Diversity of PBI-DdeI satellite DNA in snakes correlates with rapid independent
evolution and different functional roles
Running title: Diversity of satellite DNA in snakes
Ratchaphol Thongchum^{1,2,3+}, Worapong Singchat^{1,3+}, Nararat Laopichienpong^{1,3}, Panupong
Tawichasri^{1,3}, Ekaphan Kraichak⁴, Ornjira Prakhongcheep¹, Siwapech Sillapaprayoon^{1,3},
Narongrit Muangmai⁵, Sudarath Baicharoen⁶, Sunutcha Suntrarachun⁷, Lawan Chanhome⁷,

- 9 Surin Peyachoknagul¹, and Kornsorn Srikulnath^{1,3,8,9,10*}
- 10 +These authors are joint first authors.
- 11
- ¹Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of
- 13 Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- ¹⁴ ²Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University,
- 15 Bangkok 10903, Thailand
- ³Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of
- 17 Forestry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- ⁴Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- ⁵Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900,
- 20 Thailand
- ⁶Bureau of Conservation and Research, Zoological Park Organization under the Royal
 Patronage of His Majesty the King, Bangkok 10300, Thailand
- ⁷Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok 10330, Thailand
- ⁸Center for Advanced Studies in Tropical Natural Resources, National Research University-
- 25 Kasetsart University, Kasetsart University, Bangkok 10900, Thailand (CASTNAR, NRU-KU,
- 26 Thailand)
- ⁹Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok
- 28 10900, Thailand
- ¹⁰Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University
 (OmiKU), Bangkok 10900, Thailand
- 31 *Corresponding author: kornsorn.s@ku.ac.th
- 32
- 33

- 34 Supplementary Information
- 35 **Supplementary Table S1** Summary of repeat units and subfamilies in each species.
- Supplementary Table S2 Evolutionary rate of PBI-DdeI satellite DNA in the snake species
 studied.
- Supplementary Table S3 Pairwise comparison of PBI-DdeI satellite DNA sequence
 divergences among fifteen snake species. Species abbreviations were retrieved from
 Supplementary Table S8.
- 41 Supplementary Table S4 AMOVA analysis of PBI-DdeI satellite DNA family within and
 42 between species.
- 43 Supplementary Table S5 Summary of nucleotide diversity and haplotype diversity in each
 44 PBI-DdeI satellite DNA subfamily.
- 45 Supplementary Table S6 AMOVA analysis of PBI-DdeI satellite DNA families within and
 46 between subfamilies.
- 47 **Supplementary Table S7** Summary of PBI-DdeI satellite DNA copy number estimates for the
- 48 snake species studied.
- 49 **Supplementary Table S8** Summary of the snake species studied.
- 50 Supplementary Fig. S1 Dot-blot hybridization patterns of PBI-DdeI satellite DNA.
- 51 Hybridization membranes probed with PBI-DdeI derived from *Python bivittatus* (a) and
- representation of their genomic DNA distribution (b). Genomic DNA of 40 snake species were
- used (Supplementary Table S8). Cloned PBI-DdeIs were used as a control.
- 54 Supplementary Fig. S2 Agarose gel electrophoresis of PCR products of PBI-DdeI satellite
- 55 DNA in five snake species (Python bivittatus, Epicrates maurus, Naja siamensis, Xenopeltis
- 56 *unicolor*, and *Ahaetulla prasina*). Molecular size of DNA is indicated in the left lane using VC
- 57 DNA ladder mix (Vivantis Technologies Sdn Bhd, Selangor Darul Ehsan, Malaysia).
- **Supplementary Fig. S3** Multiple alignment of all PBI-DdeI satellite DNA (satDNA) sequences from the consensus sequences of each species. PBI-DdeI satDNA sequences of fifteen species were used. SF indicates satDNA subfamily. Nucleotide sites occupied by a nucleotide in the consensus sequence are indicated by dots. Nucleotide sites containing different nucleotides are shown as the respective nucleotide observed. The hyphen indicates the absence of a nucleotide at that position.
- Supplementary Fig. S4 Secondary structures of PBI-DdeI satellite DNA (satDNA) sequence
 of fifteen snake species formed using RNAfold web server (http://rna.tbi.univie.ac.at/cgibin/RNAWebSuite/RNAfold.cgi). The PBI-DdeI satDNA sequences of fifteen species were

67 used. SF indicates satDNA subfamily. Species abbreviations were retrieved from68 Supplementary Table S8.

