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Supplementary Methods 

Mathematical Models for FRAP Analysis: Large Drops 

To describe the fluorophore concentration profiles in a FRAP experiment inside large drops, we 
tested two commonly used models. The first model assumes that the concentration of fluorescent 
molecules at the bleach spot boundary is fixed during the entire recovery process, i.e., , 	

, 0 , a constant. Equivalently, it assumes that the normalized concentration, ∗ ,
, , 0 / , 0 , equals one at the boundary, ∗ , 	 	1. Supplementary 

Table 1 displays the equations for the concentration profiles in 1D (cartesian), 2D (cylindrical), 
and 3D (spherical), which are solutions to the diffusion equation ∗/ ∗, where  is 
the Laplacian. The second model assumes that diffusion occurs in an infinite medium, i.e., the 
normalized concentration far from the bleach spot is fixed, ∗ ∞, 	 	1. Here, C* is defined as 
∗ , , , 0 / ∞, , 0 . Supplementary Table 3 displays the 

equations for the concentration profiles in 1D (cartesian), 2D (cylindrical), and 3D (spherical). 
The concentration profiles are then integrated using the equations S1-S3 (for cartesian, 
cylindrical, and spherical coordinates respectively), yielding the average normalized 
concentration in Supplementary Table 2 and Table 2 in the main text.  

The average fluorescence recovery reported in the main text results from averaging in the 
2D imaging plane. However, the data are compared in the main text to the 3D infinite model 
averaged in the 3D volume. We sought to determine whether averaging the 3D infinite model in 
the 2D plane would result in any significant difference. The 3D infinite equation in 
Supplementary Table 3 row 3 was also averaged in the 2D plane using Eq. S2, resulting in Eq. 
S4. Predicted average fluorescence recovery in a 2D plane versus 3D volume of a sphere is very 
similar (Fig. S3). Moreover, using this 2D average led to no significant change or improvement 
in the R2 or measured diffusivities (Supplementary Table 4).  

   〈 ∗〉 ∗ , /                      (S1) 

   〈 ∗〉 ∗ , /                                 (S2) 
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Supplementary Table 1: Fixed boundary solutions  
Expressions for the normalized concentration for a 1D (cartesian), 2D (cylindrical), and 3D 
(spherical) FRAP model with concentration fixed at the bleach spot boundary, x = R in cartesian 
and r = R in cylindrical and spherical coordinates, see also (1). J0 and J1 are Bessel functions of 
the first kind of order zero and one, respectively. τ = R2/D for all models. 

Type Concentration 

1D Pure Diffusion 
(Fixed) 

C∗ x, t 1 ∑ exp 2n 1 π t/ 4τ cos 2n

1 πx/ 2R   

2D Pure Diffusion 
(Fixed) 

C∗ r, t 1 ∑ exp α R t/τ  with J α R 0       

3D Pure Diffusion 
(Fixed) 

C∗ r, t 1 ∑ /

/
exp nπ t/τ   
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Supplementary Table 2. Expressions for the average normalized concentration for fixed 
boundary models in 1D (cartesian), 2D (cylindrical), and 3D (spherical), a simple exponential 
model, and a reaction-dominant recovery model. For fixed boundary models, <C*>(t) was 
calculated by averaging the expressions given in Supplementary Table 1. Leading order refers to 
the first term in the summation, which is a good approximation at long times. Jo is the Bessel 
function of the first kind of order zero.* (2) 

Type Equation Leading Order 

1D Pure Diffusion 
(Fixed) 

C∗ t 1 ∑ exp 2n

1 π t/ 4τ   

C∗ t 1
0.8 exp 2.5t/τ   

2D Pure Diffusion 
(Fixed) 

C∗ t 1 ∑ exp α R t/

τ 	with	J α R 0

 

C∗ t 1
0.7 exp 5.8t/τ

 

3D Pure Diffusion 
(Fixed) 

C∗ t 1 ∑ exp nπ t/τ   C∗ t 1
0.6 exp 10t/τ   

Simple 
Exponential 

C∗ t A 1 exp t/τ

 

N/A 

*Reaction  C∗ t 1 C exp k t   N/A 

 

Supplementary Table 3: Infinite boundary solutions 
Expressions for the normalized concentration for a 1D (cartesian), 2D (cylindrical), and 3D 
(spherical) FRAP model with infinite boundaries, see also (1). The error function and order zero 
modified Bessel function are denoted by erf and I0, respectively. τ = R2/D for all models. 

