Supplementary Material

Supplemental Figure 1. Combined Gata4 (or Tbx5) and Nkx2-5 haploinsufficiency does not affect adult atrial rhythm. (A) Relative transcript expression by gPCR in the left atrium of Nkx2.5 heterozygotes, Tbx5/Nkx2.5 and Gata4/Nkx2.5 compound heterozygotes and Gata4/Tbx5/Nkx2.5 triple heterozygotes 2 weeks after TM treatment. Data are represented as means \pm SEM normalized to GAPDH and relative to R26^{CreERT2} mice (set as 1) (n=5-7 R26^{CreERT2}, $n=3-4 \ Nkx2.5^{fl/+}; R26^{CreERT2}, \ n=3-4 \ Tbx5^{fl/+}; Nkx2.5^{fl/+}; R26^{CreERT2}, \ n=4 \ Gata4^{fl/+}; Nkx2.5^{fl/+}; R26^{CreERT2}$ and n=4 Tbx5^{fl/+}:Gata4^{fl/+}:Nkx2.5^{fl/+}:R26^{CreERT2}). Experiments were performed in technical duplicates. P value was determined by one-way ANOVA followed by post-hoc Tukey test; *P < 0.05 was considered significant. (B, C) P-wave duration and PR interval calculated from ambulatory telemetry ECG recordings from R26^{CreERT2} (n=12), Nkx2.5^{fl/+}:R26^{CreERT2} (*n*=8). Tbx5^{fl/+};Nkx2.5^{fl/+};R26^{CreERT2} Gata4^{fl/+};Nkx2.5^{fl/+};R26^{CreERT2} (*n*=5), (n=4)and Gata4^{fl/+};Tbx5^{fl/+};Nkx2.5^{fl/+};R26^{CreERT2} (n=5) mice. P values were determined ANOVA followed by post-hoc Tukey test. (D-G) Representative Poincare plot of RR interval (RRn) against the subsequent beat (RRn + 1) (n=7 for $R26^{CreERT2}$, n=5 $Tbx5^{fl/+}$; $R26^{CreERT2}$, n=6 $Gata4^{fl/+}$; $R26^{CreERT2}$, n=6 $Nkx2.5^{fl/+}$; $R26^{CreERT2}$, n=7 $Gata4^{fl/+}$; $Tbx5^{fl/+}$; $R26^{CreERT2}$, n=5 $Tbx5^{fl/+}$; $Nkx2.5^{fl/+}$; $R26^{CreERT2}$, n=6 $Gata4^{fl/+};Nkx2.5^{fl/+};R26^{CreERT2}$ and n=5 $Gata4^{fl/+};Tbx5^{fl/+};Nkx2.5^{fl/+};R26^{CreERT2}$ mice).

Supplemental Figure 2. Adult *Tbx5* heterozygotes have spontaneous atrial arrhythmias under anesthesia. (A) Pacing induction by intra-atrial pacing of $Tbx5^{fl/+};R26^{CreERT2}$ mice showing episodes of spontaneous AF or AT. 5 of 11 (45%) $Tbx5^{fl/+};R26^{CreERT2}$ mice developed spontaneous atrial arrhythmias (**B-D**) Intracardiac atrial electrogram recordings and corresponding surface ECG of $R26^{CreERT2}$ (**B**), and $Tbx5^{fl/+};R26^{CreERT2}$ mice (**C**, **D**) with paroxysmal AF (**C**) or spontaneous atrial tachycardia (**D**) 2 weeks post-TM treatment. Paroxysmal AF was observed in 3 of 11 and $Tbx5^{fl/+};R26^{CreERT2}$ mice while spontaneous AT occurred in 2 of 11 $Tbx5^{fl/+};R26^{CreERT2}$ mice. A, atrial electrical signal; AF, atrial fibrillation; AT, atrial tachycardia; pAF, paroxysmal AF; sAT, spontaneous atrial tachycardia; V, far field ventricular electrical signal.

Supplemental Figure 3. Left ventricular function of *Tbx5^{fl/+};R26^{CreERT2}* adult mice is not changed. (A-D) M-mode echocardiography from $R26^{CreERT2}$ (A), $Tbx5^{fl/+};R26^{CreERT2}$ (B), $Gata4^{fl/+};R26^{CreERT2}$ (C) and $Tbx5^{fl/+};Gata4^{fl/+};R26^{CreERT2}$ (D) mice 2 weeks post-TM treatment. Surface ECGs are represented at the bottom. N = 3-4 mice per genotype. (E) Left ventricular ejection fraction (LVEF) was calculated from the M-mode images. *P* values were calculated from ANOVA followed by post-hoc Tukey test.

