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Supplementary Technical Appendix 
 

This appendix has been provided by the authors to give readers additional information about their 

work. 

Supplement to: Quantifying the impact of the Public Health Responsibility Deal on salt intake and cardiovascular 

disease and gastric cancer: interrupted time series and microsimulation study 

 

This supplementary technical appendix is an updated version of the one published in Kypridemos C, 

Guzman-Castillo M, Hyseni L, Hickey GL, Bandosz P, Buchan I, et al. Estimated reductions in 

cardiovascular and gastric cancer disease burden through salt policies in England: an IMPACTNCD 

microsimulation study. BMJ Open 2017;7:e013791.   
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1. HIGH LEVEL DESCRIPTION OF IMPACTNCD 

IMPACTNCD is a discrete time, dynamic, stochastic microsimulation model.1,2 Within IMPACTNCD each 

unit is a synthetic individual and is represented by a record containing a unique identifier and a set of 

associated attributes.  

For this study we considered age, sex, quintile groups of index of multiple deprivation (QIMD)*, salt 

consumption, body mass index (BMI), systolic blood pressure (SBP), total plasma cholesterol (TC), 

diabetes mellitus (DM, binary variable)†, smoking status (current/ex/never smoker), pack-years, 

environmental tobacco exposure (ETS, binary variable), fruit and vegetable (F&V) consumption and 

physical activity (PA) as the set of associated attributes. A set of stochastic rules are then applied to 

these individuals, such as the probability of developing coronary heart disease (CHD) or dying, as the 

simulation advances in discrete annual steps. The output is an estimate of the burden of CHD, stroke, 

and gastric cancer (GCa) in the synthetic population including both total aggregate change and, more 

importantly, the distributional nature of the change. This allows, among others, for an investigation 

of the impact of different scenarios on social equity. 

IMPACTNCD is a complex model that simulates the life course of synthetic individuals and consists of 

two modules: The ‘population’ module and the ‘disease’ module. Figure S1 highlights the steps of the 

algorithm that generates the life course of each synthetic individual. We will fully describe IMPACTNCD 

by describing the processes in each of these steps in the following chapters. The description is from 

an epidemiological rather than technical perspective. The source code and all parameter input files 

are available in https://github.com/ChristK/IMPACTncd/tree/Evaluation_of_UK_responsibility_deal 

under the GNU GPLv3 licence. Table S7 and Table S8 summarise the sources of the input parameters 

and the main assumptions and limitations, respectively. 

Technical information 

IMPACTNCD is being developed in R v3.4.34 and is currently deployed in a 40-core workstation with 2TB 

of RAM running Ubuntu Server v16.04. IMPACTNCD is built around the R package ‘data.table’5, which 

imports a new heavily optimised data structure in R. Most functions that operate on a data table have 

been coded in C to improve performance. Each iteration for each scenario is running independently in 

one of the CPU cores and the R package ‘foreach’6 is responsible for the distribution of the jobs and 

collection of the results. To ensure the statistical independence of the pseudo-random number 

                                                           
* QIMD is a measure of relative area deprivation based on the 2010 version of the Index of Multiple Deprivation3 
† We defined as diabetics those with self-reported medically diagnosed diabetes (excluding pregnancy-only 

diabetes) or glycated haemoglobin (HbA1c) ≥ 6.5 
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2. POPULATION MODULE 

The ‘population’ module consists of steps 1 to 4 in Figure S1. Synthetic individuals enter into the 

simulation in the initial year (2006 for this study). The number of synthetic individuals that enter into 

the simulation is user-defined and for this study was set to 500,000. The algorithm ensures that the 

age, sex and QIMD distribution of the sample are similar to this of the English population in mid-2006. 

This concludes step 1, which only happens at the beginning of each simulation. Following steps, 2-7 

are calculated annually (in simulation time) for each synthetic individual until the simulation horizon 

is reached, or death occurs. 

Estimating exposure to risk factors (steps 2-3) 

In steps 2 and 3, IMPACTNCD estimates the exposure of the synthetic individual to the modelled risk 

factors. It is essential the risk profile of each synthetic individual to be similar to the risk profiles that 

can be observed in the real English population. For this, we first built a ‘close to reality’ synthetic 

population of England from which we sampled the synthetic individuals. Then, we used generalised 

linear models (GLM) for each modelled risk factor, to simulate individualised risk factor trajectories 

for all synthetic individuals. 

Generating the ‘close to reality’ synthetic population for IMPACTNCD 

The ‘close to reality’ synthetic population ensures that the sample of synthetic individuals for the 

simulation is drawn from a synthetic population similar to the real one regarding age, sex, 

socioeconomic circumstance, and risk factors conditional distributions. In our implementation, we 

used the same statistical framework originally developed by Alfons et al.9 and adapted it to make it 

compatible with epidemiological principles and frameworks.  

In general, this method uses a nationally representative survey of the real population to generate a 

‘close to reality’ synthetic population. Therefore, the method expands the, often small, sample of the 

survey into a significantly larger synthetic population, while preserves the statistical properties and 

important correlations of the original survey.  

The main advantages over other approaches are: 1) it takes into account the hierarchical structure of 

the sample design of the original survey, and 2) it can generate trait combinations which were not 

present in the original survey but are likely to exist in the real population. The second is particularly 

important because it avoids bias from the excessive repetition of a specific combination of traits 

present in the original survey that results from multilevel stratification of a relatively small sample. 

For example, the original survey may have two 35-year-old male participants, one with a BMI of 35 

and the other with a BMI of 40 and no other 35-year-old male participants with BMI between 35 and 
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40. Unlike other methodologies, the approach proposed by Alfons et al. can produce 35-year-old male 

synthetic individuals with a BMI between 35 and 40. This is possible because the synthetic population 

is produced by drawing from conditional distributions that were estimated from multinomial models 

fitted in the original survey data. The detailed statistical methodology and justification can be found 

elsewhere.9 

Our approach consists of four stages from which the first is common with the original method by 

Alfons et al.9 The following stages have been adapted in order to be compatible with the widely 

accepted ‘wider determinants of health’ framework.10 The main notion of this framework is that 

upstream factors such as the socioeconomic conditions, influence individual behavioural risk factors 

(e.g. diet, smoking), which in turn, influence individual downstream risk factors such as systolic blood 

pressure and total cholesterol. The four stages are: 

1. Setup of the household structure. 

2. Generate the socioeconomic variables. 

3. Generate the behavioural variables. 

4. Generate the biological variables. 

In each stage, information from all previous stages is used. All the variables of the synthetic population 

for this study were informed by the Health Survey for England 2006 (HSE06).11 The R language for 

statistical computing v3.2.0 and the R package ‘simPopulation’ v0.4.1 were used to implement the 

method.4,12 

STAGE 1: HOUSEHOLD STRUCTURE 

The household size and the age and sex of the individuals in each household that have been recorded 

in HSE06 were used to inform the synthetic population, stratified by Strategic Health Authority (SHA)*.  

STAGE 2: SOCIOECONOMIC VARIABLES 

Once the basic age, sex, household and spatial information of the synthetic population was generated, 

other socioeconomic information was built up. QIMD for each synthetic individual was generated 

dependent on the household size and the age and sex of the individuals, stratified by SHA. Then, the 

equivalised income quintile groups13 (EQV5) for each household was generated, dependent on five-

year age groups and sex, stratified by QIMD. Finally, the employment status of the head of the 

household (HPNSSEC8) was generated using the National Statistics Socio-Economic Classification14, 

dependent on 5-year age groups, sex and EQV5, stratified by QIMD.  

                                                           
* SHAs were 10 large geographic areas, part of the structure of the National Health Service in England before 

2013. SHA is the only variable with spatial information in HSE06 and was used as a proxy, to roughly include 

some spatial information to the synthetic population. 
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STAGE 3: BEHAVIOURAL VARIABLES 

In this stage, behavioural variables such as F&V portions per day, days achieving more than 30 min of 

moderate or vigorous PA per week, smoking status, exposure to ETS and salt consumption were 

generated, dependent on 5-year age groups, sex, HPNSSEC8 and EQV5, stratified by QIMD. Moreover, 

the use of statins and antihypertensive medication (two binary variables) was generated, dependent 

on 5-year age groups, sex and HPNSSEC8, stratified by QIMD. Other smoking-related variables like 

cigarettes smoked per day for smokers, years since cessation of ex-smokers and pack-years for ever-

smokers were also generated in this step. Specifically for salt consumption, HSE06 contains spot-urine 

sodium measurements which are less reliable to 24h-urine sodium ones.15,16 To overcome this 

limitation, IMPACTNCD adds another processing layer that is described separately (see page 9).  

STAGE 4: BIOLOGICAL VARIABLES 

The last stage is the generation of the biological variables. Widely accepted causal pathways that have 

been observed in cohort studies were used to identify associations between biological and 

behavioural variables. F&V consumption was used as a proxy to a healthy diet. Citations refer to 

specific evidence regarding the associations. BMI is associated with SBP17–20, TC21 and DM22. Thus, BMI 

was the first to be generated in the synthetic population dependent on 5-year age groups, sex, EQV5, 

F&V consumption23 and PA23–25, stratified by QIMD. Then, DM was generated dependent on 5-year 

age groups, sex, HPNSSEC8 and QIMD, stratified by BMI deciles. The TC was generated dependent on 

5-year age groups, sex, deciles of BMI, use of a statin and F&V consumption, stratified by QIMD. 

Similarly, for the SBP the 5-year age groups, sex, deciles of BMI, smoking status26,27 and deciles of salt 

consumption were used as predictors, stratified by QIMD. Socioeconomic variables were used as 

predictors for both behavioural and biological variables to allow for possible interaction between 

socioeconomic and behavioural variables. 

