Supporting Information

For

Rational design of [¹³C,D₁₄]*tert*-butylbenzene as a scaffold structure for designing long-lived hyperpolarized ¹³C probes

Yuki Imakura^a, Hiroshi Nonaka^{*a}, Yoichi Takakusagi^b,

Kazuhiro Ichikawa^{bc}, Nesmine R. Maptue^d, Alexander M. Funk^d, Chalermchai Khemtong^{de} and Shinsuke Sando^{*a}

 ^aDepartment of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
^bIncubation Center for Advanced Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
^cInnovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
^dAdvanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.
^eDepartment of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.

CONTENTS:

- 1. Synthesis
- 2. T_1 measurement
- **3.** Analysis of *T*₁ relaxation mechanisms
- 4. DNP–NMR measurement
- 5. Reference

1. Synthesis

General. Reagents and solvents were purchased from standard suppliers and used without further purification. NMR spectra were measured using a JEOL ECS400 spectrometer. Acetone-d₆ in chloroform (2.15 ppm) or acetone-d₆ in methanol (2.15 ppm) was used as the internal standard for ²H NMR. Chloroform-d₁ (77.0 ppm), methanol-d₄ (49.0 ppm), or methanol in D₂O (49.5 ppm) was used as the internal standard for ¹³C NMR. Mass spectra (MS) were measured using a Bruker micrOTOF II (ESI) and a SHIMADZU GCMS-QP2010 (EI).

Scheme S1. Synthetic scheme of [¹³C,D₁₃]sodium *tert*-butylbenzenesulfonate (S1D).

Characterization of [¹³C]*tert*-butylbenzene (1).

¹H NMR (CD₃OD, 400 MHz) $\Box \delta$ = 1.21 (9H, d, ²*J*_{CH} = 3.6 Hz), 7.02 (1H, dd, 7.4 Hz), 7.16 (2H, dd, 7.6 Hz), 7.27-7.30 (2H, m); ¹³C NMR (CD₃OD, 100 MHz) $\Box \delta$ = 30.8 (¹*J*_{CC} = 35 Hz), 35.4, 126.2, 126.4, 129.0, 144.9.

Synthesis of [¹³C,D₅]benzoic acid.

Under a nitrogen atmosphere, [D₅]bromobenzene (1.85 mL, 17.5 mmol) was added dropwise to a solution of 0.96 M iPrMgCl in THF (20 mL, 19.2 mmol) at -20 °C. The mixture was stirred at room temperature for 18.5 h. In another flask, concd. H₂SO₄ (10 mL) was added dropwise to [¹³C]BaCO₃ (5.0 g, 25.2 mmol) on ice under a nitrogen atmosphere. The liberated [¹³C]CO₂ was collected in a rubber baloon and bubbled into a stirred bromobenzene/Grignard mixture at -5 °C under a nitrogen atmosphere. The reaction was then quenched with water. After removing THF solvent, 2N aqueous HCl and CHCl₃ were added to the crude residue. The mixture was extracted with CHCl₃ three times. The combined organic phase was dried over sodium sulfate and evaporated *in vacuo* to give [¹³C,D₅]benzoic acid as a white solid (1214 mg, 54%) Further purification was not performed in this step: ²H NMR (CHCl₃, 61 MHz) $\Box \delta = 7.5$ (3 × ²H), 8.2 (2 × ²H); ¹³C NMR (CD₃OD, 100 MHz) $\Box \delta = 128.9$ (¹*J*_{CD} = 25 Hz), 130.3 (¹*J*_{CD} = 25 Hz), 131.6 (d, ¹*J*_{CC} = 72 Hz), 133.5 (¹*J*_{CD} = 24 Hz), 169.9; HRMS(ESI): m/z calc. for C₆¹³CHD₅O₂ [M-H]⁻ = 127.0642, found = 127.0637.