Type Concentration 

1D Pure Diffusion 
(Infinite boundary) 

C∗ x, t 1 erf /

/ / erf /

/ /   

2D Pure Diffusion 
(Infinite boundary) 

C∗ r, t 1 exp / exp / I sds

 

3D Pure Diffusion 
(Infinite boundary) 

C∗ r, t

1 erf /
/ erf /

/

/
exp /
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Supplementary Table 4: Summary of sum of squared residuals, R2, and D from model fits (Eq. 
S4 and Table 2 row 2-3) to LAF-1 data in Fig. S3. 

Model fit Average type ∑ Residuals2 R2 Dx103 (μm2/s) 

3D Infinite non-step 2D 0.032 0.97 1.7 
3D Infinite non-step 3D 0.018 0.98 1.7 
3D Infinite 2D 0.014 0.99 1.4 
3D Infinite 3D 0.003 0.99 1.2 
2D Infinite 2D 0.001 0.99 2.6 

 

Supplementary Table 5. Summary of sum of squared residuals and R2 from model fits to LAF-
1 data in Fig. 7A. 

Model fit ∑ Residuals2 R2 
Exp 0.034 0.97 
1D Infinite 0.025 0.97 
3D Infinite non-step 0.018 0.98 
3D Fixed 0.010 0.99 
3D Infinite 0.003 0.99 
2D Infinite 0.001 0.99 

 

3D Non-step Initial Condition Model 

FRAP experiments with non-step initial bleaching profiles were modeled in two equivalent 
ways, as described in the Results section of the main text. In the first method, normalized initial 
concentration profiles for data measured using a 3 μm ROI (i.e., spherical initial shape) are fit to 
the 3D infinite model equation (Supplementary Table 2, row 3) to obtain ts

* = ts/τ and a new 
initial condition defined by C*(r,ts

*). The solution for a semi-infinite sphere with arbitrary initial 
condition is well-known from the literature (3) and is  

 ∗ ,
/ /

∗ ′, / ′ ′
/ /

        (S5) 

Integration of Eq. S5 following Eq. S3 with ∗ ′, /  evaluated using Supplementary Table 3, 
row 3, gives  

〈 ∗〉

1
/

/ / 1 3 /
/

/
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/
               (S6) 

For non-step initial conditions (i.e., 0), <C*>(0) in Eq. S6 is not equal to zero. Thus, to 
compare our data which is normalized such that <C*>(0) = 0, we re-normalize the model 
equation before fitting to obtain 〈 ∗ 〉 . 

〈 ∗ 〉 〈 ∗〉 〈 ∗〉 0 / 1 〈 ∗〉 0                  (S7) 
   

The second method can be used for data fit to the 3D, 2D, and 1D infinite model equations. 
Rather than use ∗ ′, /  in Eq. S5, t is replaced with ts+t  in the equations in Table 2 of the 
main text. As an example, using this substitution in the 3D infinite model leads to Eq. S8. 

〈 ∗〉 1
/

/

/

/ / 3 2
/

/ / 1  

                 (S8) 

Again, for non-step initial conditions (i.e., 0), <C*>(0) in Eq. S8 is not equal to zero and 
we use Eq. S7 to re-normalize the model equation before fitting the data. The same procedure 
was used when fitting data to the 2D and 1D infinite models with non-step initial conditions. 

