Supplementary Online Content

Karam R, Conner B, LaDuca H, et al. Assessment of diagnostic outcomes of RNA genetic testing for hereditary cancer. *JAMA Netw Open*. 2019;2(10):e1913900. doi:10.1001/jamanetworkopen.2019.13900

eMethods. RNA Clinical Management Survey

eTable. Summary of Variants Analyzed by RGT

This supplementary material has been provided by the authors to give readers additional information about their work.

eMethods. RNA Clinical Management Survey

Q1 Please select the response which describes the type of variant reclassification that occurred:

O Downgraded from VUS to Benign/Likely Benign

O Upgraded from VUS to Pathogenic/Likely Pathogenic

O Downgraded from Pathogenic/Likely Pathogenic to VUS

Q2 Did the reclassification change your medical management recommendations for the patient?

O Yes

No (If no, skip to Q5)

Q3 Which of the following best describes the change in your <u>medical management</u> recommendations for the patient?

O Recommended increased cancer screening and/or risk-reducing interventions

O Recommended <u>decreased</u> cancer screening and/or recommended <u>against</u> risk-reducing interventions

Q4 Please provide details regarding how your recommendations for cancer screening and/or riskreducing interventions changed for the patient: Q5 Did the reclassification change your **medical management** recommendations for the patient's family members?

O Yes

O No (If no, skip to Q8)

Q6 Which of the following best describes the change in your <u>medical management</u> recommendations for the patient's family members?

O Recommended **increased** cancer screening and/or risk-reducing interventions

O Recommended <u>decreased</u> cancer screening and/or recommended against risk-reducing interventions

Q7 Please provide details regarding how your recommendations for cancer screening and/or riskreducing interventions changed for the patient's family members:

Q8 Did the reclassification change your **genetic testing** recommendations for the patient's family members?

O Yes

No (If no, skip to Q10)

Q9 Which of the following describes the change in your **<u>genetic testing</u>** recommendations for the patient's family members?

O Recommended genetic testing for patient's family members for reclassified variant

O Recommended **against** genetic testing for patient's family members for reclassified variant

Other (please describe): _____

Q10 Please use this space to provide any additional comments regarding the impact of reclassification on the patient and his/her family:

Q11 Thank you for completing the survey. Would you like to enter a raffle for the chance to win a gift card?

O Yes

O No

eTable. Summary of Variants Analyzed by RGT

DNA Variant	RNA Evidence	Splicin g in silico	Asserti on Before RGT	Final Asserti on	Evidence (ACMG/AMP Codes)	Clinically Actionable Reclassifica tion	Total Patien ts impact ed to date
ATM c.73-3C>G	r.73_79del7	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Absent from population controls (Absent from population controls (PM2) <i>in silico</i> splicing models predict weakening of the native site (PP3)	У	2
ATM c.8850+5A>C	WT	Benign (TN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict no effect on the native site (BP4)		1
BRCA1 c.80+5G>A	r19_80del100; r25_80del105	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Co-segregation with disease (PP1_Moderate) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	2
BRCA1 c.594- 2A>C; BRCA1 c.641A> G	r.548_670del123 (AS)	Deleteri ous (TP) ¹	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Observed in healthy individuals (BS2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		32
BRCA1 c.670+1G>T	r.548_670del123 (AS)	Deleteri ous (TP)	LP	VUS	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	6
BRCA1 c.3758C>G (p.S1253C)	WT	Deleteri ous (FP)	VUS	VUS ²	RNA studies demonstrate no abnormal splicing (BS3) (splice)		n/a

					<i>in silico</i> splicing models predict a weakening of the native site (PP3) (splice)		
BRCA1 c.4357+4T>C	WT	Benign (TN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict no effect on the native site (BP4) Absent from population controls (PM2)		1
BRCA1 c.5072C>A (p.T1691K)	WT	Benign (TN)	VUS	LP ³	RNA studies demonstrate abnormal splicing (PS3) Located in a mutational hotspot (PM1) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	3
BRCA1 c.5152+5G>T	r.5075_5152del7 8	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Novel missense change where a different missense change is pathogenic (PM5) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	2
BRCA1 c.5193G>A (p.E1731E)	WT	Benign (TN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict no effect on the native site (BP4)		4
BRCA1 c.5332G>A (p.D1778N)	r.5278_5332del5 5	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Co-segregation with disease (PP1_Moderate) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	11
BRCA2 c.426-12_426- 8delGTTTT	r.426_475del50	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	3
BRCA2 c.681+2dupT	r.632_681del50; r.517_681del165	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	4