The outcome of the method was to create a synthetic population of 55 million with similar 

characteristics to the non-institutionalised population of England in 2006. The synthetic population 

was validated against the original HSE06 sample (see p26, Synthetic population validation).  

IMPACTNCD implementation of individualised risk factor trajectories 

IMPACTNCD only applies the previous process for the initial year of the simulation. As the simulation 

evolves, all variables are recalculated to take into account age and period effects. This feature justifies 

the classification of IMPACTNCD as a dynamic microsimulation. The process depends on the nature of 

each variable and the available information, but generally, it uses HSE01 – HSE1211,28–38 to capture the 

time trends by age, sex, and QIMD and project them into the future.  
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AGE, SEX AND SOCIOECONOMIC VARIABLES 

As the simulation progress in annual circles the age of the synthetic individuals in the model increase 

by one year in each loop. The sex and socioeconomic variables remain stable though. Therefore, social 

mobility is not simulated in the current version of IMPACTNCD. 

SALT 

For this study, we assume that all consumed salt is excreted through urine and all the sodium that is 

excreted in urine comes from the consumed salt. HSE06 measured sodium excretion from spot urine. 

We used the INTERSALT equation for Northern Europe to estimate daily sodium excretion from spot 

urine.20 However, while this method is acceptable to estimate the mean sodium excretion of the 

population, it tends to overestimate low measurements and underestimate high measurements, 

when compared to the golden standard of sodium estimation from 24h urine collection.15,16 Therefore, 

spot urine sodium estimates are suboptimal for microsimulation because they tend to bias the 

distribution of salt consumption. 

Additionally, sodium excretion from 24h urine collections was estimated in five nationally 

representative surveys between 2001 and 2014 in the UK.39,40 The data also included the age and sex 

of the participants but had no information about the socioeconomic status of the participants. Below, 

we describe our approach that informs the synthetic population from the 24h urine collection surveys.  

Stage 1: We fitted a generalised additive model for location, scale, and shape (GAMLSS) to model the 

location, scale, and shape of the distribution of sodium excretion conditional on time, age, sex, and 

the implementation of the Responsibility Deal.41,42 A left truncated reverse Gumbel distribution was 

the most appropriate distribution for the GAMLSS model based on the Akaike’s Information Criterion. 

Figure S2 depicts the distribution of salt intake in g/d observed in the surveys and the best GAMLSS 

model fit. The structure of the models for the parameters of the left truncated reverse Gumbel 

distribution was the same as in the interrupted time series analysis with the addition of a penalised 

beta spline for age.   

Stage 2: We used individual-level data for spot urine sodium from HSE2006, and we converted the 

spot urine sodium to estimated 24h sodium, using the INTERSALT equation for Northern Europe.20 

Instead of using fixed coefficients for the INTERSALT equation, for each HSE participant, different 

coefficients were sampled from the normal distributions with mean equal to the coefficient and 

standard deviation (sd) equal to the standard error (S.E.) of the respective coefficient. For instance, 

the reported INTERSALT age coefficient for men is 0.26 (S.E. = 0.78); therefore, for each use of the 

INTERSALT equation in this stage we draw a new age coefficient for men from a normal distribution 
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Figure S4 mean salt consumption by age in Health Survey for England. Estimated from spot urine sodium using the INTERSALT 

equation for Northern Europe.20 It is evident that the decreasing trend in salt consumption continuous for ages over 64.  

 

FRUIT & VEG CONSUMPTION AND PHYSICAL ACTIVITY 

Both F&V consumption (portions/day) and PA (days with more than 30 min of moderate or vigorous 

activity/week) were modelled as ordinal factor variables. A proportional odds logistic regression 

model was fitted in the HSE01, HSE02, HSE04-11 individual-level data with F&V consumption as the 

dependent variable and year, 2nd degree polynomial of age, sex, QIMD and their 1st order interactions. 

Similarly, for PA a similar model was fitted in the HSE06, HSE08 and HSE12 data. These models were 

used for individual-level predictions about the synthetic individuals as the simulation was evolving. 

SMOKING 

The ‘close to reality’ synthetic population is an accurate snapshot of active, ex-, and never smokers in 

2006, as it was observed in HSE06. Then IMPACTNCD uses transitional probabilities for smoking 

initiation, smoking cessation and relapse, to generate and record smoking histories of the synthetic 

individuals. For smoking initiation and cessation probabilities, logistic regression models were fitted 

in HSE data with age, sex, and QIMD as the independent variables. A similar approach was followed 

for relapse probabilities with years since cessation, sex and QIMD as the independent variables. 

ENVIRONMENTAL TOBACCO SMOKING 

For ETS we assumed a linear relation between smoking prevalence and ETS, stratified by QIMD. We 

assumed no intercept; when smoking prevalence reaches 0, ETS prevalence will be 0 too. 

Supplementary material J Epidemiol Community Health

 doi: 10.1136/jech-2018-211749–887.:881 0 2019;J Epidemiol Community Health, et al. Laverty AA



13 

 

CONTINUOUS BIOLOGICAL VARIABLES 

In IMPACTNCD, the value of each continuous biological risk factor (BMI, SBP, and TC) is calculated in a 

two-stage process for each synthetic individual and each projected year. The first stage simulates 

ageing effects, while the second stage simulates period effects. We follow this approach mainly for 

two reasons. Firstly, to simulate the physiological mechanisms of ageing. For example, the change of 

lipid profile in post-menopausal women, or the increase of SBP due to age-related stiffening of the 

arteries. Secondly, because the variance of the risk factor distributions increases with age, and we 

wanted to model this. Below we describe the stages: 

Stage 1: Instead of tracking the actual biological risk factor values for the synthetic individuals, we 

track the percentile ranks* of the values by age, sex and QIMD. These percentile ranks remain fixed 

for each synthetic individual throughout the simulation. In each simulated year, the percentile ranks 

are converted back to actual risk factor values, by matching the percentile ranks of a sample of the 

initial synthetic population of same age group, sex, and QIMD. 

For example, in 2006 a 20-year-old male synthetic individual living in a QIMD 3 area with SBP of 120 

mmHg has a SBP percentile rank of 0.52. Fifty years later, the same synthetic individual has retained 

his percentile score for SBP. However, his SBP is now calculated to 137.6 mmHg in order to match the 

SBP of a 70-year old man living in a QIMD 3 area in 2006 with the same percentile rank of 0.52. Figure 

S5 illustrates the previous example. Despite, individuals retain their percentile for the respective risk 

factor throughout the simulation (vertical position in Figure S5), this stage remains stochastic because 

each time this stage is implemented a different sample from the synthetic population is drawn. Finally, 

the distance from the mean for each risk factor is calculated stratified by 5-year age group, sex, and 

QIMD. For instance, if a synthetic individual has SBP of 140 mmHg and the mean SBP in the respective 

group of same age group, sex and QIMD is 130 mmHg, the distance from the mean is 140 – 130 = 10 

mmHg. 

Stage 2: Similarly to the approach followed for other variables, we fitted regression models to the 

HSE01-12 data. For BMI, year, age, sex, QIMD and PA were the independent variables. For SBP, year, 

age, sex, QIMD, smoking status, BMI, and PA were the independent variables. Finally, for TC year, age,  

 

                                                           
* For the percentile rank the formula  𝑅𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 =  (𝑅 − 1) (𝑛 − 1)⁄   is used, where 𝑅𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒  is the percentile 

rank and 𝑅 = (𝑅1, … , 𝑅𝑛)  is the rank vector constructed from a random observation vector (𝑋1, … , 𝑋𝑛). In 

IMPACTNCD specifically, vector 𝑋 is constructed from the subset of the respective continuous risk factor values, 

by 5-year age group, sex and QIMD, for each year of the simulation. 
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per risk factor basis. For instance, let us consider a 50-year-old synthetic individual in 2010 and an 

assumed lag time of 5 years for F&V. When IMPACTNCD calculates the probabilities for F&V 

consumption of this individual, it will use time – (lag time) = 2010 – 5 = 2005 and age – (lag time) = 50 

– 5 = 45. So, when the ‘disease’ module of IMPACTNCD, uses the risk exposure to F&V to estimate a 

disease incidence transitional probability, the lag-timed exposure will be used.  

In this study, we assumed that the mean lag time between exposure and CVD is 5 years.47–49 Similarly, 

the mean lag time between exposure and GCa is 8 years, except for the cumulative risk of smoking 

(smoking duration) which was set to follow CVD lag time. Mean lag times were roughly informed from 

risk reversibility trials, when available, or the median observation times of the cohort studies we used 

to inform the risk magnitude for each risk factor. Then for each iteration, we draw lag time values 

from binomial distributions with the respective means.  

Birth engine (Step 4) 

The Office for National Statistics (ONS) principal-assumption fertility projections for England are used 

to estimate the number of new synthetic individuals entering the model through birth, in every 

simulated year.50 The birth engine only becomes relevant for simulations featuring a horizon of more 

than 30 years and its importance increases as the simulation progress further in time. The ‘new-born’ 

synthetic individuals inherit the socioeconomic position of their mother and their quantile ranks for 

the continuous biological risk factors from a random synthetic individual.   
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3. DISEASE MODULE 

The disease module contains the last 3 steps of the model (Figure S1). The risk (probability) for each 

synthetic individual aged 30 – 84, to develop each of the modelled diseases is estimated in step 5 

conditional on the exposure to relevant risk factors. The step ends by selecting synthetic individuals 

to develop the modelled diseases. Finally, in steps 6 and 7 the risk of dying from one of the modelled 

diseases or any other cause is estimated and applied. Steps 2 to 7 are then repeated for the surviving 

individuals until the simulation horizon is reached.  

