)〉
, as a function of f , the applied force per integrin. The biphasic profile

resembles that obtained for catch bonds between integrin and fibronectin (26).

Stochastic Simulations
We note that the integrin flux described by Eq. S5 is only valid for small perturbations around the steady state as it neglects
the effects of concentration gradients. In order to more accurately capture the full integrin dynamics specified in Eq. S4 far
from equilibrium, we re-formulate our model as a discrete system, where we use a master equation approach to describe the
aggregation of adaptor proteins at the adhesion plaque and the reversible binding of integrins within the adhesion region.
Furthermore, to account for the diffusion of integrins along the membrane, we use a Brownian dynamics approach where each
integrin is given a position ®x (t) that evolves in time according to a Brownian motion with local diffusivity given by Eq. S2, and
use the Euler-Maruyama update scheme to obtain the time-dependent positions of integrins (27). By denoting the number of
adaptor proteins in the adhesion plaque by i, we obtain the following total number of integrins ν(t) inside a NA of area A = i/ρ

ν (t) =
NI∑
k=1

{
1 if π ®xk (t) · ®xk (t) ≤ i/ρ
0 otherwise,

where ®xj (t) is the position of the j th integrin at time t. Setting pi to be the probability of having a NA with i adaptor proteins,
we conclude that the aggregation of adaptor proteins at the adhesion plaque obeys a master equation, given by

ρ Ûpi (t) =
(
gi−1pi−1 + si+1(ν (t))pi+1

)
−

(
gi + si(ν (t))

)
pi , (S18)

where gi (si) is the growth (shrinkage) reaction-rate, defined by gi = γ
(
i/ρ

)
and si (ν) = iκ

(
ρν/i

)
, respectively. Letting `j be

the probability of having j bound integrins inside the adhesion, we obtain the following master equation for binding kinetics of
integrin

Û̀
j (t) = kbind

(
ν (t) −

(
j − 1

) )
`j−1 + ( j + 1)kunbind`j+1 −

(
kbind

(
ν (t) − j

)
+ j kunbind

)
`j . (S19)

When integrins become bound, we reversibly set their diffusion coefficient to zero, and set their unbinding rate to kunbind =〈
τ
(
iσ/ρ j

)〉−1. The time-course of the chemical reactions is realized through a temporal Gillespie algorithm, that allows for
efficient stochastic simulations of reactions with time-dependent propensities (28). This is necessary to account for the fact that
both reactions have propensities which depend on ν (t), and that integrins may diffuse into or out of the adhesion independently
of the reactions governed by Eqs. S18 or S19.

Parameter Estimation
Model parameter values are inferred, when possible, using algebraic expressions from the model equated to values obtained
from experimental measurements. In the main text, we have identified two regions of interest in parameters space, which we
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have denoted regions 2 & 3. The assumptions inherent in each region leads to slightly different algebraic expressions for model
parameters. We begin by discussing the expressions that the two regions have in common, followed by explaining the distinct
approaches used in each region.

Firstly, we introduce the relative enrichment of integrins inside the adhesion E , which has been observed to be in the
range of E ∈ [2, 12] in various physiological conditions (3, 29). Using the conservation of matter for integrins, we obtain the
following expression for their density

CI =

Iin

(
A1 +

(
h2 − A1

)
/E

)
h2 , (S20)

where Iin is the density of integrins inside the adhesion, A1 is the mean area of NA (to be estimated from experimental
measurements), and h is the mean inter-adhesion spacing. The parameter h is determined using

N̄∗in B lim
Kbind→∞

M∗in + L∗in = CI h2

which can be combined with Eq. (S20) to yield

h =
(
A1 (1 − E) + E

N2

Iin

)1/2
, (S21)

where N2 is the number of integrins in a NA when integrin binding is very strong (also to be determined from experimental
measurements). Secondly, an expression for the parameter b can be obtained by solving Iin = N∗in/A