69 Supplementary Fig. S5 Multiple alignment of all PBI-DdeI satellite DNA (satDNA) 70 sequences from the consensus sequences of each satDNA subfamily. SF indicates satDNA 71 subfamily. Nucleotide sites occupied by nucleotides in the consensus sequence are indicated 72 by dots. Nucleotide sites containing different nucleotides are shown as the respective 73 nucleotide observed. A hyphen indicates the absence of a nucleotide at that position.

- 74 Supplementary Fig. S6 Statistical parsimony network of PBI-DdeI satellite DNA subfamily
- 75 I, constructed from all sequence units of *Xenopeltis unicolor* (XUN), *Python bivittatus* (PBI),
- 76 Naja kaouthia (NKA), Naja siamensis (NSI), Epicrates maurus (EMA), and Ahaetulla prasina
- 77 (APR).

78 Supplementary Fig. S7 Statistical parsimony network of PBI-DdeI satellite DNA subfamily

79 II, constructed from all sequence units of *Epicrates maurus* (EMA), *Eunectes murinus* (EMU),

- 80 Ahaetulla prasina (APR), Boa constrictor imperator (BCO), Crotalus oreganus helleri
- 81 (CORE), and *Leioheterodon madagascariensis* (LMA).
- 82 Supplementary Fig. S8 Statistical parsimony network of PBI-DdeI satellite DNA subfamily
- 83 III, constructed from all sequence units of *Coelognathus radiatus* (CRA), *Ophiophagus hannah*
- 84 (OHA), Epicrates cenchria cenchria (ECE), Acrochordus javanicus (AJA), Enhydris enhydris
- 85 (EEN), and *Ahaetulla prasina* (APR).
- 86 Supplementary Fig. S9 Southern blot hybridization probed with PBI-DdeI satellite DNA
- 87 sequences derived from *Python bivittatus* (a), *Naja kaouthia* (b) and *Ophiophagus hannah* (c).
- (a) Hybridization membrane probed with PBI-DdeI satellite DNA sequences derived from *P*.
- 89 *bivittatus* to male and female genomic DNA of *P. bivittatus*, *N. kaouthia*, and *O. hannah*. (b)
- 90 Hybridization membrane probed with PBI-DdeI satellite DNA sequences derived from N.
- 91 kaouthia to male and female genomic DNA of P. bivittatus, N. kaouthia, and O. hannah. (c)
- 92 Hybridization membrane probed with PBI-DdeI satellite DNA sequences derived from O.
- 93 hannah to male and female genomic DNA of P. bivittatus, N. kaouthia, and O. hannah. M,
- 94 male F, female
- Supplementary Fig. S10 Copy number quantification of PBI-DdeI satellite DNA in fifteen
 different genomic snake species. Different colored dots and lines indicate different snake
 species. Error bars represent standard deviations.
- 98 Supplementary Fig. S11 Spearman's correlation of AT%, size, copy number (absolute
 99 quantification and relative quantification), and intraspecific nucleotide diversity of PBI-DdeI
 100 satellite DNA (satDNA) sequence from fifteen snake species. Spearman's correlation tests

were performed among variables. The lower triangular matrix represents scatter plots of the
 different scores while the upper triangular matrix displays the corresponding Pearson
 correlation coefficients.

Supplementary Fig. S12 Copy number quantification of PBI-DdeI satellite DNA between 105 male (n = 10) and female (n = 10) genomes of *Naja kaouthia*. Error bars represent standard 106 deviations.

Supplementary Fig. S13 The standard calibration curve used in the absolute quantification of
 copy number of PBI-DdeI satellite DNA. The linear dynamic range extended from 0.00025 to

 $25.00 \text{ ng/}\mu\text{l}$ of plasmid DNA with the PBI-DdeI clone concentration from *Naja kaouthia* with

110 six different concentrations. Regression lines were calculated as $R^2 = 0.984$, p < 0.001.