BRCA2 c.681+5G>C	r.632_681del50	Deleteri ous (TP)	VUS	VUS	RNA studies demonstrate abnormal splicing (PS3)_moderate Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		n/a
BRCA2 c.8754+4A>T	r.8754+1_8754+4 7ins47	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Novel missense change where a different missense change is pathogenic (PM5) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	7
BRCA2 c.9501+3A>T	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Observed in trans with a pathogenic mutation in an individual without biallelic disease (BP2) ⁴ <i>in silico</i> splicing models predict a weakening of the native site (PP3)		84
BRIP1 c.2492+2dupT	r.2493_2575del8 3	Deleteri ous (TP)	LP	LP	RNA studies demonstrate abnormal splicing (PS3) Observed in trans with a pathogenic variant in an individual with biallelic disease (PM3) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		7
PALB2 c.211+4A>G	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		1
PALB2 c.2379C>T (p.G793G)	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		56
PALB2 c.2559C>T (p.G853G)	r.2558_2586del2 9	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	6
PALB2 c.3113+5G>C	r.3083_3113del3 1	Deleteri ous (TP)	LP	LP	RNA studies demonstrate abnormal splicing (PS3) Observed in trans with a pathogenic variant in an individual with biallelic disease (PM3)		n/a

					Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		
PALB2 c.3350+4A>C	r.3202_3350del1 49	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Novel missense change where a different missense change is pathogenic (PM5) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	y	3
PALB2 c.3350+5G>A	r.3202_3350del1 49	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	Ŷ	9
RAD50 c.214-5C>T	WT	Benign (TN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict no effect on the native site (BP4)		4
RAD50 c.2524+4A>T	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		5
RAD50 c.2829+5G>C	r.2734_2829del9 6	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	1
RAD51C c.571+4A>G	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		18
RAD51D c.144+3G>T	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		6
RAD51D c.738G>A (p.V246V)	c.668_738del71	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	1

RAD51D c.145- 4_145-3delGCinsTT	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		3
CDH1 c.164T>G (p.V55G)	WT	Benign (TN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Observed in healthy individuals (BS2) Observed in trans with a pathogenic mutation in an individual without biallelic disease (BP2) <i>in silico</i> splicing models predict no effect on the native site (BP4)		38
CDH1 c.387G>T (p.Q129H)	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3)		1
CDH1 c.387+1G>A	r.229_387del159	Deleteri ous (TP)	LP	VUS	Null variant (PVS1_Moderate) RNA studies demonstrate abnormal splicing (PS3)_supporting Observed in healthy individuals (BS2)_supporting	у	4
CDH1 c.387+5G>A	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Observed in healthy individuals (BS2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		14
CDH1 c.388-4T>C	WT	Benign (TN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Observed in healthy individuals (BS2) <i>in silico</i> splicing models predict no effect on the native site (BP4)		5
CDH1 c.558C>T (p.G186G)	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Synonymous change with no predicted splice defect (BP7) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		1
CDH1 c.635G>T (p.G212V)	WT	Benign (TN)	VUS	VUS	RNA studies demonstrate no abnormal splicing (BS3)		n/a

					<i>in silico</i> splicing models predict no effect on the native site (BP4) Proband counting (PS4_Supporting) Absent from population controls (PM2)		
CDH1 c.687+5G>C	r.903 _687del42	Deleteri ous (TP)	VUS	VUS	RNA studies demonstrate abnormal splicing (PS3)_supporting Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		n/a
CDH1 c.921A>G (p.Q307Q)	WT	Benign (TN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Observed in healthy individuals (BS2) <i>in silico</i> splicing models predict no effect on the native site (BP4) Synonymous change with no predicted splice defect (BP7) Absent from population controls (PM2)		4
CDH1 c.1008G>T (p.E336D)	r.1008+1_1008+7 ins7	Deleteri ous (TP)	LP	Ρ	Null variant (PVS1_Moderate) RNA studies demonstrate abnormal splicing (PS3) Proband counting (PS4_Moderate) Absent from population controls (PM2) Co-segregation with disease (PP1_Moderate) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		2
CDH1 c.1057G>A (p.E353K)	r.1055_1137del8 3	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Proband counting (PS4_Moderate) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	Y	2
CDH1 c.1137+1delG	r.1055_1137del8 3	Deleteri ous (TP)	LP	P	Null variant (Null variant (PVS1_Strong) RNA studies demonstrate abnormal splicing (PS3) Proband counting (PS4_Supporting) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site Known pathogenic variant affecting the same splice site (PP3_Moderate: using c.1137G>A)		7