3D Cylindrical Model 

To determine quantitatively whether one expects quasi-1D or quasi-2D dynamics for bleach 
ROIs of 50 and 1 µm (Fig. 8A), respectively, we compared <C*> dynamics of 1D and 2D 
Infinite models to a 3D cylindrical model in an infinite medium with different aspect ratios of the 
geometry. The solution for a cylindrical source was shown previously by Penkova et al. (4) and 
can be rewritten for a cylindrical sink (i.e., concentration within the cylinder is lower than 
outside) with concentration normalized as  

, , 1 / / / /

∑
!
∑

!
           (S9) 

where a and b are the half height and radii of the cylinder, respectively, r and z are the radial and 
axial coordinates, respectively, and D is the diffusion coefficient. To simplify Eq. S9 we define 
dimensionless variables ∗ / / , / ,	 ∗ / , ∗ / . Since our FRAP 
measurements, and thus <C*>, are performed at the z = 0 plane, we also evaluate Eq. S9 at the z 
= 0 plane. These simplifications result in:  

∗, 0, ∗

1 ∗ / ∗ /

∗

∗ ∑
∗

∗ !
∑ ∗ !

                            

      (S10) 

Integration of Eq. S10 using the formula in Eq. S2 results in: 
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〈 ∗, 0, ∗ 〉 1 ∗ / 4 ∗ /
∗ ∑

!

, / ∗
Γ 1

, 1/ 4 ∗                (S11)  

where Γ 1  is the complete gamma function, Γ 1 !, and 

Γ 1 , 1/ 4 ∗  is the incomplete gamma function, Γ 1 , 1/ 4 ∗

/ ∗ .  

 The value of δ required for achieving effectively quasi-1D diffusion was determined by 
evaluating ∗ , 	(Supplementary Table 3) at x = 0 and fitting δ in Eq. S11 (Fig. S5A). We 
evaluate the equation at x = 0 since in our experiment we only measure at the mid-plane but 
expect quasi-1D diffusion to occur along the axial dimension above and below the midplane. We 
determined δ required for quasi-2D diffusion by evaluating 〈 ∗〉  (Table 2 2D dimension) and 
fitting δ in Eq. S11 (Fig. S5A); we find that δ = 0.007 (i.e pancake-shaped) and δ = 10.84 (i.e. 
elongated cylinder) achieve effective 1D and 2D diffusion, respectively. These values are not 
experimentally obtainable for our system, however we can use δ = 0.1 and 2.9, towards these 
shapes. Fig. S5B shows the comparison of the 3D cylindrical model using these parameters to 
1D and 2D diffusion. For 2D diffusion, the models are similar, but begin noticeably deviating at 
roughly <C*> ~ 0.8. For 1D diffusion they are also similar but significant deviations are noted 
even at  <C*> ~ 0.6. This suggests that FRAP data obtained using δ = 0.1 and 2.9 can be 
reasonably well-fit to the 1D and 2D infinite models, respectively. 

3D Finite Model: Local Equilibrium 

To describe the fluorophore concentration profiles in a FRAP experiment inside drops where 
Rdrop/Rbleach = 1, we developed a 3D spherically symmetric finite model. To describe the 
concentration profiles in each phase, we utilize the one-dimensional form of Fick’s second law 
for the bleached concentration, Cb, in each phase in spherical coordinates.  

,
           (S12) 

      
,              (S13) 

Here, D and D+ are the protein diffusion coefficients in the droplet and protein-lean phase, 
respectively, r is the spherical coordinate for diffusion, and R is the droplet and bleach radius 
(see Fig. 10A). Local equilibrium at the droplet-solution interface gives the boundary condition 

, , , where α is the ratio of total protein concentration in the condensed 
phase to the protein-lean phase, and R- and R+, represent being just on the inside or outside of the 
droplet interface, respectively. Equating the mass fluxes at the droplet-solution interface gives 
the second boundary condition , / , / . The third and fourth 

boundary conditions come from symmetry at the droplet center 
, 0 and assuming the 

protein-lean phase is an infinite sink such that lim → , 0. The initial conditions in the 
droplet and protein-lean phases are , 0 1 ,  for  and , 0 0 for 
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. Cd,in is the total protein concentration inside the droplet phase, which is constant over 
time, and (1-K) is the fraction of unbleached protein in the droplet phase. Accordingly, the 
fluorescent protein concentration, Cf, is found using the relationship ,  for  
and  for , where C∞ is the total protein concentration in the protein-lean 
phase. 