Supplemental Figure 4. Combined Gat	ta4 (or
Tbx5) and Nkx2.5 haploinsufficiency	does
not increase susceptibility to AF.	(A-F)
Intracardiac atrial electrogram recording	s and
corresponding surface ECG of R26 ^{CreERT2}	² (<i>n</i> =9),
Nkx2.5 ^{fl/+} ;R26 ^{CreERT2}	(<i>n</i> =8),
<i>Tbx5^{fl/+};Nkx2.5^{fl/+};R26^{CreERT2}</i>	(<i>n</i> =8),
Gata4 ^{fl/+} ;Nkx2.5 ^{fl/+} ;R26 ^{CreERT2}	(<i>n</i> =12)
Gata4 ^{fl/+} ;Tbx5 ^{fl/+} ;Nkx2.5 ^{fl/+} ;R26 ^{CreERT2}	(<i>n</i> =6)
mice. A, atrial electrical signal; V, fa	r field
ventricular electrical signal. (F) Pacing inc	luction
by intra-atrial pacing of mice in A-H. P	values
were determined by Fisher's exact test	;*P <
0.05 and ** <i>P</i> < 0.01.	

Supplemental Figure 5. Decreased expression of potassium channels in *Tbx5* heterozygotes is not rescued by *Gata4* haploinsufficiency. (A-H) Relative transcript expression by qPCR of known AF potassium genes from left atrium of $R26^{CreERT2}$ (*n*=6) $Tbx5^{fl/+};R26^{CreERT2}$ (*n*=5), $Gata4^{fl/+};R26^{CreERT2}$ (*n*=7) and $Gata4^{fl/+};Tbx5^{fl/+};R26^{CreERT2}$ (*n*=9) mice 2 weeks after TM treatment. $Tbx5^{fl/+};R26^{CreERT2}$ mice showed a 20-30% reduction in *Kcnj3*, *Kcnj5* and *Kcnh2* gene expression, and was not normalized in $Gata4^{fl/+};Tbx5^{fl/+};R26^{CreERT2}$ mice. Data are normalized to GAPDH and relative to $R26^{CreERT2}$. *P* values were analyzed with one-way ANOVA followed by post-hoc Tukey test.

TBX5

GTACAATGAAATCAGACAG <mark>AGGTGTTT</mark> CTGACGAAATGTTGATGGATGGGACACTAAGGTGCTAAGGTAA
ATATAAGAGAAGCATATAGGCACTGTGTGTGTGTCCGAGTCCACTTCCCAGTAAGCATGCAT
TTCACAGACAGACCACCAGAGGCTAGGCAGCGATCGTGGTGGCTTTTCTTTC
ATTTGAAACAGAAATTTTTTTTCCAAAAAACCTGGTGTGGGGGAAAGTGTACCCTGTGAACTGTGCCCTCC TBX5
GGCTGCCTGCCAACAGTTTGGTTTCTGTT <mark>GGTGTCA</mark> CATCCACAGCGAGCCCAGTCGCCCCTGCACGGCC TBX5
AAGGTGTC CTGTGAAATATATAGACCAGGGTCAGCTCGGCTCACAGGGTCCGATGGCCTCAGCAGACCTT GATA4 GATA4
TCCGGGGGGGGTGAGGGGTGGCGCACTGCCATGGGGGCA <mark>TTATCT</mark> CCAGG <mark>AGATAG</mark> GGACGATGGACAAGCA TBX5
CTTTACTGCAGA <mark>GAGGTG</mark> ATCCAAGCAGGCTTGGTCGGTCGAGGGAAAGGAGGCTAGGACACATTCCATT
AAGGAATTTCACACTCCCCCTCCTCCCCAGCCCGTCATCGTCGTTTTCTCTATCCCCTGAACAGAAATAT GATA4
ATTTAGCAACCCTATCTAAACCCTCTCCCTTTAATTTGATTAAGGAGCTGAGGGAACAAAACCAGA
GATGGGTGGGGGGCTTGGGGGGGGGGGGGGGGGGGGGGG
CTGCCCATCTCAGGCAGGTGAGGCTTAAGTGTGGACAGCCCCAGTGCCTCCTGGTACTCTGTAAAGAGGC GATA4
ACCGAGGACCCAGGGAGGGAACATTTTATCAGGGAATGCTCTTCTCTGGGAAAATGTGAACCAAACCAGA
GGGGGTCAAGCCTCAAGGATTAGCTCAGACAATGGGGGCCTCACTAACACAGGACACCAGCTTCTTTCCCA
GTCTCTGCCTCCCTGGAACTTCAGTCTTCAGGGCTTCCCAGAGGCTGCGCAGTTTGAACTCTTGGGGGCTT
TAATGGCTCGCACCTACCTACCTACCTACCTACCTACCTA