∗, with N∗in = L∗in + M∗in ,
to obtain

b =
IinKon

(
−(β + 1)CI + βφIin + Iin

)
(β + 1)CIKon − Iin

(
−βδ + βφKon + Kon

) , (S22)

where the estimation of the parameters Kon and Kin (implicit in β) must be dealt with differently in the two regions. We may
also use the model steady states to derive the expression

E =
N∗in/A

∗(
NI − N∗in

)
/
(
h2 − A∗

) = (1 + Kbind)Kin

which may be rewritten as an expression for the binding affinity, given by

Kbind =
E

Kin
− 1. (S23)

The parameter δ is estimated by considering the ratio of FRAP recovery times of the intermediate and slow fractions of the
adaptor protein paxillin and vinculin within focal adhesions (10). This ratio is in the range of 20-80, corresponding to a value of
δ ∈ [0.95, 0.99]. We also estimate the value of the mean density of adaptor proteins prior to adhesion formation, CP , using
the literature value of paxillin concentration

[
paxillin

]
≈ 2.3 µMmultiplied by an estimate of cell volume Vcell ≈ 1000 µm3

to get the total number of paxillin molecules in the cell Npax ≈ 1.38 × 106 (30). We then use the simple approximation
CP ≈ Npax/Acell = 8050µm−2, where Acell ≈ 172 µm2 is the estimated cell area determined from analysis of imaging data (2),
to obtain CP ≈ 8050 µm−2. Finally, the parameters kof f and ρ are chosen in such a way that stochastic simulations of adhesion
disassembly/assembly have a timescale and stochasticity comparable to that observed experimentally (19), respectively.

Region 3
From a super-resolution quantification of adhesion size and integrin content (2), we can obtain the following estimates
Iin ≈ 6600 µm-2 and A1 ∈ [7, 9] × 10−3 µm2. The integrin clusters produced by the same study (2), upon exposing cells to Mn+2

(which switches integrins into a high-affinity state), can be used to obtain the estimate N2 ≈ 75. Using Eq. (S21), with E ≈ 12
(i.e., by assuming that NAs are among the most enriched in integrins) and A1 ≈ 8.7 × 10−3 µm2, we obtain h ≈ 0.2 µm. This
estimate is further verified visually by analyzing the spacing between NAs in images (2). Furthermore, region 3 is differentiated
from region 2 by the fact that it produces adhesions even in the absence of ligand binding. Experimentally, in the absence of
ligand, it was found that small clusters of integrin containing N3 ∈ [4, 19] integrins form with an area A3 ∈ [1, 4.4] × 10−3µm2

(2). We use these quantifications to aid us in our parameter estimation by setting them equal to appropriate model steady states,
i.e., by letting

N3 = M̃∗in + L̃∗in (S24)
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Table S1: Auxiliary parameter values used in the determination of model parameters (see Table S3 for model parameter
values).

Symbol Definition Estimated Value Reference(s)

E Fold-enrichment of integrins within the adhesion 12 (3, 29)

Iin Mean density of integrins within the adhesion 6600 µm2 (2)

A1 Mean NA-area 8.7 × 10−3 µm2 (2)

N2 Number of integrins inside NAs when Mn2+ is added to extracellular medium 75 (2)[
paxillin

]
Physiological paxillin concentration 2.3 µM (30)

Vcell Volume of a mouse embryonic fibroblast (MEF) cell 1000 µm3 -
Acell Area of a MEF cell 172 µm2 (2)
N3 Number of integrins inside NAs in the absence of extracellular ligands 6 (2)
A3 Mean NA-area in the absence of extracellular ligands 2.7 × 10−3 µm2 (2)

〈τ
(
0 pN

)
〉 Ensemble average of integrin-ligand bond lifetime in the absence of force 1.5 s (26)

〈τ( f̂ )〉 Ensemble average of the optimal integrin-ligand bond lifetime 30 s (31)
f̂ The force that optimizes bond lifetime 37 pN (26)