Species	Subfamily ¹	Unit					
Python bivittatus	SFI	PBI-C3U3, PBI-C4U4, PBI-C1U5, PBI-C2U6					
Xenopeltis unicolor	SFI	XUN-C1U1, XUN-C1U2, XUN-C2U3, XUN-C2U4, XUN-C3U5					
Naja kaouthia	SFI	NKA-C1U1, NKA-C2U2, NKA-C2U3, NKA-C3U4, NKA-C4U5,					
		NKA-C1U6, NKA-C2U7					
Naja siamensis	SFI	NSI-C1U1, NSI-C2U2, NSI-C2U3, NSI-C3U4, NSI-C3U5,					
		NSI-C1U6, NSI-C1U7, NSI-C2U8					
Ahaetulla prasina	SFI	APR-C1U1, , APR-C4U4, APR-C4U9					
Epicrates maurus	SFI	EMA-C1U2, EMA-C2U4, EMA-C3U6, EMA-C1U9					
Eunectes murinus	SFII	EMU-C1U1, EMU-C1U2, EMU-C2U3, EMU-C2U4, EMU-C3U5					
Boa constrictor imperator	SFII	BCO-C1U1, BCO-C2U2, BCO-C2U3, BCO-C3U4, BCO-C3U5					
Leioheterodon madagascariensis	SFII	LMA-C1U1, LMA-C1U2, LMA-C2U3, LMA-C1U4, LMA-C1U5, LMA-C2U6,					
Crotalus oreganus helleri	SFII	CORE-C1U1, CORE-C2U2, CORE-C2U3, CORE-C3U4					
Ahaetulla prasina	SFII	APR-C2U2, APR-C3U3, APR-C4U8					
Epicrates maurus	SFII	EMA-C1U1, EMA-C2U3, EMA-C3U5, EMA-C4U7, EMA-C1U8, EMA-C2U10, EMA-C3U11					
Epicrates cenchria cenchria	SFIII	ECE-C1U1, ECE-C2U2, ECE-C3U3					
Ophiophagus hannah	SFIII	OHA-C1U1, OHA-C1U2, OHA-C2U3, OHA-C1U4, OHA-C2U5,					
		OHA-C2U6, OHAC3U7, OHA-C4U8,					
Ahaetulla prasina	SFIII	APR-C1U5, APR-C2U6, APR-C3U7					
Acrochordus javanicus	SFIII	AJA-C1U1, AJA-C2U2, AJA-C3U3, AJA-C4U4, AJA-C1U5,					
		AJA-C2U6, AJA-C3U7, AJA-C4U8					
Enhydris enhydris	SFIII	EEN-C1U1, EEN-C2U2, EEN-C4U4, EEN-C1U5,					
		EEN-C2U6, EEN-C3U7, EEN-C4U8					
Coelognathus radiatus	SFIII	CRA-C1U1, CRA-C1U2, CRA-C2U3, CRA-C1U4, CRA-C2U5,					
		CRA-C3U6. CRA-C4U7					

Supplementary Table S1. Summary of repeat units and subfamilies in each species

¹SF indicates PBI-DdeI satellite DNA subfamily

Supplementary Tale S2 Evolutionary rate of PBI-DdeI satellite DNA in the snake species studied.