To simplify Eqs. S12 and S13, we define dimensionless variables ∗ / , / , 
/ , / , and / 1  and use the transformation . The 

resulting non-dimensional equations are           

, ∗

∗   1       (S14) 

, ∗

∗  1          (S15) 

Eqs. S14 and S15 are solved subject to the non-dimensionalized boundary and initial conditions 

1 , ∗ 1 , ∗ , 
, ∗ 1 , ∗ , ∗ 1 , ∗ , 0, ∗ 0, 

lim → , ∗ , and , 0  for 1 and , 0 0 for 1. We seek 
solutions using Laplace transforms of Eqs. S14 and S15 (with respect to ∗); Laplace 
transformed variables are indicated with the overbar, and s represents frequency in the Laplace 
domain:  

            1      (S16) 

  1       (S17) 

where  in Eq. S16 comes from the initial condition, , 0 . Transformed boundary 

conditions are 1 , 1 , , 
, 1 , , 1 , , 0, 0, 

and lim → , . The solutions in Laplace transform space to Eqs. S16 and S17 are  

,
/ /

/ / / / / /
  

 1	    
(S18)    

  ,
/ /

1
/ /

/ / / / / /
  

1    (S19) 

 

Using the same approach as previously reported for the analogous heat transfer problem (5), we 
find the inverse Laplace transform of Eqs. S18 and S19 by using the Inversion Theorem for the 
Laplace transform (3):  

, ∗ ∗         (S20) 
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In Eqs. S18 and S19,  has a pole at s = 0 and a branch point at s = 0. Accordingly, we use the 
contour integral with a cut along the negative real axis (3) (Fig. S12) to obtain:  

, ∗ 	 ∗ ∗ ∗          (S21) 

where the first integral corresponds to the contour FE and the second on the contour DC in Fig. 
S12. We set  on FE and  on DC, giving / /  and /

/  on FE and DC, respectively. We find ∗ 0 by series expansion; 
substituting  leads to: 

, ∗
/

∗

    1     

(S22) 

, ∗
/

∗
cos / 1 sin / sin / 1

cos sin                        1    (S23) 

The normalized fluorescent concentration, ∗ ,

, ,
, inside the droplet is found using the 

condition ,  and / 1 , , and is ∗ 1 . The average 

normalized fluorescence is found using 〈 ∗〉 ∗ , ∗ / , and after 
integration of the outer integral is 

〈 ∗〉 ∗ 1 /

∗
   

1       
(S24) 

The integral in Eq. S24 was evaluated numerically using the integral function in Matlab, which 
uses global adaptive quadrature and we chose error tolerances typically of order 1x10-9. 

3D Finite Model: Interface Resistance 

We found that fitting LAF-1 FRAP data using Rdrop/Rbleach = 1 resulted in a diffusivity two orders 
of magnitude lower than expected (Fig. 11A) and hypothesized that this may result from 
resistance to mass transfer at the interface. We sought to estimate this resistance by using a mass 
transfer coefficient, k, and replacing the local equilibrium boundary condition by equating the 
mass flux on each side of the interface to that at the interface, , / , /

, , , see also (6). Thus, in the case of no resistance k approaches 
infinity and local equilibrium is established, , , . As described in the previous 
section, we define dimensionless variables, use the transformation , and seek solutions 
using Laplace transforms. Transformed boundary conditions are	 1 , / 1 ,

1 , / 1 , 1 , 1 , , 1 , / 1 ,
1 , / 1 , , 0, 0, and lim → , . The solutions in 

Laplace space are 
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,
/ /

/ / / / / / / / / /    

1     (S25) 

  

,
/ / / / /

/ / / / / / / / / /   

           1    (S26) 