〈τ
(
60 pN

)
〉 Ensemble average of the integrin-ligand bond at very large forces 0.1 s (26)

and

A3 = Ã∗. (S25)

These two expressions are then used in conjunction with Eqs. (S20), (S22), and (S23) to yield

Kin =
N3

( (
A1(E − 1) + A3

)
Iin − EN2

)
A3 (N3 − N2) Iin

≈ 1.2, (S26)

Kon =
δ
(
EN2
Iin
− A1(E − 1)

) (
A3 (A1 − A∞) Iin + N3 (A∞ − A3)

)
(A∞ − A1) (A∞ − A3) (N3 − A3Iin)

≈ 0.70, (S27)

Kbind =
(A1 − A3) (E − 1)N3Iin + EN2 (A3Iin − N3)

N3

(
EN2 −

(
A1(E − 1) + A3

)
Iin

) ≈ 8.8, (S28)

and

b =
A3Iin (A∞ − A1) + N3 (A3 − A∞)

(A1 − A3) A3
, (S29)

where we have used δ ≈ 0.97, A2 ≈ 2.7× 10−3 µm2, and N3 ≈ 6 (b remains to be determined). The parameter A∞ is determined
from data. More specifically, using the maximum a posteriori (MAP) estimate of the relation between adhesion area and its
integrin content (see dotted line in Fig. 2). This data is fit to the A-nullcline given by Eq. (2) using a nonlinear least squares
approach and taking Eq. (S29) into consideration . The values of the fit parameters and their 95% confidence bounds are
provided in Table S2. The confidence interval on the quantities b and A0 are relatively large, indicating that they are not well
constrained by the data at hand. Nonetheless, these confidence intervals do not contain zero and only cover one order of
magnitude, so we deem them to be acceptable. This completes model parameter estimation in Region 3 necessary to generate
quantitative understanding of the model developed in this study.

Region 2

Region 2 (
[
Ligand

]‡
> 0) can be distinguished from region 3 (

[
Ligand

]‡
< 0) by the fact that NAs will not form in the absence

of ligand. As discussed in the main text, the transition from region 2 to region 3 may be achieved by decreasing Kon. We
therefore keep the numerical values of all other parameters determined in region 3 as is, and use a different formalism for
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Table S2: Least-squares estimates of model parameters and
confidence intervals obtained from a nonlinear least squares
fitting of the A-nullcline to data.

Symbol Least-Squares Estimate 95% Confidence Interval

A∞ 0.0124 µm2 [0.0118, 0.0129] µm2

b 463 µm−2 [68.8, 806] µm−2

A0 −0.038 [−.0204,−0.239] µm2

determining Kon. More precisely, we use Eqs. (S13), (S20), and (S21) to obtain

Kon =
bδ

(
EN2 − A1(E − 1)Iin

) 2

A∞Iin
©­«N2

(
bE + IinKin

(
[Ligand]‡ kbind

kunbind
+ 1

))
− A1b(E − 1)Iin

ª®¬
, (S30)

where we have used previous experimental finding to estimate
[
Ligand

]‡
≈ 200µm−2, and the ratio kbind/kunbind = 0.005 was

chosen such that the equilibrium of NA-area A∗ ≈ A∞ for ligand densities given by
[
Ligand

]
≥ 10, 000 µm−2 (see Fig. 3 in

main text) as suggested by the spreading behaviour of cells when cultured on substrates with variable ligand density (32, 33)

Mechanosensitivity of Integrin
The coefficients in Eq. S14 are determined based on atomic force microscopy data on the bond lifetime of integrins (26, 31).
More specifically, we have

〈
τ
(
0 pN

)〉
= 1.5 s, 〈τ〉 has a maximum at 37 pN,

〈
τ
(
37 pN

)〉
= 30 s, and

〈
τ
(
60 pN

)〉
= 0.1 s.

Using these values, the coefficients d ≈ 0.32 and c ≈ 0.088 that appear in Eq. (S14) are determined (as discussed before)
algebraically and by numerical optimization, respectively.