Pair-wise comparison	Average net genetic distance		Evolutionary rate		
	among groups	Divergence in million years	Evolutionary fate		
XUN vs PBI	0.040 ± 0.013	70.1	0.056		
XUN vs NKA	0.064 ± 0.015	108.7	0.059		
XUN vs NSI	0.086 ± 0.017	108.7	0.079		
XUN vs APR	0.058 ± 0.011	108.7	0.053		
XUN vs EMA	0.089 ± 0.018	96.9	0.092		
XUN vs EMU	0.053 ± 0.015	96.9	0.055		
XUN vs BCO	0.062 ± 0.016	96.9	0.064		
XUN vs CORE	0.061 ± 0.017	108.7	0.056		
XUN vs AJA	0.109 ± 0.022	108.7	0.100		
XUN vs LMA	0.066 ± 0.017	108.7	0.061		
XUN vs CRA	0.124±0.023	108.7	0.114		
XUN vs OHA	0.091 ± 0.018	108.7	0.084		
XUN vs ECE	0.103 ± 0.022	96.9	0.106		
XUN vs EEN	0.106 ± 0.022	108.7	0.097		
PBI vs NKA	0.052 ± 0.014	108.7	0.048		
PBI vs NSI	0.079 ± 0.017	108.7	0.073		
PBI vs APR	0.069 ± 0.013	108.7	0.063		
PBI vs EMA	0.107 ± 0.020	96.9	0.111		
PBI vs EMU	0.075 ± 0.018	96.9	0.077		
PBI vs BCO	0.077 ± 0.018	96.9	0.079		
PBI vs CORE	0.076 ± 0.018	108.7	0.070		
PBI vs AJA	0.097 ± 0.021	108.7	0.089		
PBI vs LMA	0.082 ± 0.019	108.7	0.075		
PBI vs CRA	0.118±0.023	108.7	0.108		
PBI vs OHA	0.085 ± 0.017	108.7	0.078		
PBI vs ECE	0.102 ± 0.022	96.9	0.105		
PBI vs EEN	0.094 ± 0.021	108.9	0.086		
NKA vs NSI	0.072 ± 0.014	41.5	0.173		
NKA vs APR	0.073±0.013	46.3	0.158		
NKA vs EMA	0.102 ± 0.019	108.7	0.094		
NKA vs EMU	0.075 ± 0.017	108.7	0.069		
NKA vs BCO	0.077 ± 0.017	108.7	0.071		
NKA vs CORE	0.076 ± 0.017	54.3	0.140		
NKA vs AJA	0.079 ± 0.018	90.7	0.087		
NKA vs LMA	0.082 ± 0.017	41.5	0.198		
NKA vs CRA	0.092 ± 0.019	46.3	0.200		
NKA vs OHA	0.072 ± 0.015	41.5	0.174		
NKA vs ECE	0.089 ± 0.020	108.7	0.082		
NKA vs EEN	0.076 ± 0.018	49.2	0.155		
NSI vs APR	0.104 ± 0.016	46.3	0.224		
NSI vs EMA	0.142 ± 0.021	108.7	0.131		
NSI vs EMU	0.111±0.020	108.7	0.102		
NSI vs BCO	0.113±0.020	108.7	0.104		
NSI vs CORE	0.112±0.020	54.3	0.207		
NSI vs AJA	0.133±0.022	90.7	0.147		
NSI vs LMA	0.116±0.020	41.5	0.279		
NSI vs CRA	0.132±0.022	46.3	0.286		
NSI vs OHA	0.108 ± 0.018	41.5	0.261		