 $SOCl_2$ (5 mL) was added dropwise to [¹³C,D₅]benzoic acid (513 mg, 4 mmol) on ice. The mixture was stirred at room temperature for 5 h. After removing SOCl₂ in vacuo on ice, the resulting oil was co-evaporated with dry Et₂O and diluted with dry Et₂O (12 mL) under a nitrogen atmosphere. The mixture was added dropwise to a solution of 1 M [D₃]methyl magnesium iodide in Et₂O (12 mL, 12 mmol) diluted with dry Et₂O (12 mL) at -40 °C under a nitrogen atmosphere. The mixture was stirred at room temperature for 16.5 h under a nitrogen atmosphere. Aqueous NH₄Cl was added dropwise to the mixture for quenching reaction and stirred for 10 min. The mixture was extracted with Et₂O five times. The combined organic phase was washed with brine and evaporated. After CH₂Cl₂ was added to the resulting oil, the mixture was dried over sodium sulfate and evaporated to give [¹³C,D₁₁]2-phenyl-2-propanol as a brown oil including impurity (531 mg). Further purification was not performed in this step: ²H NMR (MeOH, 61 MHz) $\Box \delta = 1.6$ (6 × ²H), 7.3 (1 × ²H), 7.5 (2 × ²H), 7.7 (2 × ²H); ¹³C NMR (CD₃OD, 100 MHz) $\Box \delta =$ 30.5-31.7 (m), 72.5, 125.0 (${}^{1}J_{CD} = 24$ Hz), 126.7 (${}^{1}J_{CD} = 24$ Hz), 128.4 (${}^{1}J_{CD} = 24$ Hz), 150.3 (d, ${}^{1}J_{CC} = 48$ Hz). MS(EI): m/z calc. for C₈ 13 CHD₁₁O [M-CD₃]⁺ = 130.1, found = 130.1.

Under a nitrogen atmosphere, 1 M [D₃]methyl magnesium iodide in Et₂O (11.2 mL, 11.2 mmol) was added to a flask. After removing Et₂O *in vacuo*, a residue was co-evaporated with dry CH₂Cl₂ while slightly warming to complete the removal of ether. Dry CH₂Cl₂ (8.4 mL) was added to the resulting residue. In another flask, SOCl₂ (880 μ L, 11.2 mmol) was added dropwise to a solution of [¹³C,D₁₁]2-phenyl-2-propanol (531 mg including impurity from the former step) in dry CH₂Cl₂ (40 mL) on ice. The mixture was stirred on ice for 30 min. After removing SOCl₂ and CH₂Cl₂ *in vacuo* on ice, the resulting oil was co-evaporated with dry CH₂Cl₂ and diluted with dry CH₂Cl₂ (8.4 mL) under a nitrogen atmosphere. The mixture was added dropwise to a Grignard reagent in dry CH₂Cl₂ under a

nitrogen atmosphere on ice. The mixture was stirred at room temperature for 2 days under a nitrogen atmosphere. Ice was added into the mixture for quenching reaction. The mixture was extracted with CH₂Cl₂ three times. The combined organic phase was washed with aqueous NH₄Cl and brine. The organic phase was dried over sodium sulfate and the solvent was evaporated carefully not to loss the volatile product. The resulting oil was purified using preparative layer chromatography (eluent: hexane) to give [¹³C,D₁₄]*tert*-butylbenzene (**1D**) as a clear oil (151 mg, 25% in 2 steps): ²H NMR (MeOH, 61 MHz) $\Box \delta = 1.3$ (9 × ²H), 7.2 (1 × ²H), 7.3 (2 × ²H), 7.5 (2 × ²H); ¹³C NMR (CD₃OD, 100 MHz) $\Box \delta = 30.1$ -31.2 (m), 34.7, 125.7 (¹*J*_{CD} = 23 Hz), 125.8 (¹*J*_{CD} = 24 Hz), 128.5 (¹*J*_{CD} = 24 Hz), 151.9 (d, ¹*J*_{CC} = 43 Hz); MS(EI): m/z calc. for C₉¹³CD₁₄ [M]⁺ = 149.2, found = 149.2.