Estimating the annual individualised disease risk and incidence (Step 5) 

In order to estimate the individualised annual probability of a synthetic individual to develop a specific 

disease conditional on his/her relevant risk exposures we follow a 3-stage approach: 

1. The proportion of incidence attributable to each modelled risk factor by age group and sex is 

estimated, assuming a specific time lag. 

2. Assuming multiplicative risks, the portion of the disease incidence attributable to all the 

modelled risk factors is estimated and subtracted from the total incidence. 

3. For each individual in the synthetic population, the probability of developing the disease is 

estimated and then is used in an independent Bernoulli trial to select those who finally 

develop the disease. 

Next, the implementation of the above method is described in more detail using CHD as an example. 

The same process is used for all modelled diseases.  

Stage 1 

The population attributable risk (PAF) is an epidemiological measure that estimates the proportion of 

the disease attributable to an associated risk factor.51 It depends on the relative risk associated with 

the risk factor and the prevalence of the risk factor in the population. In a microsimulation context 

where exposure to risk factors are known to the individual level and assuming multiplicative risk 

factors PAF can be calculated with the formula: 𝑃𝐴𝐹 =  1 − 𝑛∑ (𝑅𝑅1 ∗  𝑅𝑅2 ∗ … ∗  𝑅𝑅𝑘)𝑛𝑖=1    , 
where 𝑛 is the number of synthetic individuals in the population, and 𝑅𝑅1…𝑘 is the relative risks of the 

risk factors associated with CHD. We calculated PAF based on above formula stratified by age and sex. 

Consistent with findings from the respective meta-analyses that were used for IMPACTNCD (Table S7), 

SBP below 115 mmHg, TC below 3.8 mmol/l and BMI below 20 Kg/m2 were considered to have a 

relative risk of 1. Similarly, consumption of eight or more portions of F&V and five or more days with 
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more than 30 minutes of moderate to vigorous activity per week were also considered to have a 

relative risk of 1. All the relative risks were taken from published meta-analyses and cohort studies 

(Table S7). 

Stage 2 

The incidence of CHD not attributable to the modelled risk factors can be estimated by the formula: 𝐼𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 =  𝐼𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ∗ (1 − 𝑃𝐴𝐹) 

Where 𝐼𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the CHD incidence and 𝑃𝐴𝐹 is from Step 1. 𝐼𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 represents CHD 

incidence if all the modelled risk factors were at optimal levels. The theoretical minimum incidence is 

calculated by age and sex only in the initial year of the simulation and it is assumed stable thereafter.  

Stage 3 

Assuming that 𝐼𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 is the baseline annual probability of a synthetic individual to 

develop CHD for a given age and sex due to risk factors not included in the model (i.e. genetics etc.), 

the individualised annual probability to develop CHD, ℙ(CHD | age, sex, exposures), given his/her risk 

factors were estimated by the formula: ℙ(𝐶𝐻𝐷 | 𝑎𝑔𝑒, 𝑠𝑒𝑥, 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑠) =  𝐼𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ∗ 𝑅𝑅1 ∗ 𝑅𝑅2 ∗ 𝑅𝑅3 ∗ … ∗ 𝑅𝑅𝑘 

Where 𝑅𝑅1 … 𝑘 the relative risks that are related to the specific risk exposures of the synthetic 

individual, same as in stage 1. Depending on data availability this method can be further stratified by 

QIMD; however, data were not available for this in the current study. 

The above method can be used only when the incidence of the disease in the population is known. 

For cancers, this information is available from the cancer registries. The true incidence of CHD (and 

stroke) though, is largely unknown. Several estimates exist nonetheless all have limitations. Therefore, 

for the estimation of CHD incidence by age and sex we opted for a modelling solution to synthesise all 

the available sources of information and minimise bias. Specifically, we used ONS CHD mortality 

(ICD10 I20-I25) for England in 2006,52 self-reported prevalence of CHD from HSE06, the incidence of 

angina from primary care data53 and incidence of acute myocardial infarction (AMI) from mortality 

and hospital statistics54 to inform the World Health Organisation (WHO) DISMOD II model.55 DISMOD 

II is a multi-state life table model that can estimate the incidence, prevalence, mortality, fatality and 

remission of a disease when information about at least three of these indicators is available. A similar 

approach has been followed by the Global Burden of Disease team and others.56,57 We considered CHD 

an incurable chronic disease (i.e. remission rate was set to 0); therefore, the derived DISMOD II 

incidence refers to the first ever manifestation of angina or AMI excluding any recurrent episodes. For 

the DISMOD II calculations, we assumed that incidence and case-fatality had been declining by 3% 
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(relative), over the last 20 years. The derived CHD incidence, prevalence and fatality were used as an 

input for IMPACTNCD. A similar approach was used for stroke. 

For the initial year of the simulation, some synthetic individuals need to be allocated as prevalent 

cases for each of the modelled diseases. DISMOD II model55 is used again to estimate the number of 

prevalent cases of the disease by age and sex. Then, the estimated number of prevalent cases are 

sampled independently from the individuals in the population with weights proportional to their 

relevant exposures.  

Simulating disease histories (Step 6) 

In the current stage of development, IMPACTNCD does not contain a detailed disease history module. 

However, Step 6 is used to simulate significant aspects of the disease. For CVD, this was used to 

simulate the observable spike of short-term (30 days) mortality after the first event of AMI or stroke. 

Data about short-term mortality were used from the ‘Coronary heart disease statistics 2012 edition’ 

report.53 

For GCA this step is used to simulate remission cases. Once more, we used the DISMOD II model to 

estimate the remission rate by age and sex, using as inputs incidence, mortality, and case fatality rates 

by age group and sex. Specifically, the incidence and survival rates of GCa is known through the cancer 

registries and is reported by ONS.58,59 From the reported first and fifth-year survival rate, assuming a 

Weibull survival distribution, we calculated annual case fatality and 10-year survival rate. Finally, we 

used the observed GCa mortality reported by ONS.52 We assumed remission rate equals the 10-year 

survival rate. Furthermore, we assumed the incidence and case-fatality rate had been declining by 2% 

(relative) over the last 20 years, and the remission rate had been improving by 1% (relative).  

 

Simulating mortality (Step 7) 

All synthetic individuals are exposed to the risk of dying from any of their acquired modelled diseases 

or any other non-modelled cause. However, the algorithm behaves differently depending on the age 

and life course trajectory of the synthetic individual. 

For ages 0 to 29, we used all-cause mortality rate by age, sex, and QIMD to inform an independent 

Bernoulli trial and select synthetic individuals that die every year. For years 2006 to 2013 we used the 

observed mortality rates as were reported from ONS.52 For years after 2013, functional demographic 

models by sex and QIMD were fitted to the ONS reported annual mortality rates, from years 2002 to 

2013, and then were projected to the simulation horizon using the R package ‘demography’.60 

Functional demographic models are generalisations of the Lee-Carter demographic model, influenced 

by ideas from functional data analysis and non-parametric smoothing.61 
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The same approach as above was followed for synthetic individuals aged 85 to 100. We considered a 

mortality rate of 1 for all synthetic individuals reaching the age of 100. Hence, IMPACTNCD maximum 

synthetic individual age is 100 years.  

Finally, for synthetic individuals with ages between 30 and 84 the all-cause mortality was decomposed 

into modelled-diseases specific mortality and any-other cause mortality. The former applies only to 

the prevalent cases of each modelled disease in the synthetic population. For this, case-fatality rates 

by age and sex are estimated by DISMOD II for each modelled disease, as described before, and then 

are used in a Bernoulli trial to select prevalent cases that die from the disease in a year. For CVD, 30-

day mortality of incident cases is calculated in step 6. In this step the algorithm avoids double counting 

of CVD deaths by allocating any additional CVD deaths from the pool of prevalent cases.  For example, 

if we expect 100 deaths from CHD (based on annual case-fatality rates from DISMOD II) overall, and 

40 of them to occur in first 30 days after CHD (from published 30-day case-fatality rates), the algorithm 

randomly selects 40 individuals from the incident cases of CHD and 60 from the prevalent CHD cases. 

For the any-other cause mortality, a process similar to the one described for ages 0 to 29 and 85 to 

100. However, this time CVD and GCa specific mortality are removed from the observed mortality and 

mortality projections to avoid double counting.  

The case mortality and fatality rates are further parametrised and individualised based on established 

epidemiological evidence. The ‘male British doctors’ and DECODE studies have shown that smokers 

and diabetics had increased overall mortality even when CVD is excluded62,63. IMPACTNCD adjusts for 

that by inflating the any-other cause mortality rate for smokers and diabetics and deflating it for non-

smokers and non-diabetics, while it constrains the sum to remain the same as before the adjustments. 

Furthermore, we assumed that CVD and GCa case-fatality is improving by 3% and 2% annually, 

respectively, and that there is a constant case-fatality socioeconomic gradient of approximately 5% by 

QIMD level (halved for ages over 70) for CHD and GCa, and 2% for stroke. The socioeconomic gradient 

forces the more deprived to experience worse disease outcomes. These assumptions are based on 

empirical evidence.53,64–66  

Finally, synthetic individuals who remain alive after this step progress to the next year and start again 

from step 1, unless the simulation horizon has been reached.  
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4. SCENARIOS 

The process that we describe so far is the one for the ‘current policy’ scenario. For this study, for the 

current policy scenario, we assumed that the Responsibility Deal had been implemented since 2011. 

We also assumed, driven by the data, that the implementation has decelerated the rate of decrease 

of salt consumption in the population.  

For our counterfactual scenario, we assumed that the Responsibility Deal has never been 

implemented. Therefore, we assumed that the observed declining trend in salt consumption before 

2011, will also continue after 2011.  