Pair-wise comparison	Average net genetic distance		Evolutionary rate
Tan-wise comparison	among groups	Divergence in million years	Evolutional y fate
NSI vs ECE	0.124 ± 0.023	108.7	0.114
NSI vs EEN	0.130 ± 0.022	49.2	0.264
APR vs EMA	0.095 ± 0.017	108.7	0.087
APR vs EMU	0.048 ± 0.009	108.7	0.044
APR vs BCO	0.050 ± 0.009	108.7	0.046
APR vs CORE	0.049 ± 0.009	54.3	0.090
APR vs AJA	0.105 ± 0.019	90.7	0.116
APR vs LMA	0.055 ± 0.010	46.3	0.118
APR vs CRA	0.111±0.019	36.6	0.302
APR vs OHA	0.080±0.013	46.3	0.174
APR vs ECE	0.090 ± 0.017	108.7	0.083
APR vs EEN	0.102 ± 0.019	49.2	0.208
EMA vs EMU	0.069 ± 0.016	96.9	0.072
EMA vs BCO	0.070 ± 0.016	96.9	0.072
EMA vs CORE	0.069+0.016	108.7	0.063
EMA vs AJA	0.061+0.014	108.7	0.057
EMA vs LMA	0.075+0.016	108.7	0.069
EMA vs CRA	0 146+0 023	108.7	0.135
EMA vs OHA	0.116+0.019	108.7	0.107
EMA vs ECE	0.127+0.022	96.9	0.131
EMA vs EEN	0.058 ± 0.014	108 7	0.054
EMU vs BCO	0.009 ± 0.001	96.9	0.009
EMU vs CORE	0.009 ± 0.003	108 7	0.007
EMU vs AIA	0.000 ± 0.003	108.7	0.089
EMU vs LMA	0.01/+0.006	108.7	0.002
EMU vs CRA	0.014 ± 0.000	108.7	0.012
EMU vs OHA	0.074 ± 0.021	108.7	0.057
EMU vs ECE	0.074 ± 0.010	96.9	0.000
EMU vs EEN	0.080 ± 0.019	108.7	0.085
BCO vs CORF	0.004 ± 0.021	108.7	0.000
BCO vs AIA	0.003 ± 0.002	108.7	0.003
BCO vs I MA	0.099 ± 0.021	108.7	0.091
BCO vs CR A	0.009 ± 0.004	108.7	0.009
BCO vs OHA	0.108 ± 0.021	108.7	0.033
BCO vs ECE	0.070 ± 0.010	06.0	0.070
BCO vs EEN	0.082 ± 0.019	108.7	0.085
COPE vs AIA	0.090 ± 0.021	00.7	0.088
CORE VS AJA	0.098 ± 0.021	54.3	0.108
CORE VS LIVIA	0.107+0.021	54.3	0.010
CORE VS CKA	0.107 ± 0.021	54.5	0.197
CORE vs ECE	0.073 ± 0.010	J4.5 108 7	0.130
CORE VS ECE	0.082 ± 0.019	108.7	0.075
ALA NOLMA	0.093 ± 0.021	<i>J</i> 4. <i>J</i>	0.170
	0.104 ± 0.021	50.7	0.113
	0.129 ± 0.024	50.7	0.142
	0.09/±0.019	9U./ 100 7	0.107
AJA VSEUE	0.108 ± 0.022	108.7	0.099
AJA VS EEIN	0.009 ± 0.003	90.7 46.2	0.010
	0.113 ± 0.021	40.5	0.245
LMA VS OHA	0.081±0.016	46.3	0.176

Pair-wise comparisonamong groupsDivergence in million yearsEvolutionary rateLMA vs ECE0.087±0.019108.70.080	Dair wise comparison	Average net genetic distance		Evolutionary rate
LMA vs ECE 0.087±0.019 108.7 0.080		among groups	Divergence in million years	Evolutionary rate
	LMA vs ECE	0.087 ± 0.019	108.7	0.080
LMA vs EEN 0.101±0.022 49.2 0.205	LMA vs EEN	0.101 ± 0.022	49.2	0.205
CRA vs OHA 0.102±0.019 46.3 0.219	CRA vs OHA	0.102±0.019	46.3	0.219
CRA vs ECE 0.112±0.022 108.7 0.103	CRA vs ECE	0.112 ± 0.022	108.7	0.103
CRA vs EEN0.125±0.02349.20.253	CRA vs EEN	0.125 ± 0.023	49.2	0.253
OHA vs ECE 0.085±0.018 108.7 0.078	OHA vs ECE	0.085 ± 0.018	108.7	0.078
OHA vs EEN 0.094±0.019 49.2 0.191	OHA vs EEN	0.094 ± 0.019	49.2	0.191
ECE vs EEN 0.105±0.022 108.7 0.096	ECE vs EEN	0.105±0.022	108.7	0.096

Supplementary Table S3. Pairwise comparison of PBI-DdeI satellite DNA sequence divergences among fifteen snake species. Species abbreviations were retrieved from Supplementary Table S8.