Synthesis of [¹³C,D₁₃]sodium *tert*-butylbenzenesulfonate (S1D).

Fuming H₂SO₄ (96 µL, 2 mmol) was added dropwise to [¹³C,D₁₄]*tert*-butylbenzene (**1D**; 149 mg, 1 mmol). The mixture was shaked at room temperature for 2 h. Water (1 mL) was added to the mixture for quenching reaction. The mixture was neutralized with 1N aqueous NaOH. After removing water *in vacuo*, the resulting white solid was extracted with dry EtOH. In this step, the first extract was discarded because it included *meta*-substituted product, and the combined extacts after second extract were evaporated. Water was added to the resulting residue and then filtered to remove insoluble material. The solution was evaporated *in vacuo* to give [¹³C,D₁₃]sodium *tert*-butylbenzenesulfonate (**S1D**) as a white solid (149 mg, 59%): ²H NMR (MeOH, 61 MHz) $\Box \delta = 1.3$ (9 × ²H), 7.5 (2 × ²H), 7.8 (2 × ²H); ¹³C NMR (D₂O, 100 MHz) $\Box \delta = 29.3$ -30.4 (m), 34.3, 125.3-126.6 (m), 139.9, 156.0 (d, ¹*J*_{CC} = 43 Hz); HRMS(ESI): m/z calc. for C₉¹³CD₁₃NaO₃S [M-Na]⁻ = 227.1440, found = 227.1449.

2. T_1 measurement

All T_1 measurements were performed under thermal equilibriated conditions. The T_1 measurements were conducted using a JEOL JNM-ECS 400 (9.4 T), a JEOL JNM-ECA 500 (11.7 T), and JEOL JNM-ECA 600 (14.1 T) by inversion recovery method.

3. Analysis of *T*¹ relaxation mechanisms

The extent of contribution of each relaxation mechanism is represented as shown in eq 1.

$$\frac{1}{T_1} = \frac{1}{T_1^{CH-DD}} + \frac{1}{T_1^{CSA}} + \frac{1}{T_1^{O2}} + \frac{1}{T_1^{res}} \quad (eq \ 1)$$

(i) $T_1^{\text{CH-DD}}$ calculation by measurements of T_1 and NOE $(1+\eta)^{1-6}$

 $^{13}\text{C}^{-1}\text{H}$ DD contribution ($T_1^{\text{CH}-\text{DD}}$) is calculated according to eq 2 by using nuclear Overhauser enhancement (NOE, 1+ η) parameter in ^{13}C NMR experiment on irradiation at ¹H frequency.

$$T_1^{CH-DD} = T_1 \frac{1.988}{h} \quad (eq \ 2)$$

The NOE (1+ η) was measured on a JEOL JNM-ECS 400 (9.4 T, 25 °C) (Table S1). After measuring the ¹³C NMR spectra with or without NOE, the value η was determined using the following equation:

 $1+\eta = ({}^{13}C \text{ Integral with NOE})/({}^{13}C \text{ Integral without NOE})$

Table S1. ¹³C spin-lattice relaxation times (T_1) and NOE $(1+\eta)$ of **1** and **1D**.^[a]

	<i>T</i> ₁ [s]	NOE(1 + η) for ¹³ C	$T_1^{\rm DD} ({}^{13}{\rm C}{}^{-1}{\rm H}) [{\rm s}]$
1	103 ± 1	2.70 ± 0.07	120 ± 5
1D	541 ± 18	ca. 1.0 ^[b]	_[b]

[a] **1** and **1D** were dissolved in degassed toluene-d₈. T_1 values were determined by using the inversion recovery method at 25 °C (toluene-d₈, 9.4 T). [b] ¹³C–¹H DD contribution of **1D** was too small to be determined.

