Effects of codon optimization on coagulation factor IX translation and structure:

Implications for protein and gene therapies

Aikaterini Alexaki^a*, Gaya K. Hettiarachchi^a*, John C. Athey^a, Upendra K. Katneni^a, Vijaya Simhadri^a, Nobuko Hamasaki-Katagiri^a, Puja Nanavaty^b, Brian Lin^a, Kazuyo Takeda^a, Darón Freedberg^a, Dougald Monroe^c, Joseph R. McGill^a, Robert Peters^d, Jacob M. Kames^a, David D. Holcomb^a, Ryan C. Hunt^a, Zuben E. Sauna^a, Amy Gelinas^e, Nebojsa Janjic^e, Michael DiCuccio^f, Haim Bar^g, Anton A. Komar^b, and Chava Kimchi-Sarfaty^a

- ^a Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring,
 MD, USA
- ^b Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
- [°] University of North Carolina at Chapel hill, Chapel hill, NC, USA
- ^d Bioverativ, Cambridge, MA, USA
- ^e SomaLogic, Inc., Boulder, CO, USA
- ^f National Center of Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
- ^g Department of Statistics, University of Connecticut, Storrs, CT, USA

Corresponding author:

<u>Chava.kimchi-sarfaty@fda.hhs.gov;</u> Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, USA

*Authors AA and GKH contributed equally

1

Supplemental Figure S1. Comparison of the nucleotide sequences of codonoptimized and wild type *F9* variants. Nucleotide changes between the two sequences are indicated in red, while codon changes are highlighted in yellow.

WT 1	AIGCAGECEGIGAACAIGAICIAIGECGAGAAICACCAGECICAICACAI M Q R V N M I M A E S P G L I T I
CO 51 WT 51	TIGC <mark>CIGCIGGCIACCIGCIGCIGCGAA</mark> GIGI <mark>ACCGIGTICCIGGA</mark> CIGC <mark>CIIITAGGAIAICIACICAGIGCIGAA</mark> IGI <mark>ACAGIITIICIIGA</mark> C L L G Y L L S A E C T V F L D
CO 99 WT 99	CCATGAGAACGCAAATAAGATOCIG <mark>AACAGGCCCAAAAGA</mark> TATAAT <mark>AGIG T</mark> CAT <mark>GAA</mark> AAC <mark>GCCAACAAATT</mark> CIG <mark>AATCGGCCAAAGAGG</mark> TATAAT <mark>TCAG</mark> H E N A N K I L N R P K R Y N S G
CO 149 WT 149	GGAAGCTGGAGGAAITIG <mark>GIGCAGGGG</mark> AAC <mark>CTG</mark> GAGAGAAA <mark>IGG</mark> AIG <mark>GAG GTAAAIIGGAAGAC</mark> III <mark>GIICAAGGG</mark> AAC <mark>CII</mark> GAGAGAA <mark>IGI</mark> AIG <mark>GAA</mark> K L E E F V Q G N L E R E C M E
CO 199 WT 199	GAAAAGTGT <mark>AGCTTCGAGGAAGCCCGCGAGGGG</mark> TTTGAA <mark>AATACAGAGCG</mark> GAAAAGTGT <mark>AGTTTTGAA</mark> GAA <mark>GCACGAGAAGTI</mark> TTTGAA <mark>AACACTGAAAG</mark> E K C S F E E A R E V F E N T E R
CO 249 WT 249	AACCACAGAGTTCTGGAAGCAGTATGTGGACGGGATCAG <mark>TGC</mark> GAG <mark>AGCA AACAACTGAATTT</mark> TGGAAGCAGTAT <mark>GTTGATGGA</mark> GATCAG <mark>TGT</mark> GAG <mark>TCCA</mark> T T E F W K Q Y V D G D Q C E S N
CO 299 WT 299	ACCCCIGT <mark>CTS</mark> AATGGC <mark>GGA</mark> AGTIGC <mark>AAAGACGATATCAACTCATAC</mark> GAA ATCCAIGT <mark>TTA</mark> AATGGC <mark>GGC</mark> AGTIGC <mark>AAGGATGACATTAATTCCTAT</mark> GAA P C L N G G S C K D D I N S Y E
CO 349 WT 349	TGCTGGTGTCCTTTCGGGTTTGAAGGCAAAAATTGCGAGCTGGACGTGAC TGTTGGTCCCCTTTGGATTTGAAGGAAACAACTGTGAATTAGATGTAAC C W C P F G F E G K N C E L D V T
CO 399 WT 399	ATGTAACATTAAGAAT <mark>GGACGG</mark> TGCGAGCAGTTTTGTAAA <mark>AACTCTGCC</mark> G ATGTAACATTAAGAAT <mark>GGCAGA</mark> TGCGAGCAGTTTTGTAAA <mark>AATAGTGCT</mark> G C N I K N G R C E Q F C K N S A D
CO 449 WT 449	AT <mark>AAT</mark> AAGGTG <mark>GTG</mark> TGCA <mark>GC</mark> TGTACT <mark>GAA</mark> GGATAT <mark>CGCCTGGCTGAG</mark> AAC AT <mark>AAC</mark> AAGGTG <mark>GTT</mark> TGC <mark>TCC</mark> TGTACT <mark>GAG</mark> GGATAT <mark>CGACTIGCAGAA</mark> AAC N K V V C S C T E G Y R L A E N
CO 499 WT 499	CAGAAGTCC <mark>TGC</mark> GAACCAGCAGTG <mark>CCCTTCCCT</mark> TGT <mark>GGGAGGGTGAGCGT</mark> CAGAAGTCC <mark>TGT</mark> GGAACCAGCAGTG <mark>CCATTICCA</mark> TGT <mark>GGAAGAGTTTCTGT</mark> Q K S C E P A V P F P C G R V S V
CO 549 WT 549	CTCCCAGACTTCAARACTGACCAGAGAGAGAGAGAGAGAGAGTGTTTCCCGACGTGG TTCACAAACTTCTAAGCTCACCCGGGCTGAGACTGTTTTCCCGATGTGG S Q T S K L T R A E T V F P D V D
CO 599 WT 599	ATTACGTCARCAGCACT <mark>GAGGCC</mark> GAAACC <mark>ATCCTGGACAACATTACTCAG</mark> ACTATGTAAATTCTCACTGAAGCTGAAACC <mark>ATTITTGGAT</mark> AACATCACTCAA Y V N S T E A E T I L D N I T Q
CO 649 WT 649	TCTACC <mark>CAGAGTITC</mark> AATGAC <mark>ITI</mark> ACTCGG <mark>GTGGTCGGGGGCGAG</mark> GAT <mark>GC</mark> AGCACC <mark>CAATCAITI</mark> AATGAC <mark>ITC</mark> ACTCGG <mark>GITGITGGIGGAGAA</mark> GAT <mark>GC</mark> S I Q S F N D F I R V V G G E D A
~~	