In Eqs. S25 and S26,  has a pole at s = 0 and a branch point at s = 0. We again use the contour 
deformation (Fig. S12) (Eq. S21) with s rewritten in the same way. We again find 

∗ 0 by series expansion; substituting  leads to: 

, ∗ 2
/

cos sin sin ∗

cos 1 sin 1 cos 1 sin
 

1     (S27) 

Using the same equations described in the previous section, the average normalized fluorescence 
is 

〈 ∗〉 ∗

1
6

/

cos sin ∗

cos 1 sin 1 cos 1 sin
 

 

1     (S28) 

The integral in Eq. S28 was again evaluated numerically using the integral function in Matlab 
and we chose error tolerances typically of order 1x10-9. In the limit k approaches infinity, Eqs. 
S25-S28 reduce to Eqs. S18-S19, S22, and S24, respectively.  

FRAP: 20 nm beads in 90% glycerol 

The quantitative accuracy of using the 3D infinite non-step model was tested by performing a 
FRAP experiment where 20 nm in diameter red fluorescent beads in a 90% glycerol solution 
were bleached. The viscosity of 90% glycerol is known from literature; values range from μ = 
0.219 to μ = 0.235 Pa.s  at 20oC (7). Bead diffusion coefficient calculated from the Stokes-
Einstein equation, / 6 , is 0.094 ± 0.003 µm2/s, where a is bead radius, kB is 
Boltzmann’s constant, and T is temperature. Due to these fast diffusivities, we were unable to 
take z-stacks quickly enough to measure the 3D bleach shape inside a solution of 20 nm beads. 
Therefore, we estimated the bleach radius in the axial direction, rz, by comparing the decrease in 
fluorescent intensity immediately after bleaching to that of LAF-1, for which we know rz. For 20 
nm beads, the fluorescence intensity decreases by 55% in the center of the bleach spot (i.e., 

0, 0 / ), where C0 is the intensity before bleaching. We measured a similar decrease 
in LAF-1 intensity (i.e., 50%) (Fig. 6A) which resulted in rz ~ 2 μm. Therefore, we expect rz ~ 2 
μm for the bleach shape of the 20 nm bead solution, and since we measure rx = 2.05 ± 0.13  μm, 



10 
 

we estimate that the bleach shape is spherical. Accordingly, we used the 3D infinite model with 
non-step initial condition, resulting in D = 0.066 ± 0.025 µm2/s, which is just within error of the 
expected diffusivity. While using the 2D infinite model may yield a closer value to the diffusion 
coefficient predicted by Stokes-Einstein, the experimentally measured decrease in fluorescence 
after bleaching suggests that a 3D model better describes the recovery process. The slightly 
smaller measured apparent diffusion coefficient may arise from non-detectable aggregates of the 
20 nm beads.  

 

Fluorescence Correlation Spectroscopy Calibration 

Diffusivity and concentration can be measured quantitatively using FCS, but first we require 
determination of the confocal volume experimentally. This is achieved by fitting FCS data of a 
sample with known diffusivity: Alexa 488 in water at 22oC has a diffusivity of 435 µm2/s (8). 
We performed FCS experiments with a 30 s measurement time using a 60X oil immersion 
objective (Apo oil immersion, N.A. = 1.4, Nikon, Melville, NY) at concentrations between 1 and 50 
nM either 1 µm or 4 µm above the coverslip. Data are fit to the autocorrelation function for 
simple diffusion with triplet-state kinetics, G(τ), is 

0 /

/ / /      (S29) 

where G(0) is the autocorrelation function at τ = 0, F is the fraction of molecules entering the 
triplet state with characteristic relaxation time τF, /4  is the diffusion time of Alexa 

488 for the radial radii wxy and diffusivity D, and /  is the ratio of axial to radial radii 
of the measurement volume. Eq. S29 assumes that the measurement volume can be 
approximated as a three-dimensional Gaussian with the two parameters wxy and wz. A sample 
curve for 10 nM Alexa488 is shown in Fig. S13. Using Eq. S29 with known diffusivity and 
therefore τD, values of k and wxy are obtained at 1 µm and 4 µm above the coverslip and are k = 
4.78 ± 0.20, wxy = 0.19 ± 0.01 and k = 6.21 ± 0.05, wxy = 0.21 ± 0.01, respectively. Slightly 
different values of k and wxy are found due to refractive index mismatch and detection volume 
distortion using an oil immersion objective (9, 10).  