Supplemental Figure 6. Nucleotide sequence of the 5'-upstream region of the mouse *Atp2a2* gene. *Atp2a2* enhancer located 19Kb upstream of the start site (mm9 Chr5: 122970476-122971591) with GATA and TBX canonical binding sites shown in blue and green. AGAGGGTCCCAAAGGAACACATCCTATCGCCGGAGCAAGACGAGCAGCTGCTAGGTTGACGGGACAATCA TCACATACCTTCCCCTTGTCCCCTTTCCCCGTCCTCCCAGGAGCTCACACGTGCTTTCTCTTTACCCAGCAG CAAGACACTATTCTTTACATTATTAGCATCCTGAGTTTCTGGACCTCCCTGTTGGAGACAACAGGACAAC AGCACCAGCTGATTTCTAAGGCCCATTTCTTGATTCAGTGTGGACTTTGTCAGCTACAATGGGAAGCCAG GAAGTGACACCGAGGGTCATTCATACCAGTAAGACCCATCATGAGGGAAAACCTTATACTGGTATTTGGT CCATCACAATGGCCAAAATACGTGGCATGAACAACTTAAAAAATAAAACTATTGGCTTCTAGATCCAGAG GTTTCAGTGTAGGACAGCAGGGCAGGCAGAGAGAGGAGGGCTTGGTCCAGAGCAACAGTAGTCTGTAGCAA AGTTTGCTCATGTGGTAGGAGACTAGGAAACAGAGAACGGGGCCAGAACTCAGGGCTGAGTATTACCTTT AAAAGCCCACCCCTATTCCATTTCACCAGGTAGGCCCTAACTCCTAAAGGTCCCCATGCCCCAGCAAATAG TGCCATCATCCAGGGAACAATCATTTAAAGCATAAGCCTATGGGGACATTTTAGATCCAAACCACGATAC TCCTTTTCCCCTCCCCCCCCCCATGCATCTCCTGTGTCCTGCATACAGAACCAAGTTCTGGACACTG GATA4 AGAATGCCCAAGTCTGAGACCTCCGTGGA<mark>AGATAA</mark>AAGTTGGGATTACAGCTATTTTTCTTAATTTCTTA TCCATTGGGAATCTGGTTTGGGGGGTTCATTTGAATAGGACCCTAGGAACTAGATATGGGATGACAGACTC TBX5 CCTCCTTTGAAAGCACTCACAAGTCAATAAAGAATAGAGATCAGCAACTCCATGGCAGT<mark>GAGGTGTGT</mark>GC TTAATCTAGTGATATCCAGAGAGGCTGTGCCCTGCCACATACCAGAGCCCTGCAGAACAAGACCCACAGG GATA4 ACTTTGCTGATAAGGACAAGAGGCTTAGCAGTGACAAATCGTGACGCACATCA<mark>TTATCT</mark>TCATGACCCCCA TGCTGCAAAGCAGCTCTACTACACTGAAGGAAACTTACTGCTAACACTGTACTGGTTGCATTTGTCACTG AGAAGCCCCTGTTGGGATACCCTGGGCTCCTGTGTTTCCCTACTAGGCAATGAAGATCATGCCTTCTCCA TCTCTGGAAGGACGACTGTGAGATTTAACTACTCAACCTTCTCTGTGTGTCTCTCTGACTTTGTCTCTGT CTATGCTGGAGGGTCAGGAGGCAAAAGGAGTCTGCAAACATCTAGAAAGCATCAGAGAAACCACTACTGG GATTTCCTTTATTCTTGAACCAAATCAAATCAATACAGTTCTCAGATCCTGCCAATAAAAGGCAAAGACC GATA4 TAATTGTGCCTGACTTGGGAACTGCCAAGAACAGAACCACAAGATATCTAGGGCAGGACAG<mark>AGATAA</mark>GG CAATCCTAAGAGCCCAGTGACCAGCTTGGCTAGCTGGAATAGCAAACTTTATACTCAGTGAGAGACCCTG TBX5 ACCTCCCCCACCCTCCGTCACACCAATTAAAAAAACAAAAAAGAAGTGGATGGCTATGAGGATGACATCGT GGTTAAGCCTAAGTGTGAAGACTAAAGCTTGGAGCCTTCCCTTGGAAAGATCCCAGAGCATATCCTTGAG