One-way sensitivity analysis 

In our one-way sensitivity analysis, we assumed that the declining trends in mean salt consumption 

follow a logarithmic rather than linear decline. This results in slower declines for both scenarios. We 

calibrated the declining model to reach a mean salt consumption of 7g/d by 2020 (vs 6.5 g/d in our 

main analysis) and 6.6 g/day (vs 5.8 g/day) by 2025, for ages 19 to 64. Therefore, our one-way 

sensitivity analysis provides more conservative estimates. Figure S6 shows the modelled trends in 

mean salt consumption under the two scenarios, for the main and one-way sensitivity analysis. 

IMPACTNCD estimates are not directly comparable to the National Sodium Survey studies because the 

former is for ages 30 to 84, while the latter for ages 19 to 64. Table S1, Table S2, and Table S3 

summarise the results of the one-way sensitivity analysis. 
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5. UNCERTAINTY 

IMPACTNCD implements a 2nd order Monte Carlo approach to estimate uncertainty intervals (UI) for 

each scenario.67,68 Each simulation runs 1000 times. For each iteration, a different set of input 

parameters is used, by sampling from the respective distributions* of input parameters (Table S9), and 

a different sample of the synthetic population is drawn. However, the scenarios are ‘paired’. For 

instance, the nth iteration of all scenarios runs with the same set of input parameters and on the same 

synthetic population sample for all of them. This explains why the uncertainty of in-between scenarios 

comparisons is significantly smaller than the uncertainty of isolated scenarios.  

The framework allows stochastic uncertainty, parameter uncertainty and individual heterogeneity to 

be reflected in the reported UI. The following example illustrates the different types of uncertainty 

that were considered in IMPACTNCD. Let us assume that the annual risk for CHD is 5%. If we apply this 

risk to all individuals and randomly draw from a Bernoulli distribution with 𝑝 = 5% to select those who 

will manifest CHD, we only consider stochastic uncertainty. If we allow the annual risk for CHD to be 

conditional on individual characteristics (i.e. age, sex, exposure to risk factors), then individual 

heterogeneity is considered. Finally, when the uncertainty of the relative risks due to sampling errors 

is considered in the estimation of the annual risk for CHD, the parameter uncertainty is considered. 

From these three types of uncertainty, only the parameter uncertainty can be reduced from better 

studies in the future.  

Due to lack of information and for computational efficiency, not all three types of uncertainty are 

considered in every step (Figure S1) of IMPACTNCD. Specifically, stochastic uncertainty is included in 

every step, individual heterogeneity in every step except 1 and 4 and parameter uncertainty in step 5. 

Of course, parameter uncertainty (if any) of scenario targets are also estimated in steps 2 and 3. For 

example, the target of the ‘Feasible’ scenario is mean salt consumption of 6g/day and its uncertainty 

assumed to follow a PERT distribution with min = 5.8 g/day, mode = 6 g/day, and max = 7 g/day 

The structure of the model is grounded in fundamental epidemiological ideas and well-established 

causal pathways; therefore, we considered this type of uncertainty relatively small and did not study 

it. However, mortality from each of the modelled diseases and any-other cause (steps 6 and 7) is 

calculated serially, one modelled disease at a time. To avoid bias that this approach might introduce, 

the order of the modelled diseases in each mortality estimation is randomised.  

                                                           
* We assumed log-normal distributions for relative risks and hazard ratios, normal distributions for coefficients 

of regression equations, and PERT distributions for other parameters. Specifically for relative risks and hazard 

ratios, the distributions were bounded above 1 when the mean was above 1 and vice versa. 
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6. HEALTH-RELATED COSTS 

Healthcare costs of CVD and GCa 

CHD and stroke healthcare costs were drawn from economic modelling carried out for the National 

Institute for Health and Care Excellence (NICE), which is generally based on the best economic 

evidence that is available at the time in England. We considered separate costs for year one (first year 

after being diagnosed), subsequent years, and fatal CVD events which reflected higher costs in the 

final year of life. We did not include costs for non-CVD deaths and disease. Stroke costs are from an 

NHS perspective and include rehabilitation but not ongoing social care costs.  

No UK studies were found with specific estimates of gastric or upper GI cancer healthcare costs. 

Healthcare costs were estimated using the NHS Programme Budgeting Data for England69 for 2006/07 

for Upper GI cancers, combined with 5 year prevalence data for 31st December 2006. The total upper 

GI prevalence data excluded duodenal, gallbladder, ampulla Vater, and some biliary tract cancers. 

Overall this gave an average cost per year of £13,396 in 2018 prices which were applied to GCa 

prevalence in the model. 

Costs were weighted for deprivation (Table S4) as there is good evidence that costs for the same 

disease show a social gradient. The weighting for deprivation was based on data from Charlton et al. 

who found that average disease costs vary by QIMD.70  

The disease costs we have are averages, and it is assumed that disease costs are the same for all age 

and sex groups (Table S5). The cost of CHD deaths is based on costs of myocardial infarction deaths. 

The cost of multimorbidity is assumed to be the sum of costs of individual diseases. We inflated all 

costs to 2018 using UK Treasury GDP inflator tables from April 2018. We did not use the PSSRU hospital 

& community health services index because it only goes back to 2004 and some of the costs predate 

this. Table S5 shows the disease costs, the 2018 costs shown are for IMD quintile 3 (middle) quintile.  

Productivity losses through CVD and GCa 

There are different definitions and ways to calculate productivity losses - sometimes costs include 

beyond the workplace, i.e. household production, sometimes just the workplace. Sometimes 

employer perspective (in which case use 'friction costs' - costs of replacing someone - usually 90 days 

wages) or employee perspective (would include all lost wages), or both employee and employer. 

Workplace productivity losses for CHD mortality and morbidity were estimated using data from Liu et 

al.71 which included estimates of friction-adjusted employment productivity losses based on working 

years lost through early mortality, and certified incapacity days which was combined with under 65 

prevalence data to get a unit cost. Productivity losses for stroke were estimated using data from Saka 
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et al.72 which included income lost due to mortality and morbidity which was combined with the 

prevalence of stroke in people aged under 65 to get a unit cost. These estimates were inflated to 2018 

prices using the ratio of average UK weekly earnings data from ONS.  

No UK estimates were found for productivity losses from GCa morbidity or mortality. Workplace 

productivity losses from GCa mortality were derived from a study in Ireland by Pearce et al.73 This 

paper also included estimates of GCa mortality related household productivity losses, but these were 

excluded to be more consistent with the CHD and stroke estimates. These estimates were adjusted 

for the ratio of average full-time earnings from Ireland (in euros) in 2011* and England (in GBP) in 

2011† which were matched using EPPI cost converter using OECD purchasing power parity (PPP) values 

and then inflated to 2018 using average UK weekly earnings data from ONS.‡ This gave an average lost 

paid production of £48,124 per death from GCa.  

Other costs 

Other costs such as household productivity, informal care or out of pocket expenses, or future 

consumption and production, were not included.  

Discounting 

An annual discount rate of 3.5% was applied from 2018. Results from before 2018 were inversely 

discounted. This rate was selected based on guidance from the UK Treasury. 

  

                                                           
*https://www.cso.ie/en/releasesandpublications/ep/p-syi/psyi2017/econ/earn/ 

†https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/a

nnualsurveyofhoursandearnings/2017provisionaland2016revisedresults#average-earnings 

‡ https://eppi.ioe.ac.uk/costconversion/  
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7. VALIDATION 

Interrupted time series 

Figure S7 depicts the residuals from our interrupted time series model over time for both men and 

women. There is adequate model fit and reassuringly the fit is the same both before and after the 

implementation of the RD.   

 

 

Figure S7 The residuals from our interrupted time series model over time for both men and women. The brown line depicts 

the local regression fit to the residuals. 

 

IMPACTNCD  

For this study, IMPACTNCD is calibrated to data from 2006 or before. The only exception is the 

regression models that are used in steps 2 and 3 (Figure S1) for individual predictions of exposure to 

risk factors. These models were fitted in data from 2001 to 2012. In this chapter, we first present the 

internal validation of the synthetic population and the risk factor trends, as evidence that the synthetic 

population used in IMPACTNCD was similar to the English population. Then, we present the predictive 

validation of IMPACTNCD by comparing observed to predicted mortality rates for the years 2006 to 
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2013 by age group, sex, QIMD, and modelled disease. Specifically for GCa, we also compare observed 

and predicted incidence rates for the same period by age group and sex.*  

 

Synthetic population validation 

The following graphs compare a random sample of 200,000 synthetic individuals from the synthetic 

population to the original sample of HSE06 (n = 17,633). Mosaic plots† were used for the categorical 

variables, and cumulative distribution plots were used for the continuous variables. Specifically, in this 

document, the area of each tile of the mosaic plots is proportional to the proportion of each subgroup 

in the respective population. Only graphs that were relevant to the analysis for this study are 

presented here. 

The graphs support the argument that the final synthetic population is close to reality, at least as it 

was captured through the HSE06, and are useful for the internal validation of the method. Alfons et 

al. used a statistical simulation approach to evaluate the process and showed that this method 

produces synthetic populations very similar to the original survey.9 Of course, the method cannot 

overcome any limitations of the original survey, such as selection bias, or misclassification. 