WT 699	CAA	ACCA	GGI	CAA	TT	ccci	TTG	GCAG	GT	TGTI	TT	GAA	r GG	TAA	AGTI	GAT	G
WT 699	CAA	ACCA	GGI	CAA	TT	ccci	TTG	GCAG	GT	TGTI	TT	GAA	r GG	TAA	AGTI	GAT	G
CO 699	TAA	ACCA	GGC	CAG	TT	CCC	CTG	GCAG	GT	GGT	CCT	GAA	CGG.	AAA	GGTG	GAT	G

CO WT	749 749	CA <mark>TTITGO</mark> GGA <mark>GGE</mark> TCTATC <mark>GTE</mark> AATGAGAAAIGGATT <mark>GTCACCGCCGCT</mark> CA <mark>TTCIGT</mark> GGA <mark>GGC</mark> ICTATC <mark>GTI</mark> AAT <mark>GAA</mark> AAATGGATT <mark>GTAACTGCTGCC</mark> F C G G S I V N E K W I V T A A	798 798
CO WT	799 799	CAC <mark>TGCGTGGAAACCGGAGTCAAGATC</mark> ACA <mark>GTG</mark> GTC <mark>GCT</mark> GGG <mark>GAGCACAA</mark> CAC <mark>TGIGTT</mark> GAA <mark>ACTGGIGTTAAAATT</mark> ACA <mark>GTT</mark> GTC <mark>GCA</mark> GGT GAACATTA H C V E T G V K I T V V A G E H N	848 848
CO WT	849 849	CATTGAG <mark>GAR</mark> ACAGAACAT <mark>ACT</mark> SAG <mark>CAGAAGCGG</mark> AATGTG <mark>ATCCGCATCA</mark> TATTGAG <mark>GAG</mark> ACAGAACAT <mark>ACA</mark> SAG <mark>CAAAAGCGA</mark> AATGTG <mark>ATTCGAATTA</mark> I E E T E H T E Q K R N V I R I I	898 898
CO WT	899 899	TTCCTCAC <mark>CAT</mark> AACTACAAATGCA <mark>GCCATCAACAAATATAAT</mark> CATGACATT TTCCTCAC <mark>CAC</mark> AACTACAATGCA <mark>GCTATTAATAAGTACAAC</mark> CATGACATT P H H N Y N A A I N K Y N H D I	948 948
CO WT	949 949	GCC <mark>CTG</mark> CTGGAACTG <mark>GATGAACCCTCTG</mark> GTG <mark>CTG</mark> AACAGCTAC <mark>GTCACTCC</mark> GCC <mark>CTT</mark> CTGGAACTG <mark>GACGAACCCTTA</mark> GTG <mark>CTA</mark> AACAGCTAC <mark>GTTACACC</mark> A L L E L D E P L V L N S Y V T P	998 998
CO WT	999 999	AATCIGCATIGCIGAC <mark>AAAGAGIAIACCAAI</mark> AICIIC <mark>CIGAAG</mark> IIIGGA <mark>I TAII</mark> IGCAIIGCIGAC <mark>AAGGAIIACACGAAC</mark> AICIIC <mark>CICAAR</mark> IIIGGA <mark>I</mark> I C I A D K E Y T N I F L K F G S	1048 1048
CO WT	1049 1049	CAGGGTACGTCAGGGGCAGGGCAGGGGCAGGGGC-GC CIGGCTATGTAAGTGCCCGGGGAAGAGTCTTCCACAAAGGCA-GATCAGC G Y V S G W G R V F H K G R S A	1097 1097
CO WT	1098 1098	CCTGGTGCTCCAGTATCTGCGAGTGCCTCTGGTCGATCGA	1147 1147
CO WT	1148 1148	TGAGGICI <mark>ACC</mark> AAG <mark>ITIACA</mark> AIC <mark>IAC</mark> AACAACAIGIIC <mark>IGO</mark> GCI <mark>GGGIII TICGA</mark> ICI <mark>ACA</mark> AAG <mark>IICACC</mark> AIC <mark>IAI</mark> AACAACAIGIIC <mark>IGIGCIGGCIIC</mark> R S T K F T I Y N N M F C A G F	1197 1197