Supplemental Figure 7. Nucleotide sequence of the 5'-upstream region of the mouse *Ryr2* **gene.** *Ryr2* enhancer located 24Kb upstream of the start site (mm9 Chr13: 12223550-12226563) with GATA and TBX canonical binding sites shown in blue and green.

Supplemental Figure 8. Diastolic calcium levels are unaltered in *Tbx5*^{fl/+};*R26*^{CreERT2}. (A, B) Representative diastolic calcium traces after Fura-2 AM staining. (C) [Ca]_I, determined by dividing fluorescence emission following 340 nm excitation by 380 nm excitation, was unchanged in *Tbx5*^{fl/+};*R26*^{CreERT2} compared to littermate controls (n = 3 mice per genotype). (D) SERCA activity was decreased at all levels of calcium *Tbx5*^{fl/+};*R26*^{CreERT2} compared to littermate controls and normalized in *Gata4/Tbx5* compound heterozygotes. *P* values were calculated using an ANOVA followed by post-hoc Tukey test. (* *Tbx5*^{fl/+};*R26*^{CreERT2} versus *R26*^{CreERT2} mice; [§] *Tbx5*^{fl/+};*R26*^{CreERT2} mice).

Supplementary Tables

	Parameters		
Genotype	P-wave (ms)	PR interval (ms)	QRS (ms)
R26 ^{CreERT2}	10.14 ± 1.07	$\textbf{32.15} \pm \textbf{0.57}$	11.90 ± 0.25
Tbx5 ^{fl/+} ;R26 ^{CreERT2}	$14.19 \pm 0.66^{**}$	$35.02 \pm 1.15^{**}$	12.04 ± 0.32
Gata4 ^{fl/+} ;R26 ^{CreERT2}	11.59 ± 0.75	31.64 ± 0.93	11.81 ± 0.29
Nkx2.5 ^{fl/+} ;R26 ^{CreERT2}	11.66 ± 0.72	$\textbf{33.80} \pm \textbf{1.31}$	11.76 ± 0.26
Gata4/Tbx5	13.23 ± 0.82	$\textbf{32.84} \pm \textbf{1.49}$	12.51 ± 0.31
Tbx5/Nkx2.5	13.48 ± 1.03	33.59 ± 1.22	12.31 ± 0.98
Gata4/Nkx2.5	11.78 ± 1.22	32.85 ± 0.57	12.45 ± 0.21
Gata4/Tbx5/Nkx2.5	10.40 ± 1.15	34.16 ± 1.70	12.51 ± 0.38

**P<0.01 compared to R26^{CreERT2}.

Gata4/Tbx5, Gata4^{fl/+};Tbx5^{fl/+};R26^{CreERT2} Tbx5/Nkx2.5, Tbx5^{fl/+};Nkx2.5^{fl/+};R26^{CreERT2} Gata4/Nkx2.5, Gata4^{fl/+};Nkx2.5^{fl/+};R26^{CreERT2} Gata4/Tbx5/Nkx2.5, Gata4^{fl/+};Tbx5^{fl/+};Nkx2.5^{fl/+};R26^{CreERT2}

Supplemental Table 1. Conscious ambulatory telemetry parameters. Conscious ambulatory telemetry ECG parameters obtained from *Tbx5*, *Gata4* and *Nkx2.5* adult heterozygotes, *Gata4/Tbx5*, *Tbx5/Nkx2.5* and *Gata4/Nkx2.5* compound heterozygotes and *Gata4/Tbx5/Nkx2.5* triple heterozygotes 2 weeks after receiving TM. Values are mean ± standard error the mean obtained from $R26^{CreERT2}$ (*n*=12), $Tbx5^{fl/+};R26^{CreERT2}$ (*n*=5), $Gata4^{fl/+};R26^{CreERT2}$ (*n*=6), $Nkx2.5^{fl/+};R26^{CreERT2}$ (*n*=8), $Gata4^{fl/+};R26^{CreERT2}$ (*n*=5), $Gata4^{fl/+};R26^{CreERT2}$ (*n*=5) mice.