Determination of D+ and C∞ of LAF-1 using FCS 

Autocorrelation data are obtained 4 µm above the coverslip by FCS over a 30 s measurement 
time (Fig. S14). We collect data at 4 µm rather than 1 µm above due to the presence of adsorbed 
protein at the surface. Diffusivity, D+, and concentration of fluorophore-labeled LAF-1, CDye, in 
the protein-lean phase are determined using the parameters k and wxy measured above and Eq. 
S29. C∞ is then measured using the relation / % , where %labeled is the 
labeled fraction of protein, determined by nanodrop. We use k = 4.78 ± 0.20 and wxy = 0.19 ± 
0.01 in Eq. S29, resulting in D+ = 94 ± 11 µm2/s and C∞ = 2.2 ± 1.3 µM. Fitting using k = 6.21 ± 
0.05 and wxy = 0.21 ± 0.01 results in a 39% decrease and 28% increase in C∞ and D+, 
respectively. 

Determination of Cd,in and α of LAF-1 using FCS and Intensity Calibration 
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The ratio of protein concentration in the droplet to the protein-lean phase, α, can often be 
measured directly by the ratio of confocal intensities inside and out of droplets. However, surface 
adsorption of LAF-1 at the coverslip surface complicated this analysis and we were unable to 
reliably measure confocal intensity in the protein-lean phase. Instead, we determine α by 
measuring Cd,in  and C∞ independently and dividing, , / . Due to the slow diffusion of 
LAF-1 inside droplets, we were unable to obtain accurate autocorrelation data and measure Cd,in  

directly by commercial FCS. Instead, Cd,in is determined in two steps. We first correlate the 
confocal intensity of the fluorophore used for labeling LAF-1, Dylight 488, to the measured 
concentration by FCS with 30 s measurement time (Fig. S15). The microscope laser power used 
to measure the intensity of the lower concentration (i.e., ~ 75 μW for 10-50 nM) Dylight488 
solution necessary for FCS is different than that typically used to image LAF-1 droplets (i.e., ~ 
0.9 μW). This is due to a much higher labeled LAF-1 concentration inside droplets. Using higher 
power (~75 μW) leads to saturation in intensity. Accordingly, the second step in determining 
Cd,in is to measure the ratio of intensity at the high power used for a 10-50 nM Dylight solution to 
the intensity measured at the lower power used to image LAF-1 droplets. For this step, we use a 
solution of 500 nM Dylight 488 and obtained a correction factor, 	 @75 /

@0.9 67.7 / 0.4. The intensity of labeled LAF-1, IDye, expected using ~75 
μW is calculated by multiplying by cf and converted to concentration, CDye, using the calibration 
curve in Fig. S15. Cd,in is then measured using the relation , / %  and is 2.6 ± 
1.2 mM. Division of Cd,in by C∞ gives α = 1189 ± 880. Laser power was measured after the 60x 
objective (Apo Oli immersion, N.A. 1.4, Nikon, Melville, NY) using a handheld digital power meter 
(PM100D Thorlabs, Newton, NJ) in scanning mode for a 512x512 field of view. We note that 
this measured concentration is significantly higher than that previously measured for LAF-1 
droplets (11); this is partially explained by the lower salt concentration used in the present study, 
likely giving rise to slightly more concentrated droplets. Consistent with this, our measured D is 
an order of magnitude lower than that reported using FCS in droplets at 125 mM NaCl (11). 
Future studies may better reveal the reason behind this significant difference in dense phase 
concentration and diffusion coefficient. 