                                                           
*For CHD and stroke, true incidence rates are rather unknown; therefore, such comparison would be 

meaningless. 
† Mosaic plots are graphical representations of a contingency table of two or more categorical variables, using 

tiles with areas proportional to the frequencies in each cell of the table.74 
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Risk factor trends validation 

Here we compare mean exposure of IMPACTNCD synthetic population to the observed exposure 

through relevant national representative surveys. We stratified by sex, age group and when data 

allowed by QIMD. Overall, the plots provide evidence that the regression models used in steps 2 and 

3 (Figure S1) have captured trends by age, sex and QIMD well enough. Please note that the shrinking 

variance with time that is observed in the graphs is an artefact. For efficiency, the model only 

calculates lagged exposures for the years that are necessary depending on the distribution of the lag 

time random variables for CVD and cancer. Therefore, the number of data points for each year differs, 

and for the shifted binomials we chose for the lag time random variables, increases by year for the 

period 2001 - 2013. This is reflected in the decreasing variance on the graphs. 

 

 

 

 

 

Figure S18 Mean salt consumption for ages 19 – 64 between the years 2001 and 2011. Observed in the population through 

surveys using 24h urine collections75–78 vs IMPACTNCD synthetic population estimates. Error bars represent 95% confidence 

intervals of the mean.  
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Figure S19 Mean salt consumption by age group, between the years 2001 and 2011. Observed in the population through 

surveys using 24h urine collections75–78 vs IMPACTNCD synthetic population estimates. Error bars represent 95% confidence 

intervals of the mean.  

 

Figure S20 Mean systolic blood pressure for ages 30 – 84 between years 2001 and 2012. Observed in the population through 

Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the 

mean. 
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Figure S21 Mean systolic blood pressure for ages 30 – 84 by quintile group of the index of multiple deprivation (QIMD, 1 = 

least deprived) between years 2001 and 2012. Observed in the population through Health Survey for England vs IMPACTNCD 

synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 

 

Figure S22 Mean systolic blood pressure for ages 30 – 84 by age group, between years 2001 and 2012. Observed in the 

population through Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars represent 95% 

confidence intervals of the mean. 

Supplementary material J Epidemiol Community Health

 doi: 10.1136/jech-2018-211749–887.:881 0 2019;J Epidemiol Community Health, et al. Laverty AA



40 

 

 

Figure S23 Mean total plasma cholesterol for ages 30 – 84 between years 2001 and 2012. Observed in the population through 

Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the 

mean. 

 

Figure S24 Mean total plasma cholesterol for ages 30 – 84 by quintile group of the index of multiple deprivation (QIMD, 1 = 

least deprived) between years 2001 and 2012. Observed in the population through Health Survey for England vs IMPACTNCD 

synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 
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Figure S25 Mean total plasma cholesterol for ages 30 – 84 by age group, between the years 2001 and 2012. Observed in the 

population through Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars represent 95% 

confidence intervals of the mean. 

 

Figure S26 Mean body mass index for ages 30 – 84 between years 2001 and 2012. Observed in the population through Health 

Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 
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Figure S27 Mean body mass index for ages 30 – 84 by quintile group of the index of multiple deprivation (QIMD, 1 = least 

deprived) between years 2001 and 2012. Observed in the population through Health Survey for England vs IMPACTNCD 

synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 

 

Figure S28 Mean body mass index for ages 30 – 84 by age group between the years 2001 and 2012. Observed in the population 

through Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars represent 95% confidence 

intervals of the mean. 
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Figure S29 Smoking prevalence for ages 30 – 84 between years 2001 and 2012. Observed in the population through Health 

Survey for England vs IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 

 

Figure S30 Smoking prevalence for ages 30 – 84 by quintile group of the index of multiple deprivation (QIMD, 1 = least 

deprived) between years 2001 and 2012. Observed in the population through Health Survey for England vs IMPACTNCD 

synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 
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Figure S31 Smoking prevalence for ages 30 – 84 by age group between the years 2001 and 2012. Observed in the population 

through Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars represent 95% confidence 

intervals of the mean. 

 

Figure S32 Diabetes mellitus prevalence for ages 30 – 84 between years 2001 and 2012. Observed in the population through 

Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the 

mean. 
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Figure S33 Diabetes mellitus prevalence for ages 30 – 84 by quintile group of the index of multiple deprivation (QIMD, 1 = 

least deprived) between years 2001 and 2012. Observed in the population through Health Survey for England vs IMPACTNCD 

synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 

 

Figure S34 Diabetes mellitus prevalence for ages 30 – 84 by age group between the years 2001 and 2012. Observed in the 

population through Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars represent 95% 

confidence intervals of the mean. 
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Figure S35 Five or more portions of fruit & veg per day prevalence for ages 30 – 84 between years 2001 and 2012. Observed 

in the population through Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% 

confidence intervals of the mean. 

 

Figure S36 Five or more portions of fruit & veg per day prevalence for ages 30 – 84 by quintile group of the index of multiple 

deprivation (QIMD, 1 = least deprived) between years 2001 and 2012. Observed in the population through Health Survey for 

England vs IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 
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Figure S37 Five or more portions of fruit & veg per day prevalence for ages 30 – 84 by age group between the years 2001 and 

2012. Observed in the population through Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars 

represent 95% confidence intervals of the mean. 

 

Figure S38 Five or more active days per week prevalence for ages 30 – 84 between years 2001 and 2012. Observed in the 

population through Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars represent 95% 

confidence intervals of the mean. 
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Figure S39 Five or more active days per week prevalence for ages 30 – 84 by quintile group of the index of multiple deprivation 

(QIMD, 1 = least deprived) between years 2001 and 2012. Observed in the population through Health Survey for England vs 

IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 

 

Figure S40 Five or more active days per week prevalence for ages 30 – 84 by age group between the years 2001 and 2012. 

Observed in the population through Health Survey for England vs IMPACTNCD synthetic population estimates. Error bars 

represent 95% confidence intervals of the mean. 
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Incidence predictive validation 

We validated incidence only for GCa, as data of the observed incidence is known through the cancer 

registries. This was not possible for CVD as the true ‘first ever’ incidence is largely unknown. 

 

 

 

Figure S41 Gastric cancer cases in England for ages 30 – 84 by age group between the years 2006 and 2012. Observed in the 

population through cancer registries vs IMPACTNCD synthetic population estimates. Error bars represent 95% uncertainty 

intervals. 
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Mortality predictive validation 

Here we validate the IMPACTNCD estimated mortality against the observed mortality in England 

between 2006 and 2013. We stratified by disease, age, sex and QIMD. Overall, the plots support the 

argument that IMPACTNCD is capable of translating changes in risk factors prevalence into changes in 

disease incidence and mortality, rather accurately.  

 

 

 

 

 

 

Figure S42 Number of deaths from coronary heart disease in England, by year and sex for ages 30 to 84. Office for National 

Statistics reported deaths (observed) vs IMPACTNCD estimated 
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Figure S43 Number of deaths from stroke in England, by year and sex for ages 30 to 84. Office for National Statistics (ONS) 

reported deaths (observed) vs IMPACTNCD estimated. Observed deaths after 2010 were adjusted to account for changes in the 

ICD-10 version used by ONS since 201. Error bars represent interquartile ranges. 

 

 

Figure S44 Number of deaths from gastric cancer in England, by year and sex for ages 30 to 84. Office for National Statistics 

reported deaths (observed) vs IMPACTNCD estimated. 
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TABLES 

Table S1 IMPACTNCD estimates from the one-way sensitivity analysis, assuming logarithmic salt decline. Additional cases in the Responsibility Deal scenario. Ps denotes the probability of superiority 

Disease Period of exposure The absolute number of additional cases (IQR) The absolute number of additional deaths (IQR) Ps 

CVD  2011-2018 6,100 (2,700 to 9,500) 660 (-820 to 2,100) 9.8% 

 2019-2025 14,000 (8,600 to 19,000) 3,100 (510 to 5,800) 3.0% 

 2011-2025 20,000 (13000 to 26000) 3,700 (820 to 6,500) 1.1% 

Gastric cancer 2011-2018 1,000 (100 to 1,800) 360 (-510 to 1,200) 24.0% 

 2019-2025 2,100 (920 to 3,200) 1,000 (0 to 2,100) 12.0% 

 2011-2025 3,100 (1,500 to 4,700) 6,600 (3,400 to 10,000) 9.4% 
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Table S2 IMPACTNCD estimates from the one-way sensitivity analysis, assuming logarithmic salt decline. Additional cases in the Responsibility Deal scenario, by quintile group of Index of Multiple 

Deprivation. 

2011 – 2018 exposure period    

Disease QIMD (5 = most 

deprived) 

Absolute number of additional cases 

(IQR) 

Rate per 100,000 person-years 

(IQR) 

Rate per 100,000 new CVD cases 

(IQR) 

CVD  1 920 (-610 to 2600) 2.3 (-1.3 to 5.7) 940 (-500 to 2300) 

 2 1200 (-710 to 3100) 2.1 (-1.3 to 5.9) 760 (-500 to 2200) 

 3 1100 (-710 to 3200) 2.2 (-1.7 to 5.7) 800 (-640 to 2100) 

 4 1200 (-920 to 3100) 2 (-1.3 to 6.2) 750 (-510 to 2300) 

 5 1100 (-710 to 3300) 2.8 (-1.2 to 6.6) 990 (-410 to 2400) 

Gastric cancer 1 200 (-410 to 820) 0.38 (-0.75 to 1.5) 1100 (-3800 to 5700) 

 2 200 (-410 to 920) 0.38 (-0.75 to 1.7) 0.0071 (-4000 to 5300) 

 3 260 (-410 to 920) 0.47 (-0.75 to 1.7) 1100 (-3700 to 6000) 

 4 200 (-410 to 820) 0.38 (-0.76 to 1.5) 0.017 (-5000 to 5200) 

 5 200 (-410 to 820) 0.39 (-0.79 to 1.6) 0.002 (-4700 to 6000) 

2019 – 2025 exposure period    

CVD  1 2400 (-610 to 5700) 5 (-1.3 to 12) 2000 (-560 to 4900) 

 2 3000 (-230 to 5600) 6.3 (-0.48 to 12) 2400 (-190 to 4600) 

 3 2800 (-510 to 6100) 5.8 (-1.1 to 13) 2100 (-380 to 4900) 

 4 3000 (-410 to 6100) 6.3 (-0.86 to 13) 2400 (-310 to 5000) 

 5 2700 (-330 to 6000) 5.8 (-0.71 to 13) 2100 (-240 to 4700) 

Gastric cancer 1 310 (-410 to 1000) 0.65 (-0.86 to 2.2) 3500 (-5400 to 14000) 

 2 410 (-310 to 1200) 0.88 (-0.65 to 2.6) 5000 (-3400 to 14000) 

 3 510 (-310 to 1200) 1.1 (-0.65 to 2.6) 5000 (-4300 to 15000) 

 4 410 (-310 to 1200) 0.86 (-0.65 to 2.6) 6000 (-4600 to 17000) 

 5 410 (-310 to 1100) 0.86 (-0.64 to 2.4) 5100 (-4900 to 16000) 
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Table S3 IMPACTNCD estimates from the one-way sensitivity analysis, assuming logarithmic salt decline.  Incremental healthcare and workplace productivity loss costs in the Responsibility Deal 

scenario compared with the counterfactual FSA Trend. Costs in 2018 GBP. 