CO WT	1198 1198	CACGAGGGAGGACGAGACTCCIGICAGGGCGAITCIGGGGGCCCACAI <mark>GI CAIGAA</mark> GGA <mark>GGIAGAATICA</mark> IGICAAGGAGAIAGIGGGGACCCCAI <mark>GI</mark> H E G G R D S C Q G D S G G P H V	1247 1247
CO WT	1248 1248	GACAGAGGTCGAAGGGACCAGGTCCTGACTGGCATCATTTCCTGGGGAG TACTGAAGTGGAAGGGACCAGITICCTTAACTGGAATTATTAGCTGGGGTG T E V E G T S F L T G I I S W G E	1297 1297
CO WT	1298 1298	AGGAATGTGCAATG <mark>AAGGGAAAATACGGGATCTAC</mark> ACC <mark>AAAGTGAGCCGC</mark> AAGACTGTGCCAATG <mark>AAAGGC</mark> AAA <mark>TATGGAATATAT</mark> ACC <mark>AAGGTATOCCGG</mark> E C A M K G K Y G I Y T K V S R	1347 1347
CO WT	1348 1348	TAT <mark>GTG</mark> AACTGG <mark>ATG</mark> AAGGAAAAA <mark>ACCAAACTGACC</mark> 1383 TAT <mark>GTC</mark> AACTGG <mark>ATT</mark> AAGGAAAAAA <mark>ACCAAAGGTCACT</mark> 1383	

Supplemental Figure S2. In silico analyses of mRNA folding and stability for the WT and CO F9 coding sequence. Predicted MFE values and structures are shown for 37°C based on NUPACK algorithm (www.nupack.org)

Supplemental Figure S3. FIX expression is higher in HEK293T cells stably transfected with wild-type vs. codon-optimized *F9*. Cell supernatant (concentrated medium) and lysate was collected and analyzed by immunoblotting. Membranes were stained with anti-V5 or anti-GAPDH. Multiple exposures of film are shown to demonstrate FIX (top image) and GAPDH (bottom image) at appropriate contrast. In the medium lanes, 5 µg of protein were loaded per lane. In the lysate lanes, 10 µg of protein were loaded per lane. Portions of these images were used to create Figure 2b.

Supplemental Figure S4. RPF densities along the WT and CO *F*9 mRNA for three replicates show reproducibility of results.

Codon position

Supplemental Figure S5. *GAPDH* is translated with very similar kinetics in the wild type and codon-optimized expressing cell lines. RPF densities along the *GAPDH* mRNA are shown as average of 3 experiments and in each individual ribosome profiling experiment.

Supplemental Figure S6. ACTB is translated with very similar kinetics in the wild type and codon-optimized expressing cell lines. RPF densities along the ACTB mRNA are shown as average of 3 experiments and in each individual ribosome profiling experiment.