Determination of D+ of Ddx4-YFP using FCS 

The diffusivity of Ddx4-YFP in the protein-lean phase is determined by FCS. We use the photon 
counting detector corresponding to a wavelength of 488 nm. Due to the high concentration of 
Ddx4-YFP even in the protein-lean phase, we first photobleached cells by acquiring a z-stack 
with high laser power. FCS experiments are performed with 30 s measurement time and data are 
fit to Eq. S29, resulting in D+ = 36 +/- 11 µm2/s (Fig. S16). In living cells, refractive index 
mismatch can further distort the FCS measurement volume. The nucleoplasm refractive index is 
estimated to be ~1.36 (12), which would lead to ~20% error in the diffusion coefficient (13).  

Supplementary Figures 
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Supplementary Figure 1. (A) Calculated concentration profiles for 2D fixed (black dotted line) 
and infinite boundary (black dashed line) models for three time points with the initial 
concentration profile shown (solid-black line). Here, t*= t/τ and t0

* = 0, t1
* = 0.01, t2

* = 0.15, t3
* = 

0.3. (B) Calculated <C*> versus t/τ for 2D fixed (black dotted line) and infinite boundary (black 
dashed line) models. τ = R2/D for both models.  
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Supplementary Figure 2. Calculated concentration profiles for four time points for infinite 
boundary models in 1D (black dotted line), 2D (black dashed line), and 3D (black solid line). 
Initial profile is shown as blue solid line. (A) t/τ = 0.02, (B) t/τ  = 0.12, (C) t/τ  = 0.49, and (D) t/τ 
= 1. 

 

Supplementary Figure 3. (A) Calculated <C*> versus t/τ for 3D Infinite model using a 3D 
average (blue solid line) and 2D average (black dotted line). (B) Measured <C*> versus t (black 
open circles) for LAF-1 using a ROI = 3 μm fit to the 3D infinite boundary model with step 
initial condition using a 3D average (blue solid line) or 2D average (black dotted line).  

 

Supplementary Figure 4. Measured <C*> versus t (black open circles) for LAF-1 using a ROI 
= 3 μm fit to the 3D (blue solid line) infinite boundary model with step initial condition, 3D 
infinite boundary with non-step initial condition (blue dashed line), and 3D fixed boundary 
model (blue dotted line).  
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Supplementary Figure 5. (A) δ values required for 3D Cylindrical model to display quasi-1D 
(blue dotted line with δ = 0.007) or quasi-2D (blue dashed line with δ = 10.84) behavior reflected 
by <C*> vs t. (B) Comparison between 1D Infinite (red solid line) and 3D Cylindrical model 
(blue dotted line) using δ = 0.1 and 2D Infinite (black solid line) and 3D Cylindrical model (blue 
dashed line) using δ = 2.9, values characteristic of our experiments. 

  

 
Supplemental Figure 6. Measured <Ct(*> versus t (black open circles) of 20 nm beads in 90% 
glycerol using a ROI = 2.5 μm fit to the 3D infinite boundary with non-step initial condition 
(blue dashed line). (Inset) Fitting to this model yields a similar diffusion coefficient to that 
expected from Stokes-Einstein (i.e., DStokes-Einstein = 0.094 +/- 0.003 µm2/s vs D = 0.066 +/- 0.025 
µm2/s). Typical error bars are shown and represent standard deviation of four replicates. Stokes-
Einstein error bar corresponds to standard deviation of using the three literature reports of 
viscosity (see Supplementary text).  
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Supplemental Figure 7. Calculated <C*> versus t/τ for 3D finite model with local equilibrium 
assumption (blue dashed line) or interface resistance with k = 1000 (black dotted line), k = 10 
(black solid line), and k = 1 (black dashed line). τ = R2/D for both models. 
 