CONDITIONAL EXPECTATION ANALYSIS
Introduction
In numerous scientific applications, quantitative measurements of a system near a quasi-equilibrium are made and then analyzed.
Rather than providing a precise description of a system, we may assume that it can be (at least partially) described by a set of
measurements (e.g., a population may be described by the body temperature of its individuals, or a macro-molecular complex
may be described by its mass and charge). Let us consider the simple experimental scenario in which measurements of two
quantities of interest X and Y are made. These may represent the same quantity in two different conditions or two different
quantities in the same condition. If there is a relation between the two measurements X and Y due to the intrinsic interactions of
the system under study, one may attempt to derive this relation from experimental data. However, this task is complicated by the
presence of stochastic fluctuations, measurement error, heterogeneity between realizations, and large data sets. With this in
mind, let us consider a pair of correlated random variables (X ,Y ) measured simultaneously from a dynamical system near a
unique equilibrium

(
X̄ , Ȳ

)
using a homoscedastic model

(X ,Y ) =
(
X̄ , Ȳ

)
+

(
χ, γ

)
,

where χ (along with γ) is an independent identically distributed additive noise. If both quantities X and Y have an effect on the
dynamics of the physical system being observed, the equilibrium Ȳ can be expressed as

Ȳ = f
(
X̄
)

. (S31)

Given samples of (X ,Y ), collected under a variety of experimental conditions, it may not be straight-forward to estimate f (·) if
the values of the corresponding

(
X̄ , Ȳ

)
cannot be readily determined. This situation may arise when studying phenomena at the

sub-cellular level, due to high levels of both intracellular and inter-cellular heterogeneity present even when the experimental
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Table S3: Model parameter values used in the numerical simulations. Parameter values are obtained either directly from
the literature or estimated analytically using model-derived equations as indicated in columns labelled source. Parameter
values and sources which are different in region 3 are in parentheses.

Symbol Definition Value
Region 2 (Region 3)

Source
Region 2 (Region 3)

δ Fractional decrease in adaptor protein off-rate (kof f ) when
tethered by integrin.

0.97 Ref. (10)

b Integrin density inside adhesion which tethers 50% of
adaptor proteins

463 µm−2 Eq. (S29)

CI Mean density of integrins in the membrane 1844 µm−2 Eq. (S20) ’
h Mean distance between adhesions 0.20 µm Eq. (S21)

Kin Dout/Din 1.22 Eq. (S26)

Dout Diffusion coefficient of integrin outside the adhesion 0.28 µm2s−1 Refs. (3, 4)

Din Diffusion coefficient of integrin inside the adhesion 0.22 µm2s−1 Kin =
Dout
Din

Kon Affinity of adaptor protein adsorption reaction in the
absence of integrins

0.29 (0.7) Eq. (S30) (Eq. (S27))

kof f Adaptor protein off-rate in the absence of integrins 1.0 s−1 -

k0
on Kinetic parameter governing on-rate for adsorption of

adaptor proteins into the adhesion plaque††
0.31 s−1 (0.73 s−1) Kon =

k0
on

ko f f

ρ Density of adaptor proteins in the adhesion plaque 4000 µm−2 -
φ Maximum fractional area of a NA 0.30 Least-Squares

CP Basal density of adaptor proteins in the cytosol 8050 µm−2 Ref. (30)
Kbind Binding affinity of single integrins 8.81 Eq. (S28)

kbind Binding rate of single integrins (= kbind[Ligand]) 2.58 s-1 kbind =
Kbind〈
τ(0 pN)

〉
†† In order to obtain an estimate of the first order reaction rate for a bi-molecular adaptor protein binding event, we can use Eq. (S6)
with A = ρ−1 and Pout = CP . This yields binding rate estimates of 0.62 s−1 and 1.5 s−1 in regions 2 and 3, respectively.