2011 – 2018 exposure period (Total costs in million £100 (£28 to £170, Ps = 16.5%))  

Disease Healthcare costs in million (IQR) Workplace productivity costs in million (IQR) 

CVD £52 (£19 to £87) £25 (-£1.9 to £50) 

Gastric cancer £19 (-£16 to £54) £5.5 (-£19 to £31)  

2019 – 2025 exposure period (Total costs in million £560 (£320 to £790, Ps = 4.6%))  

CVD £290 (£150 to £410) £170 (£59 to £290) 

Gastric cancer £84 (£7.2 to £160) £14 (-£21 to £50)  
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Table S4 Long-term condition costs from Charlton et al.70  

 QIMD Cost per year - one morbidity (£) Cost ratio relative to least deprived 

1 Least deprived 744 1 

2 785 1.05 

3 797 1.07 

4 830 1.11 

5 Most deprived 917 1.23 

  

  

Supplementary material J Epidemiol Community Health

 doi: 10.1136/jech-2018-211749–887.:881 0 2019;J Epidemiol Community Health, et al. Laverty AA



62 

 

Table S5 Disease costs used in the model 

Disease Event Type Original costs Cost Year Source 2018 Costs  Table in the 

report 

Ischemic Heart Disease Non-fatal event – year of 

event 

£2,274 2000 NICE (2015) NG2879 £3,196 Table 61 

Ischemic Heart Disease Non-fatal event – 

subsequent years 

£751 2000 NICE (2015) NG2879 £1,056 Table 61 

Stroke Non-fatal event – year of 

event 

£8,274 2009 NICE (2010a) PH2580 £9,481 Table 4 

Stroke Non-fatal event – 

subsequent years 

£3,660 2009 NICE (2010a) PH2580 £4,194 Table 4 

Myocardial Infarction Fatal event – year of event £1,152 2000 NICE (2015) NG2879 £1,627 Table 61 

Stroke Fatal event – year of event £3,383 2000 NICE (2015) NG2879 £4,778 Table 61 

Gastric Cancer Prevalence £10,513 2006 NHS England 

Programme 

Budgeting Data for 

Upper GI 

£13,396  
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Table S6 Productivity losses used in the model 

Disease Original costs Cost per Cost Year Source 2018 Costs  Table or page in the report 

CHD £3,240 prevalent case aged <65 2002 Liu et al 2002 £4,903 Table 2 

Stroke  £3,484 prevalent case aged <65 2005 Saka et al 2008 £4,575 Table 2 

Gastric cancer  £44,580 death (all ages) 2011 Pearce et al. 2016  £48,124  Table 1 
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Table S7 IMPACTNCD data sources 

Parameter Outcome Details Comments Source 

Fertility rates Births Principal-

assumption 
fertility projections 

for England 

Stratified by age National Population Projections, 2012-based Statistical Bulletin 

[Internet]. Office for National Statistics; 2013 [cited 2014 Nov 
11]. Available from: 

http://www.ons.gov.uk/ons/rel/npp/national-population-

projections/2012-based-projections/index.html 

Mortality rates Deaths from 

non-modelled 

causes 

Mortality and mid-

year population 

estimates for 

England  

Stratified by age, sex, QIMD 

and cause of death. Years 

2002-2013. 

Data requested and obtained by the Office for National 

Statistics. Available from: http://www.ons.gov.uk/ons/about-

ons/business-transparency/freedom-of-information/what-can-

i-request/published-ad-hoc-data/health/december-

2014/number-of-registered-deaths-by-sex--cause--year--the-

adjusted-index.xls 

Exposure to risk 

factors (except 

24h urine 

sodium) 

Exposure of 

individuals 

Health survey for 

England 

Anonymised, individual-level 

datasets. Years 2001-2012. 

Health survey for England 2001-2012. Data available to 

researchers from http://ukdataservice.ac.uk/ 

24h urine 

sodium 

Exposure of 

individuals 

National Diet and 

Nutrition Survey 

Anonymised, individual-level 

datasets. Years 2001, 2006, 

2008, 2011, 2014 

NatCen Social Research MRC Elsie Widdowson Laboratory. 

National Diet and Nutrition Survey: Assessment of Dietary 

Sodium in Adults, 2006/09 and 2011/15 [Internet]. UK Data 
Service; 2018 [cited 2018 Aug 10]. Available from: 

http://discover.ukdataservice.ac.uk/doi?sn=8233#7 

 

Office For National Statistics. Social And Vital Statistics Division 

And Food Standards Agency. National Diet and Nutrition 

Survey : Adults Aged 19 to 64 Years, 2000-2001. Colchester, 

Essex: UK Data Archive; 2005. 
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Parameter Outcome Details Comments Source 

Relative risk for 

salt 
consumption 

Gastric cancer 

incidence 
(ICD10: C16) 

Meta-analysis of 2 

cohort studies 

Both studies adjusted for 

age, sex, and smoking. One 
also adjusted for non 

green/yellow vegetable 

intake and the other for 

education, stomach 

disorders and history of 

stomach cancer in the family. 

World Cancer Research Fund, American Institute for Cancer 

Research. Food, nutrition, physical activity, and the prevention 
of cancer: a global perspective. Washington, DC: WCRF/AICR; 

2007. (Figure 4.6.1) 

Effect of salt 

consumption on 

systolic blood 

pressure 

Systolic blood 

pressure 

change 

Meta-

analysis/meta- 

regression of 103 

trials 

Only trials with duration > 7 

days were analysed. 

Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, 

Engell RE, et al. Global Sodium Consumption and Death from 

Cardiovascular Causes. New England Journal of Medicine 

2014;371:624–34. (Text S1 in the appendix) 

Setting 

reference level 

of salt 

consumption 

Ideal salt 

consumption 

below which 

no risk was 

considered 

Evidence from 

ecologic studies, 

randomized trials 

and meta-analyses 

of prospective 

cohort studies 

Intake levels associated with 

lowest risk ranged from 1.5 

to 6 g/day. The lowest 

observed mean national 

intakes were ~3.8 g/day. 

Thus a PERT (1.5, 3.8, 6) 

distribution was used.  

Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, 

Engell RE, et al. Global Sodium Consumption and Death from 

Cardiovascular Causes. New England Journal of Medicine 

2014;371:624–34. (Text S4 in the appendix and Table S3) 

Supplementary material J Epidemiol Community Health

 doi: 10.1136/jech-2018-211749–887.:881 0 2019;J Epidemiol Community Health, et al. Laverty AA



66 

 

Parameter Outcome Details Comments Source 

Relative risk for 

active smoking 

CHD and 

stroke (ICD10: 
I20 – I25 and 

I60 – I69) 

Re-analysis of 

American Cancer 
Society’s Cancer 
Prevention Study 

II. Prospective 

cohort study, 6 

years of follow up 

Stratified by age and sex. 

Adjusted for age, race, 
education, marital status, 

“blue collar” employment in 
most recent or current job, 

weekly consumption of 

vegetables and citrus fruit, 

vitamin (A, C, and E) use, 

alcohol use, aspirin use, body 

mass index, exercise, dietary 

fat consumption, 

hypertension and diabetes at 
baseline. 

Ezzati M, Henley SJ, Thun MJ, Lopez AD. Role of Smoking in 

Global and Regional Cardiovascular Mortality. Circulation 
2005;112:489–97. (Table 1 Model B) 

 Gastric cancer 

incidence 

(ICD10: C16) 

EPIC prospective 

cohort study 

Stratified by country. 

Adjusted for sex, 

consumption of vegetables, 
fresh fruits, processed meat, 

alcohol, body mass index and 

educational level. 

González CA, Pera G, Agudo A, Palli D, Krogh V, Vineis P, et al. 

Smoking and the risk of gastric cancer in the European 

Prospective Investigation Into Cancer and Nutrition (EPIC). Int J 
Cancer 2003;107:629–34. (HR of the log2 of cigarette-years = 

1.040) 

 Other 

mortality 

(except CHD 

and stroke) 

Male British 

doctors 

prospective cohort 

study 

Age-standardised Doll R, Peto R, Boreham J, Sutherland I. Mortality in relation to 

smoking: 50 years’ observations on male British doctors. BMJ 

2004;328:1519. (Table 1) 

Relative risk for 

ex-smoking 

CHD (ICD10: 

I20 – I25) 

Meta- analysis. 