(ii) T_1^{CSA} calculation by T_1 measurements at various magnetic fields^{7,8}

Chemical shift anisotropy (CSA) relaxation is dependent on external magnetic field; $1/T_1^{\text{CSA}}$ is proportional to the square of the magnetic field (B_0^2) . To investigate CSA contribution (T_1^{CSA}) , T_1 values of **1** and **1D** at various magnetic fields were measured accordig to previously reported methods.^{7,8} T_1^{CSA} of **1** was estimated to be 1695 s (Table S2; degassed, 9.4 T, 25 °C). T_1^{CSA} of **1D** could not be estimated by the field dependent studies, because T_1^{SC} derived from ²H of **1D** would be also affected by magnetic field strength.

(iii) T_1^{02} calculation by T_1 measurements under non-degassed/degassed conditions^{1,4}

Under the assumption that other relaxation mechanisms are not affected by the presence or absence of oxygen, T_1^{02} of **1** and **1D** was estimated to be 180 and 175 s, respectively using eq 3 (9.4 T, 25 °C) (Table S2).

$$\frac{1}{T_1^{O2}} = \frac{1}{T_1 \ (non-degassed)} + \frac{1}{T_1 \ (degassed)} \ (eq \ 3)$$

(iv) T_1^{res} calculation¹

 T_1^{res} indicates all other residual contributions including SR and SC. T_1^{res} was calculated from eq 1.¹

Table S2. ¹³C spin-lattice relaxation parameters in non-degassed toluene-d₈ at 25 °C, 9.4 T.

	T_1	$T_1^{\rm DD}$	T_1^{CSA}	$T_1^{\rm res}$	T_1^{O2}
1	65	120	1695	1200	180
1 D	132	_[a]	541 ^[b]		175

[a] ¹³C–¹H DD contribution of **1D** was too small to be determined. [b] Sum of T_1^{CSA} and T_1^{res} .

4. DNP–NMR measurement

A 8 μ L solution of Probe **S1D** (0.5 M) and OX063 trityl radical (Oxford Instruments, UK) in 50:50 glycerol-water was polarized at ~1.2 K for 3 h in a HyperSense DNP polarizer (Oxford Instruments, UK). A solution of hyperpolarized **S1D** was obtained by rapidly dissolving the frozen sample with superheated water (4 mL) and subsequently transferred into a 10-mm NMR tube inside a 400 NMR spectrometer (Agilent Technologies, USA). ¹³C NMR acquisition was initiated 20 s after the initial dissolution to allow for complete transfer and mixing of the solution. A series of ¹³C NMR spectra were acquired with a 5-degree pulse every 5 s at room temperature (~22 °C). ¹³C signal intensity at each time point was normalized to the signal intensity at the first time point. Signal enhancements were calculated according to the previously described methods.⁹

5. Reference

- S1. G. C. Levy, Acc. Chem. Res. 1973, 6, 161.
- S2. E. Breitmaier, K. H. Spohn, S. Berger, Angew. Chem. Int. Ed. 1975, 14, 144.
- S3. K. F. Kuhlmann, D. M. Grant, J. Am. Chem. Soc. 1968, 90, 7355.
- S4. G. C. Levy, J. D. Cargioli, F. A. L. Anet, J. Am. Chem. Soc. 1973, 95, 1527.
- S5. D. D.Giannini, I. M. Armitage, H. Pearson, D. M. Grant, J. D. Roberts, J. Am. Chem. Soc. 1975, 97, 3416.
- S6. D. Gust, H. Pearson, I. M. Armitage, J. D. Roberts, J. Am. Chem. Soc. 1976, 98, 2723.
- S7. T. D. Alger, W. D. Jr. Hamill, R. J. Pugmire, D. M. Grant, G. D. Silcox, M. Solum, J. Phys. Chem. 1980, 84, 632.
- S8. T. C. Wong, T. T. Ang, F. S. Guziec, C. A. Moustakis, J. Magn. Reson. 1984, 57, 463.
- S9. Jiang et al., Sci. Rep. 2015, 5, 9104.