conditions are fixed. In order to circumvent this difficulty, we employ the probability distributions of X and Y instead. Assuming
that χ (γ) is independent of X̄ (Ȳ ), we can compute the observed probability density of X (Y ) as

PX = PX̄ ∗ Pχ,
PY = PȲ ∗ Pγ,

where ∗ denotes the convolution operator. Assuming that f is a monotonic function, the the probability distribution of Ȳ is
related to that of X̄ by the change of variable equation, given by

PȲ

(
f
)
= P

(
Ȳ = y

�� f )
=

PX̄ (x)�� f ′ (x)�� , (S32)

where f ′ is the derivative of f and x is the pre-image of y (i.e., x = f −1 (
y
)
).

Experimentally, one may repeatedly measure both X and Y and approximate the marginal distributions PX and PY by
binning data to make the histograms PX and PY, respectively. In what follows, we will explain a methodology for determining
f from these histograms.

Relation to Previous Work
The task of deducing a transformation f (·) from data is central to numerous machine learning techniques. However, these
techniques differ in their motivation from the data analysis task we have presented above. For example, in the unsupervised
learning methods of density estimation and manifold learning/unfolding the transformation f is used to more efficiently
represent data in a so-called representation space, which is useful when dealing with very high dimensional data (34–37). Such
methods assume that PX is unknown and use well known parametric distributions as a prior on X in their inference of f . Such
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approaches are inappropriate for our needs as they ignore the data PX, and thus it is unlikely that the inferred f would satisfy Eq.
(S32). Alternatively, Gaussian Process models and Generalized Additive Models have both been used in supervised learning
tasks to infer relationships between experimentally measured variables X and Y (38–40). However, these approaches require
pairing of the data into coordinates (X ,Y ), which may not always be possible. On the other hand, our approach requires only
knowing the marginal distributions PX and PY which may be readily estimated from unpaired (or paired) samples of X and Y .
Moreover, a great deal of the algorithmic complexity seen in the literature is motivated by issues which arise in high-dimensions
(41), while our data is intrinsically one-dimensional.

Overview of the Algorithm
Given the experimentally determined discrete estimates PX and PY, we propose decomposing the problem of estimating f into
two steps:

1. Finding a maximum a posteriori (MAP) discrete estimates of PX̄ and Pχ, which we denote P̂X̄ and P̂χ, respectively. This
may can be accomplished using the blind deconvolution algorithm (42). We note that it is also possible to do the same for
PȲ and Pγ, but without the mapping f (or f −1) it is unclear whether these estimates satisfy Eq. (S32).

2. We estimate f and Pγ by solving the minimization problem min f ,Pγ KL
(
PȲ

(
f
)
∗ Pγ |PY

)
+ λBV

(
PȲ

(
f
) )

subject to f ′ > 0, Pγ ≥ 0


Pγ



 = 1,


γPγ



 = 0,
(S33)

where KL
(
p
��q )
=
´ ∞
−∞

p (x) log
(
p (x) /q (x)

)
dx is the Kullback-Leibler Divergence, PȲ

(
f
)
is given by Eq. (S32), λ is

a non-negative parameter, and BV (u) =


u′ (x)




2 is a Tikhonov regularization term (43) which limits the irregularity of

the estimate PȲ . Here we have formally restricted our optimization to monotonically increasing functions ( f ′ > 0), but
we may also consider monotonically decreasing functions by substituting in the constraint f ′ < 0.

Figure S2: Schematic overview of the computational approach used to estimate PY given PX , f (X̄), and Pγ. The quantities that
we seek to infer ( f (X̄) and Pγ) are marked with †.

Parametrization
Generally speaking, Bayesian inference methods, such as Markov Chain Monte Carlo (MCMC) techniques, produce samples of
parameters θ, some of which may be used to estimate f . In this section, we detail our approach for reconstructing f from a
given set of parameters θ. In the following section, we detail how to compare the experimental data PY to the model prediction
PY (θ) = PȲ

(
f (x) |θ

)
∗ Pγ (θ) in order to produce appropriate samples of θ.