Multiple-adjusted 

pooled estimates 
from 19 

prospective 

studies 

Multiply-adjusted Huxley RR, Woodward M. Cigarette smoking as a risk factor for 

coronary heart disease in women compared with men: a 

systematic review and meta-analysis of prospective cohort 
studies. The Lancet 2011;378:1297–305. (Web-figure 8) 
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Parameter Outcome Details Comments Source 

 Stroke (ICD10 

I60 – I69) 

The Framingham 

study. Prospective 
cohort study  

Stroke risk decreased 

significantly by two years 
and was at the level of non-

smokers by five years after 

cessation of cigarette 

smoking. 

Wolf PA, D’Agostino RB, Kannel WB, Bonita R, Belanger AJ. 
Cigarette smoking as a risk factor for stroke: The Framingham 
study. JAMA 1988;259:1025–9.  

 Gastric cancer 

incidence 

(ICD10: C16) 

EPIC prospective 

cohort study 

Stratified by country. 

Adjusted for sex, 

consumption of vegetables, 

fresh fruits, processed meat, 

alcohol, body mass index and 

educational level. 

González CA, Pera G, Agudo A, Palli D, Krogh V, Vineis P, et al. 

Smoking and the risk of gastric cancer in the European 

Prospective Investigation Into Cancer and Nutrition (EPIC). Int J 

Cancer 2003;107:629–34. (Table IV. Continuous RR) 

Relative risk for 

environmental 

tobacco 

smoking 

CHD (ICD10: 

I20 – I25) 

Meta-analysis of 

10 cohort and 

case-control 

studies 

Adjusted for important CHD 

risk factors. 

He J, Vupputuri S, Allen K, Prerost MR, Hughes J, Whelton PK. 

Passive Smoking and the Risk of Coronary Heart Disease — A 

Meta-Analysis of Epidemiologic Studies. N Engl J Med 

1999;340:920–6. (Table 3. Adjusted RR) 

 Stroke (ICD10 

I60 – I69) 

Meta-analysis of 

20 prospective, 

case-control and 

cross-sectional 

studies 

13 studies adjusted for 

important CHD risk factors. 

The overall effect from all 20 

studies was used. 

Oono IP, Mackay DF, Pell JP. Meta-analysis of the association 

between second hand smoke exposure and stroke. J Public 

Health 2011;33:496–502. (Figure 1) 
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Parameter Outcome Details Comments Source 

Relative risk for 

systolic blood 
pressure 

CHD and 

stroke (ICD10: 
I20 – I25 and 

I60 – I69) 

Meta-analysis of 

individual data 
from 61 

prospective 

studies 

Stratified by age and sex. 

Adjusted for regression 
dilution and total blood 

cholesterol and, where 

available, lipid fractions (HDL 

and non-HDL cholesterol), 

diabetes, weight, alcohol 

consumption, and smoking 

at baseline. 

Age-specific relevance of usual blood pressure to vascular 

mortality: a meta-analysis of individual data for one million 
adults in 61 prospective studies. The Lancet 2002;360:1903–13. 

(Figures 3 and 5) 

Relative risk for 

total cholesterol 

CHD and 

stroke (ICD10: 

I20 – I25 and 

I60 – I69) 

Meta-analysis of 

individual data 

from 61 

prospective 

studies 

Stratified by age and sex. 

Adjusted for regression 

dilution and age, sex, study, 

systolic blood pressure and 

smoking. 

Prospective Studies Collaboration. Blood cholesterol and 

vascular mortality by age, sex, and blood pressure: a meta-

analysis of individual data from 61 prospective studies with 

55 000 vascular deaths. The Lancet 2007;370:1829–39. (Web-

table 6 fully adjusted and Figure 3) 

Relative risk for 

body mass 

index 

CHD and 

stroke (ICD10: 

I20 – I25 and 

I60 – I69) 

Meta-analysis of 

58 prospective 

studies 

Stratified by age. Adjusted 

for age, sex, smoking status, 

systolic blood pressure, 

history of diabetes, and total 

and HDL cholesterol. 

The Emerging Risk Factors Collaboration. Separate and 

combined associations of body-mass index and abdominal 

adiposity with cardiovascular disease: collaborative analysis of 

58 prospective studies. The Lancet 2011;377:1085–95. (Table 1 

and Figure 2) 

 Gastric cancer 

incidence 

(ICD10: C16) 

Meta-analysis of 7 

studies 

Non-linear dose-response 

meta-analysis for risk of 

cardia gastric cancer. 

Adjusted for age, sex, and 

smoking. 

World Cancer Research Fund International/American Institute 

for Cancer Research. Continuous Update Project report: diet, 

nutrition, physical activity and stomach cancer. AICR/WCRF 

2016. wcrf.org/stomach-cancer-2016 (Table 8 p37). 

Relative risk for 

diabetes 

mellitus 

CHD and 

stroke (ICD10: 

I20 – I25 and 

I60 – I69) 

Meta-analysis of 

102 prospective 

studies 

Stratified by age. Adjusted 

for age, smoking status, 

body-mass index, and 

systolic blood pressure. 

The Emerging Risk Factors Collaboration. Diabetes mellitus, 

fasting blood glucose concentration, and risk of vascular 

disease: a collaborative meta-analysis of 102 prospective 

studies. The Lancet 2010;375:2215–22. (Figure 2) 
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Parameter Outcome Details Comments Source 

 Other 

mortality 
(except CHD 

and stroke) 

DECODE. A 

collaborative 
prospective study 

of 22 cohorts in 

Europe 

Adjusted for BMI, blood 

pressure, smoking and serum 
cholesterol. 

The DECODE Study Group. Is the current definition for diabetes 

relevant to mortality risk from all causes and cardiovascular 
and noncardiovascular diseases? Diabetes Care 2003;26:688–
96. 

Relative risk for 

physical activity 

CHD and 

stroke (ICD10: 

I20 – I25 and 

I60 – I69) 

Meta-analysis of 

18 cohort studies 

for CHD and 8 

cohort studies for 
ischaemic stroke 

Stratified by age and sex. 

Adjusted for measurement 

error, age, sex, smoking, 

blood pressure and 
cholesterol. 

Bull FC, Armstrong TP, Dixon T, Ham S, Neiman A, Pratt M. 

Comparative quantification of health risks. Chapter 10: physical 

inactivity. Geneva: World Health Organisation; 2004. (Tables 

10.19 and 10.20) 

Relative risk for 

fruit and 

vegetable 

consumption 

CHD (ICD10: 

I20 – I25) 

Meta-analysis of 9 

cohort studies 

RR per portion of F&V. 

Multiply-adjusted. 

Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and 

Vegetable Consumption and Risk of Coronary Heart Disease: A 

Meta-Analysis of Cohort Studies. J Nutr 2006;136:2588–93. 

 Stroke (ICD10: 
I60 – I69) 

Meta-analysis of 7 
cohort studies 

RR per portion of F&V. 
Multiply-adjusted. 

Dauchet L, Amouyel P, Dallongeville J. Fruit and vegetable 
consumption and risk of stroke A meta-analysis of cohort 

studies. Neurology 2005;65:1193–7. 

 

 Gastric cancer 

incidence 

(ICD10: C16) 

Reanalysis of the  

Netherlands 

Cohort study 

Stratified by age group. 

Estimates are based on the 

Netherlands Cohort study. 

Adjusted for age, sex, 

smoking, education, stomach 

disorders, and family history 

of stomach cancer. We 

considered a risk only for <2 
portions/day consumption.81 

Lock K, Pomerleau J, Causer L, McKee M. Comparative 

quantification of health risks. Chapter 9: Low fruit and 

vegetable consumption [Internet]. Geneva: World Health 

Organisation; 2004. Available from: 

http://www.who.int/publications/cra/en/ (Table 9.28) 
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Table S8 IMPACTNCD assumptions and limitations 

Population module Immigration is not considered. 

 Social mobility is not considered. 

 
Quintile groups of index of multiple deprivation (QIMD) is a relative marker of (area) deprivation with several versions since 

2003. We considered all version of QIMD identical. 

 We assume all salt that is consumed is excreted from urine and all urine sodium origins from salt consumption. 

 
We assume that the surveys used, are truly representative of the population. For example, the adjustments for selection bias 

in the Health Surveys for England are perfect. 

 
We assumed the decline in 24hour-urine sodium by age that we observed in the 24-hour urine surveys will continue for ages 

older than 64 years, based on the Health Survey for England spot urine sodium. 

Disease module We assume multiplicative risk effects. 

 We assume log-linear dose-response for the continuous risk factors. 

 
We assume that the effects of the risk factors on incidence and mortality are equal and risk factors are not modifying 

survival. 

 
We assume 5-year mean lag time for CVD and 8-year for GCa (except for the cumulative effect of smoking on GCa where lag 

was assumed similar to CVD one). 

 We assume 100% risk reversibility. 

 We assume that trends in disease incidence are attributable only to trends of the relevant modelled risk factors. 

 

Only well accepted associations between upstream and downstream risk factors that have been observed in longitudinal 

studies are considered. However, the magnitudes of the associations are extracted from a series of nationally representative 

cross-sectional surveys (Health Survey for England). 

 For GCa, we assume that survival 10 years after diagnosis equals remission. 

Policy module We assume that the change in salt decline after 2011 is fully attributed to the Responsibility. 