CDH1 c.1138-5T>G	WT	Deleteri ous (FN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		1
CDH1 c.1296C>G (p.N432K)	WT	Benign (TN)	VUS	VUS	RNA studies demonstrate no abnormal splicing (BS3) Observed in healthy individuals (BS2_Supporting) <i>in silico</i> splicing models predict no effect on the native site (BP4)		n/a
CDH1 c.1703C>G (p.T568R)	r.1566_1711del1 46	Benign (FN)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Proband counting (PS4_Supporting) Absent from population controls (PM2) <i>in silico</i> splicing models predict no effect on the native site (BP4)	У	3
CDH1 c.1711+2_1711+7del TAAGGG	r.1566_1711del1 46	Deleteri ous (TP)	LP	Ρ	Null variant (Null variant (PVS1_Strong) RNA studies demonstrate abnormal splicing (PS3) Proband counting (PS4_Supporting) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		3
CDH1 c.1712-3T>G	r.1712_1720del9	Deleteri ous (TP)	VUS	VUS	RNA studies demonstrate abnormal splicing (PS3_Supporting) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		n/a
CDH1 c.1766A>G (p.N589S)	WT	Deleteri ous (FP)	VUS	VUS	Absent from population controls (PM2) in silico splicing models predict a weakening of the native site (PP3) RNA studies demonstrate no abnormal splicing (BS3)		n/a
CDH1 c.2439+5_2439+8del GTAA	r.2388_2439del5 2	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Proband counting (PS4_Supporting) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	2
CDH1 c.2440-2A>G	r.2440_2449del1 0	Deleteri ous (TP)	LP	Р	Null variant (Null variant (PVS1_Strong) RNA studies demonstrate abnormal splicing (PS3)		1

					Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)		
MLH1 c.116+5G>A	r.116+1_116+232 ins227	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Located in a mutational hotspot (PM1) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	Ŷ	1
MLH1 c.305A>C (p.E102A)	r.302_306del5	Benign (FN)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Absent from population controls (PM2) Clinical phenotype is specific with disease (PP4_Moderate)	У	
MLH1 c.884+3A>G	r.791_884del94 r.791_1038del24 8	Deleteri ous (TP)	VUS	LP	Clinical phenotype is specific with disease (PP4_Strong) RNA studies demonstrate abnormal splicing (PS3) Located in a mutational hotspot (PM1) Absent from population controls (PM2) Co-segregation with disease (PP1_Moderate)	Ŷ	6
MLH1 c.2103+3A>G	r.1990_2103del1 14 r.1897_2103del2 07	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3) Clinical phenotype is specific with disease (PP4_Moderate)	Y	3
MSH2 c.366+3A>G	WT	Benign (TN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict no effect on the native site (BP4)		1
MSH2 c.645+3A>G	WT	Benign (TN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) <i>in silico</i> splicing models predict no effect on the native site (BP4)		6
MSH2 c.2006-3T>G	r.2006_2210del2 05	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Clinical phenotype is specific with disease (PP4_Moderate) Absent from population controls (PM2) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	1

MSH6 c.3231A>G (p.1077P)	WT	Benign (TN)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3)		3
MSH6 c.3417C>T (p.G1139G)	r.3416_3438del2 2	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Absent from population controls (PM2) Clinical phenotype is specific with disease (PP4_Moderate) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	1
MSH6 c.3801+5G>A	WT	Deleteri ous (FP)	VUS	LB	RNA studies demonstrate no abnormal splicing (BS3) Observed in healthy individuals (BS2)		33
MSH6 c.3802- 7_3802-4delTCTT	r.3802_4001del2 00	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Co-segregation with disease (PP1) <i>in silico</i> splicing models predict a weakening of the native site (PP3) Clinical phenotype is specific with disease (PP4 Strong)	У	7
MSH2 c.1277-14C>G	r.1277-13_1277- 1ins13 r.1277_1386del1 10	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Absent from population controls (PM2) Clinical phenotype is specific with disease (PP4_Strong) <i>in silico</i> splicing models predict a weakening of the native site (PP3) Co-segregation with disease (PP1)	У	2
PMS2 c.803+5G>A	r.762_803del42 r.706_803del98	Deleteri ous (TP)	VUS	LP	RNA studies demonstrate abnormal splicing (PS3) Absent from population controls (PM2) Clinical phenotype is specific with disease (PP4_Moderate) <i>in silico</i> splicing models predict a weakening of the native site (PP3)	У	4

MSH2 c.942+3A>G	r.793_942del150	Deleteri	VUS	LP	Novel missense change where a different	У	2
		ous (TP)			missense change is pathogenic (PM5)		
					Absent from population controls (PM2)		
					RNA studies demonstrate abnormal splicing (PS3)		
					Clinical phenotype is specific with disease (PP4)		
					in silico splicing models predict a weakening of		
					the native site (PP3)		