Supplemental Figure 8. FRAP data for Ddx4-YFP (open black circles) using Rdrop/Rbleach = 1 fit 
using the 3D finite model accounting for interface resistance (dotted black line) results in (A) 
apparent D = 0.023 ± 0.009 μm2/s and k = 648 ± 600 μm/s, R2 = 0.98. (B) Constraining the fit 
parameters results in a nearly as well fit (R2 = 0.86) with D = 1.56 ± 0.68 μm2/s and k = 0.10 ± 
0.01 μm/s. Typical error bars are shown and represent standard deviation of measurements on 
eight cells. 
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Supplementary Figure 9. Calculated <C*> versus t/τ for 1D (red dashed line), 2D (black 
dashed line), and 3D infinite (blue solid line) models with τ = R2/D for all models.  

  

 

Supplemental Figure 10. Measured concentration profiles for LAF-1 in the xy plane for three 
time points demonstrate that C* at r/R = 1 is not fixed at 1 using a ROI = 3 μm. Here, t1 = 0 min, 
t2 ~ 1 min and t3 ~ 4 min after bleaching. Typical error bars are shown and represent standard 
deviation of eight replicates. 
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Supplemental Figure 11. Calculated <C*> versus t/τ for 3D finite model with (A) α = 1, (B) α = 
10, and (C) α = 500 with D/D+ = 1/1000 (blue dashed line) and D/D+ = 1/10 (black  dotted line) 
demonstrates reduced sensitivity to D/D+ for small α. <C*> versus t/τ for 3D finite model with 
(D) D/D+ = 1/1000, (E) D/D+ = 1/10,000, and (F) D/D+ = 1/100,000 with α = 10 (red  solid line), 
α = 100 (blue dashed line), and α = 1000 (black dotted line) demonstrates reduced sensitivity to α 
for small D/D+.  
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Supplemental Figure 12. Contour with a cut along the negative real axis used to calculate the 
integral in Eq. S20-S21 (3). 

 

Supplemental Figure 13. (A) Autocorrelation curve obtained 1 μm above the coverslip for a 10 
nM Alexa488 solution fit to Eq. S29 results in wxy = 0.19 ± 0.01 and k = 4.78 ± 0.20. (B) 
Autocorrelation curve obtained 4 μm above the coverslip for a 10 nM Alexa488 solution fit to 
Eq. S29 results in wxy = 0.21 ± 0.01 and k = 6.21 ± 0.05. 
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Supplemental Figure 14. Normalized autocorrelation curve obtained 4 μm above the coverslip 
in the protein-lean phase of a LAF-1 80 mM NaCl solution (black open circles) and of Dylight 
488 (red open circles). Data are fit to Eq. S29 using k = 4.78 +/- 0.20 and wxy = 0.19 +/- 0.01. 
Fitting using k = 6.21 +/- 0.05 and wxy = 0.21 +/- 0.01 results in a 39% decrease and 28% 
increase in C∞ and D, respectively. Typical error bars are shown and represent standard deviation 
of five replicates. 

   

Supplemental Figure 15. Dylight 488 fluorescence to concentration calibration curve obtained 4 
μm above the coverslip of a Dylight488 solution using fluorescence correlation spectroscopy. 
Concentration is calculated using k = 4.78 +/- 0.20 and wxy = 0.19 +/- 0.01. Typical error bars are 
shown and represent standard deviation of three replicates. 
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Supplemental Figure 16. Autocorrelation curve obtained 1 μm above the coverslip of Ddx4-
YFP in Hek293 cell nuclei. Data are fit to Eq. S29 using k = 4.78 +/- 0.20 and wxy = 0.19 +/- 
0.01. Typical error bars are shown and represent standard deviation (n = 15 cells). 

 

Supplemental Figure 17. Measured <C*> versus t (black open circles) for LAF-1 using a ROI 
= 3 μm fit to the 2D infinite boundary model with non-step initial condition (black dashed line) 
and Eq. 12 in Axelrod et al. (14) with K = 1.3 found using Eq. 7 in Axelrod et al. (14). 
Diffusivities estimated using both models (i.e., Eq. 12 in Axelrod et al. (14) and 2D infinite non-
step) are 0.0034 and 0.0035 μm2/s, respectively. 
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