 
We assume that the transition from the FSA led salt reduction strategy to the Responsibility Deal did not alter the equity 

impact of the policy. 
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Table S9 Distributions that were used as inputs for the simulations. Numbers are rounded 

Variable Sex Ages Distribution 

Relative risks of relevant risk factors for CHD 

 

Active smoking68 table 1 model B Men 30 - 44 Log-Normal (mean = ln(5.51), sd = ln(12.3 / 5.51) / 1.96) 

 

  45 - 59 Log-Normal (mean = ln(3.04), sd = ln(3.48 / 3.04) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(1.88), sd = ln(2.08 / 1.88) / 1.96) 

 

  70 - 79 Log-Normal (mean = ln(1.44), sd = ln(1.63 / 1.44) / 1.96) 

 

 Women 30 - 44 Log-Normal (mean = ln(2.26), sd = ln(6.14 / 2.26) / 1.96) 

 

  45 - 59 Log-Normal (mean = ln(3.78), sd = ln(4.62 / 3.78) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(2.53), sd = ln(2.87 / 2.53) / 1.96) 

 

  70 - 79 Log-Normal (mean = ln(1.68), sd = ln(1.93 / 1.68) / 1.96) 

 

  80 - 84 Log-Normal (mean = ln(1.38), sd = ln(1.77 / 1.38) / 1.96) 

 

Ex-Smoking69 web-figure 8 Men 30 - 84 Log-Normal (mean = ln(1.25), sd = ln(1.32 / 1.25) / 1.96) 

 

 Women 30 - 84 Log-Normal (mean = ln(1.2), sd = ln(1.34 / 1.2) / 1.96) 

 

ETS70 table 3 adjusted RR Both 30 - 84 Log-Normal (mean = ln(1.26), sd = ln(1.38 / 1.26) / 1.96) 

 

SBP71 figure 5 Men 30 - 49 Log-Normal (mean = ln(0.5), sd = ln(0.54 / 0.5) / 1.96) 

 

  50 - 59 

 

Log-Normal (mean = ln(0.5), sd = ln(0.52 / 0.5) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(0.55), sd = ln(0.57 / 0.55) / 1.96) 
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Variable Sex Ages Distribution 

  70 - 74 Log-Normal (mean = ln(0.62), sd = ln(0.64 / 0.62) / 1.96) 

 

  80 - 84 Log-Normal (mean = ln(0.69), sd = ln(0.73 / 0.69) / 1.96) 

 

 Women 30 - 49 Log-Normal (mean = ln(0.4), sd = ln(0.49 / 0.4) / 1.96) 

 

  50 - 59 Log-Normal (mean = ln(0.49), sd = ln(0.54 / 0.49) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(0.5), sd = ln(0.61 / 0.5) / 1.96) 

 

  70 - 74 Log-Normal (mean = ln(0.55), sd = ln(0.58 / 0.55) / 1.96) 

 

  80 - 84 Log-Normal (mean = ln(0.64), sd = ln(0.68 / 0.64) / 1.96) 

 

TC72 web-table 6 Both 30 - 49 Log-Normal (mean = ln(0.49), sd = ln(0.52 / 0.49) / 1.96) 

 

  50 - 59 Log-Normal (mean = ln(0.62), sd = ln(0.65 / 0.62) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(0.74), sd = ln(0.76 / 0.74) / 1.96) 

 

  70 - 74 Log-Normal (mean = ln(0.84), sd = ln(0.86 / 0.84) / 1.96) 

 

  80 - 84 Log-Normal (mean = ln(0.87), sd = ln(0.9 / 0.87) / 1.96) 

 

BMI73 table 1 and figure 2 Both 30 - 59 Log-Normal (mean = ln(1.21), sd = ln(1.28 / 1.21) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(1.06), sd = ln(1.12 / 1.06) / 1.96) 

 

Diabetes74 figure 2 Both 40 - 59 Log-Normal (mean = ln(2.51), sd = ln(2.8/ 2.51) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(2.01), sd = ln(2.26/ 2.01) / 1.96) 

 

  70 - 84 Log-Normal (mean = ln(1.78), sd = ln(2.05/ 1.78) / 1.96) 
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Variable Sex Ages Distribution 

PA75 table 10.19 Both 30 - 69 No active days: Log-Normal (mean = ln(1.71), sd = ln(1.85/ 1.71) / 1.96) 

 

1 – 4 active days: Log-Normal (mean = ln(1.44), sd = ln(1.62/ 1.44) / 1.96) 

 

  70 - 79 No active days: Log-Normal (mean = ln(1.5), sd = ln(1.61/ 1.5) / 1.96) 

 

1 – 4 active days: Log-Normal (mean = ln(1.31), sd = ln(1.48/ 1.31) / 1.96) 

 

  80 - 84 No active days: Log-Normal (mean = ln(1.4), sd = ln(1.41/ 1.4) / 1.96) 

 

1 – 4 active days: Log-Normal (mean = ln(1.2), sd = ln(1.35/ 1.2) / 1.96) 

 

F&V76   Log-Normal (mean = ln(0.96), sd = ln(1.0.99/ 0.96) / 1.96) 

 

Relative risks of relevant risk factors for stroke 

 

Active smoking68 table 1 model B Men 30 - 59 Log-Normal (mean = ln(3.12), sd = ln(4.64 / 3.12) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(1.87), sd = ln(2.44 / 1.87) / 1.96) 

 

  70 - 79 Log-Normal (mean = ln(1.39), sd = ln(1.77 / 1.39) / 1.96) 

 Women 30 - 59 Log-Normal (mean = ln(4.61), sd = ln(6.37 / 4.61) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(2.81), sd = ln(3.58 / 2.81) / 1.96) 

 

  70 - 79 Log-Normal (mean = ln(1.95), sd = ln(2.45 / 1.95) / 1.96) 

 

ETS77 figure 1 Both 30 - 84 Log-Normal (mean = ln(1.25), sd = ln(1.38 / 1.25) / 1.96) 

 

SBP71 figure 3 Men 30 - 49 Log-Normal (mean = ln(0.33), sd = ln(0.38 / 0.33) / 1.96) 

 

  50 - 59 Log-Normal (mean = ln(0.34), sd = ln(0.37 / 0.34) / 1.96) 
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Variable Sex Ages Distribution 

  60 - 69 Log-Normal (mean = ln(0.41), sd = ln(0.44 / 0.41) / 1.96) 

 

  70 - 74 Log-Normal (mean = ln(0.48), sd = ln(0.51 / 0.48) / 1.96) 

 

  80 - 84 Log-Normal (mean = ln(0.68), sd = ln(0.75 / 0.68) / 1.96) 

 

 Women 30 - 49 Log-Normal (mean = ln(0.41), sd = ln(0.49 / 0.41) / 1.96) 

 

  50 - 59 Log-Normal (mean = ln(0.45), sd = ln(0.5 / 0.45) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(0.47), sd = ln(0.51 / 0.47) / 1.96) 

 

  70 - 74 Log-Normal (mean = ln(0.53), sd = ln(0.56 / 0.53) / 1.96) 

 

  80 - 84 Log-Normal (mean = ln(0.65), sd = ln(0.71 / 0.65) / 1.96) 

 

TC72 figure 3 Both 40 - 49 Log-Normal (mean = ln(0.87), sd = ln(1 / 0.87) / 1.96) 

 

  50 - 59 Log-Normal (mean = ln(0.91), sd = ln(0.97 / 0.91) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(0.93), sd = ln(0.97 / 0.93) / 1.96) 

 

BMI73 table 1 and figure 2 Both 30 - 59 Log-Normal (mean = ln(1.18), sd = ln(1.26 / 1.18) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(1.08), sd = ln(1.15 / 1.08) / 1.96) 

 

Diabetes74 figure 2 Both 40 - 59 Log-Normal (mean = ln(3.74), sd = ln(4.58/ 3.74) / 1.96) 

 

  60 - 69 Log-Normal (mean = ln(2.06), sd = ln(2.58/ 2.06) / 1.96) 

 

  70 - 84 Log-Normal (mean = ln(1.8), sd = ln(2.27/ 1.8) / 1.96) 

 

PA75 table 10.20 Both 30 - 69 No active days: Log-Normal (mean = ln(1.53), sd = ln(1.79/ 1.53 / 1.96) 
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Variable Sex Ages Distribution 

  70 - 79 No active days: Log-Normal (mean = ln(1.38), sd = ln(1.6/ 1.38) / 1.96) 

 

  80 - 84 No active days: Log-Normal (mean = ln(1.24), sd = ln(1.45/ 1.24) / 1.96) 

 

F&V78   Log-Normal (mean = ln(0.95), sd = ln(0.97/ 0.95) / 1.96) 

 

Relative risks of relevant risk factors for GCa 

Active smoking (duration in years)82 table III Both 30 - 84 Normal (mean = 0.03, sd = 0.002) 

Ex-smoking (years since cessation)82 table IV Both 30 - 84 Log-Normal (mean = ln(0.96), sd = ln(1/ 0.96) / 1.96) 

BMI81 table 8 Both 30 - 84 Normal (mean and sd is a function of BMI) 

F&V83 table 9.28 Both 30 - 69 Log-Normal (mean = ln(0.94), sd = ln(1/ 0.94) / 1.96) 

 Both 70 - 79 Log-Normal (mean = ln(0.96), sd = ln(1/ 0.96) / 1.96) 

 Both 80 - 84 Log-Normal (mean = ln(0.97), sd = ln(1/ 0.97) / 1.96) 

Salt84 Both 30 - 84 Log-Normal (mean = ln(1.08), sd = ln(1.08/ 1) / 1.96) 

Other inputs 

 

CVD lag time Both 30 - 84 1 + Binomial(n = 9, p = (5-1)/9) 

GCa lag time Both 30 - 84 1 + Binomial(n = 9, p = (8-1)/9) 

Optimal salt consumption85 appendix Text S4  Both 30 - 84 PERT(min = 1.5, mode = 3.8, max = 6, shape = 4) 

Stricter salt policy target Both 30 - 84 PERT(min = 5.8, mode = 6, max = 7, shape = 4) 
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