Supplemental Figure S7. Multiple sets of controls show consistency in ribosome profiling experiments and analysis (a) Transcript and RPF abundance for *F9*, *GAPDH* and *ACTB* in the WT and CO FIX expressing cell lines. The average of 3 experiments was plotted. (b) RPF size distribution of all reads in the WT and CO FIX expressing cell lines. (c) *F9* RPF size distribution in the WT and CO FIX expressing cell lines. (d) RPF sizes 20-22 and 27-29nt mapped 5'UTR, CDS and 3'UTR regions, (c) triplet periodicity of RPF fragment sizes 20-22 and 27-29 nucleotides, the average of 3 experiments was plotted, s.e.m. are shown.

d

FIX variant/Gene

Supplemental Figure S8. Reproducibility of ribosome profiling experiments. Pearson's correlation for (a) RPFs and (b) total mRNA between two representative experiments.

Supplemental Table 1. In a multiple linear regression model, the ribosome occupancy of adjacent codons is the only consistently significant predictor of ribosome occupancy of a codon.

	Estimate	Std. Error	t-value	Pr(>ltl)	Significance
WT <i>F</i> 9					
(Intercept)	-1.05664	0.50251	-2.103	0.036	*
RSCU Genome	0.03087	0.89716	0.034	0.9726	
RSCU HEK SRR	0.55596	1.06783	0.521	0.6028	
RSCU HEK ERX	-0.44406	1.23987	-0.358	0.7204	
RSCPU Genome	-0.49032	0.30636	-1.6	0.1101	
RSCPU HEK SRR	-0.39351	0.40322	-0.976	0.3296	
RSCPU HEK ERX	0.73974	0.4682	1.58	0.1148	
tRNA	-4.70107	3.00585	-1.564	0.1185	
MFE 151	-0.02097	0.0105	-1.997	0.0464	*
Pair-prob	0.22075	0.16498	1.338	0.1815	
Lag3	0.05156	0.04475	1.152	0.2498	
Lag2	0.03957	0.04945	0.8	0.4239	
Lag1	0.47339	0.04486	10.554	<2e-16	***
CO F9	0111000	010 1 100			I
(Intercept)	-0.428561	0.470664	-0.911	0.362978	
RSCU Genome	0.987203	0.686076	1.439	0.150808	
RSCU HEK SRR	-0.510807	0.884671	-0.577	0.563933	
RSCU HEK ERX	-0.562106	1.060021	-0.53	0.596157	
RSCPU Genome	-0.100063	0.230617	-0.434	0.664555	
RSCPU HEK SRR	0.012383	0.335691	0.037	0.970589	
RSCPU HEK ERX	0.119879	0.396397	0.302	0.762458	
tRNA	-3.330872	2.315622	-1.438	0.150943	
MFE 151	-0.007955	0.008367	-0.951	0.342211	
Pair-prob	-0.130687	0.200669	-0.651	0.515183	
	-0.02156	0.045746	-0.471	0.637641	
	0.177367	0.048099	3.688	0.000252	***
Lag1	0.390892	0.045033	8.68	<2e-16	***
ACTB					
(Intercept)	-1.404031	0.545822	-2.572	0.0105	*
RSCU Genome	-0.310705	0.916587	-0.339	0.7348	
RSCU HEK SRR	-0.796966	1.242992	-0.641	0.5218	
RSCU_HEK_ERX	1.025136	1.514433	0.677	0.4989	
RSCPU_Genome	-0.100309	0.265983	-0.377	0.7063	
RSCPU_HEK_SRR	-0.075492	0.43977	-0.172	0.8638	
RSPCU_HEK_ERX	0.273948	0.478317	0.573	0.5672	
tRNA	1.554097	2.632387	0.59	0.5553	
MFE_151	-0.008856	0.007942	-1.115	0.2655	
Pair-prob	0.642673	0.26481	2.427	0.0157	*
Lag3	0.107027	0.052224	2.049	0.0411	*
Lag2	0.05047	0.057602	0.876	0.3815	
Lag1	0.442478	0.052295	8.461	6.64E-16	***
GAPDH					
(Intercept)	-0.149095	0.462448	-0.322	0.74736	
RSCU_Genome	1.409989	0.828001	1.703	0.08955	
RSCU_HEK_SRR	-1.172997	1.265043	-0.927	0.3545	
RSCU_HEK_ERX	-0.093217	1.421276	-0.066	0.94775	
RSCPU_Genome	-0.652895	0.287641	-2.27	0.02388	*
RSCPU_HEK_SRR	-0.4377	0.438042	-0.999	0.31844	
RSCPU_HEK_ERX	1.113346	0.497467	2.238	0.0259	*
tRNA	-2.032467	2.679425	-0.759	0.44868	
MFE_151	0.008537	0.006816	1.252	0.2113	
Pair-prob	0.061488	0.22621	0.272	0.78594	
Lag3	0.031727	0.05551	0.572	0.56802	
Lag2	0.179942	0.058943	3.053	0.00246	**
Lag1	0.371884	0.056404	6.593	1.76E-10	***