	Parameters				
Genotype	dV/dt _{max} (mV/ms)	RMP (mV)	APA (ms)	APD50 (ms)	APD90 (ms)
R26 ^{CreERT2}	221.52 ± 23.29	-76.3 ± 2.55	133.89 ± 2.49	9.46 ± 1.32	71.33 ± 11.24
Tbx5 ^{fl/+} ;R26 ^{CreERT2}	157.44 ± 14.15	-77.15 ± 1.46	128.27 ± 4.57	13.33 ± 2.24	172.44 ± 26.08** ^{†††}
Gata4 ^{fl/+} ;R26 ^{CreERT2}	147.73 ± 19.88	-77.53 ± 1.55	121.51 ± 5.22*	10.08 ± 2.42	66.04 ± 13.28
Gata4/Tbx5	170.41 ± 18.85	-79.50 ± 0.21	136.01 ± 5.17	9.90 ± 1.67	68.22 ± 14.15

Supplemental Table 2. Action potential parameters of adult-specific *Tbx5*^{fl/+};*R26*^{CreERT2}, *Gata4*^{fl/+};*R26*^{CreERT2} and *Gata4/Tbx5* compound haploinsufficiency. Single cell electrophysiology parameters obtained from *Tbx5* and *Gata4* adult heterozygotes as well as *Gata4/Tbx5* compound heterozygotes and *Gata4/Tbx5/Nkx2.5* triple heterozygotes 2 weeks after receiving TM. Values are mean ± standard error the mean obtained from *R26*^{CreERT2} (*n*=9), *Tbx5*^{fl/+};*R26*^{CreERT2} (*n*=14), *Gata4*^{fl/+};*R26*^{CreERT2} (*n*=10) and *Gata4*^{fl/+};*Tbx5*^{fl/+};*R26*^{CreERT2} (*n*=13). APA, Action potential amplitude; APD50, action potential at 50% repolarization; APD90, Action potential at 90% repolarization; RPM, resting membrane potential

	Primers		
Gene	Forward	Reverse	
Tbx5	GGCATGGAAGGAATCAAGGT	CTAGGAAACATTCTCCTCCCTGC	
Gata4	AAACGGAAGCCCAAGAACCTGAAT	GAGCTGGCCTGCGATGTCTAGGTG	
Nkx2.5	ACATTTTACCCGGGAGCC	GGCTTTGTCCAGCTCCAC	
Ryr2	CAAATCCTTCTGCTGCCAAG	CGAGGATGAGATCCAGTTCC	
Atp2a2	CTGGTGATATAGTGGAAATTGCTG	GGTCAGGGACAGGGTCAGTA	
SIn	CTGAGGTCCTTGGTAGCCTG	GGTGTGTCAGGCATTGTGAG	
NCX	TTCTCATACTCCTCGTCATCG	TTGAGGACACCTGTGGAGTG	
CamK2B	ACCCTCTACTTTCTCTCCTCC	ACTTTGGTGTCTTCGTCCTC	
Pln	TTATGCCAGGACGGCAAAAG	CACTGTGACGATCACCGAAG	
Cacna1c	CTACAGAAACCCATGTGAGCAT	CAGCCACGTTGTCAGTGTTG	
Kcnj3	GCTGGCAACTACACTCCCTG	AACATGCAGCCGATGAGGAA	
Kcnj5	TGTAAGAGCTCCGTGCTTGG	TGTGGAGATGTCTCGTGCTC	
Kcna5	AAAATTGGAGACGATGACGG	ATGAGGCCCATCACTGTAGG	
Kcnd3	GGGTGGCAGGCAGGTTAGA	CCTGCTGCTCCCGTCGTA	
Kcnh2	ATGGCTCAGATCCAGGCAGTTA	CAAGGAGAGCGGTCAGGTAATG	
Kcnk2	TGGCTACGGGTGATCTCTAAG	GCTGGAACTTGTCGTAGATCTC	
Kcnn3	CAAGAATGCCGCCGCCAATGTC	CCAGGCTGCCAATCTGCTTTTC	
Kcnq1	GAGGATAGGAGGCCAGACCA	AAGTACTGCATGCGCCTGAT	

Supplemental Table 3. Quantitative PCR primers used.