A priori, we do not know what form the (possibly nonlinear) function f has, and thus we will assume only that it is
continuous almost everywhere. Furthermore, from the problem specification (S33), the only constraint on the probability
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density Pγ is that it must have zero mean, which is too weak of a constraint to justify using any specific parametric family of
distributions. Therefore, we reconstruct both functions in a non-parametric manner. That is, f and Pγ are treated as discrete sets
of values to be inferred using MCMC.

Let us denote the discrete ordered list of sample points for the histograms (i.e., bin centers) by

x = [x1, x2, . . . , xM ]

and
y =

[
y1, y2, . . . , yQ

]
such that PX =P

(
X ∈ [x, x + dx]

)
and PY =P

(
Y ∈

[
y, y + dy

] )
. We aim to choose the parametrization of the function f

in order to maximize the robustness of our computational approach. In order to do this, we take into account two intrinsic
properties of our optimization problem. First, equation (S32) indicates that it is critical to know the derivative of f at the
discrete values x. Therefore, we choose to parametrize f primarily by its derivative rather than its value, which also allows for
a straightforward means of constraining f to be a monotonic function as required by (S33). With an initial value f1 for the
function f , we may reconstruct f from its derivative using the fundamental theorem of calculus: f (x) = f1 +

´ x
x1

f ′ (s) ds.
Second, we aim to use the same parametrization for the entire class of monotonic functions, including both monotonically
increasing and decreasing functions, that can be distinguished by the sign of fM − f1. In order to achieve both of these goals,
we numerically reconstruct the discrete values of the function f from normalized samples of its derivative f ′, defined by
φ B f ′/

(
fM − f1

)
, where imposing φ ≥ 0 guarantees monotonicity. Using this parametrization, f can be reconstructed using

the formula f (x) B f
(
x
�� f1, fM ,φ

)
= f1 + ( fM − f1)

[
S{1,...,M }

(
φ
) ]
, where

Sj

(
f ′
)
=

{
0 j = 1∑j−1

i=1
f ′i + f

′
i+1

2 (xi+1 − xi) otherwise

is a trapezoidal approximation to the cumulative integral of f from x1 to xj . Furthermore, we may also compute the probability
densities at Ȳ = f (x) using

PȲ (θ) B P
(
Ȳ = f (x) |θ

)
= P̂X̄ (x) �

�� ( fM − f1
)
φ
�� ,

where � denotes Hadamard division or the element-wise division of two vectors.

Bayesian Inference of the Transformation
In order to asses the validity of a given (2 + M +Q)-dimensional set of estimated parameters θ = [ f1, fM ,φ, Pγ], we need to
compare the discrete set of experimental measurements PY

(
y
)
with the estimated P

(
Y = f (x) |θ

)
B

(
PȲ ∗ Pγ

)
, a problem that

is generally complicated by the fact that y , f (x). To resolve this issue, we introduce an interpolant, given by

P̃Y

(
y |θ

)
=

{
ρi +

ρi+1−ρi
fi+1− fi

(
y − fi

)
if ∃ i : fi < y ≤ fi+1

0 otherwise
,

where ρ = PY
(
f (x) |θ

)
, allowing us to create a data-fidelity function for a given θ, given by

∆P (θ) = KL
(
P̃Y

(
y |θ

)
|PY

)
.

Therefore, to solve problem (S33), we use the Gibbs sampler to sample θ from the posterior

π
(
θ |PY

)
∝ L

(
PY |θ

)
Pr (θ) ,

where L
(
PY |θ

)
= exp

[
−

(
∆P (θ) + λBV

(
PȲ (θ)

) )]
and Pr (θ) are the likelihood and prior densities of θ, respectively. Given

the MAP estimate θ̂ =
[

f̂1, f̂ ′, P̂γ
]
, we may readily obtain a MAP estimate of f, using the formula

f̂ = f
(
x
��� f̂1, f̂ ′

)
.
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