	XUN	PBI	NKA	NSI	APR	EMA	EMU	BCI	CORH	AJA	LMA	CRA	OHA	ECE	EEN
XUN															
PBI	0.040±0.013														
NKA	0.064±0.015	0.052±0.014													
NSI	0.086 ± 0.017	0.079 ± 0.017	0.072 ± 0.014												
APR	0.058 ± 0.011	0.069±0.013	0.073±0.013	0.104 ± 0.016											
EMA	0.089 ± 0.018	0.107 ± 0.020	0.102 ± 0.019	0.142 ± 0.021	0.095 ± 0.017										
EMU	0.053 ± 0.015	0.075 ± 0.018	0.075 ± 0.017	0.111±0.020	0.048 ± 0.009	0.069 ± 0.016									
BCI	0.062 ± 0.016	0.077 ± 0.018	0.077 ± 0.017	0.113±0.020	0.050 ± 0.009	0.070 ± 0.016	0.009 ± 0.005								
CORH	0.061 ± 0.017	0.076 ± 0.018	0.076 ± 0.017	0.112 ± 0.020	0.049 ± 0.009	0.069 ± 0.016	0.008 ± 0.005	0.003 ± 0.002							
AJA	0.109 ± 0.022	0.097 ± 0.021	0.079 ± 0.018	0.133±0.022	0.105 ± 0.019	0.061 ± 0.014	0.097 ± 0.021	0.099±0.021	0.098 ± 0.021						
LMA	0.066 ± 0.017	0.082 ± 0.019	0.082 ± 0.017	0.116 ± 0.020	0.055 ± 0.010	0.075 ± 0.016	0.014 ± 0.006	0.009 ± 0.004	0.008 ± 0.004	0.104 ± 0.021					
CRA	0.124 ± 0.023	0.118 ± 0.023	0.092 ± 0.019	0.132±0.022	0.111±0.019	0.146 ± 0.023	0.105 ± 0.021	0.108 ± 0.021	0.107 ± 0.021	0.129 ± 0.024	0.113±0.021				
OHA	0.091 ± 0.018	0.085 ± 0.017	0.072 ± 0.015	0.108 ± 0.018	0.080 ± 0.013	0.116 ± 0.019	0.074 ± 0.016	0.076 ± 0.016	0.075 ± 0.016	0.097 ± 0.019	0.081 ± 0.016	0.102±0.019			
ECE	0.103 ± 0.022	0.102±0.022	0.089 ± 0.020	0.124±0.023	0.090 ± 0.017	0.127 ± 0.022	0.080 ± 0.019	0.082±0.019	0.082 ± 0.019	0.108 ± 0.022	0.087 ± 0.019	0.112±0.022	0.085 ± 0.018		
EEN	0.106±0.022	0.094±0.021	0.076±0.018	0.130±0.022	0.102±0.019	0.058 ± 0.014	0.094±0.021	0.096±0.021	0.095±0.021	0.009±0.003	0.101±0.022	0.125±0.023	0.094 ± 0.019	0.105±0.022	

Supplementary Table S4. AMOVA analysis of PBI-DdeI satellite DNA family within and between species

Variation source	d.f.	Sum of squares	Variance components	Percentage variation	F_{st}
Among groups	14	842.691	7.624	72.960	0.729***
Among populations within groups	35	84.678	0.323	3.090	0.114***
Within populations	64	201.500	3.148	30.130	0.698***

*** *p* < 0.001

Supplementary Table S5. Summary of nucleotide diversity and haplotype diversity in each PBI-DdeI satellite DNA subfamily

Subfamily	n	Nucleotide diversity (π)	Haplotype diversity (h)	Mean distance within group
Ι	31	0.061 ± 0.005	0.927 ± 0.025	0.082 ± 0.011
II	30	0.026 ± 0.004	0.890 ± 0.052	0.051 ± 0.008
III	36	0.057 ± 0.005	0.919 ± 0.031	0.085 ± 0.010

Number of monomeric sequenced repeats (n), nucleotide diversity $(\pi) \pm SD$ of each repeated subfamily, haplotype diversity $(h) \pm SD$ of each repeated subfamily and mean distance within each group $\pm SD$ of repeated subfamily

Variation source	d.f.	Sum of squares	Variance components	Percentage variation	$F_{\rm st}$
Among groups	2	250.075	2.589	22.390	0.607***
Among populations within groups	12	459.642	5.450	47.120	0.695***
Within populations	83	292.752	3.527	30.490	0.223***

Supplementary Table S6. AMOVA analysis of PBI-DdeI satellite DNA family within and between subfamilies

*** p < 0.001

Species	n^1	Unit length (bp)	Relative copy number (copy)	Absolute copy number (copy)	% Genomic proportion
Epicrates maurus	11	196	1.93E+01	8.30E-02	1.20E-06
Xenopeltis unicolor	5	209	4.25E+02	2.80E-01	4.04E-06
Python bivittatus	4	209	3.99E+09	5.73E+06	8.25E+01
Acrochordus javanicus	8	198	4.28E+02	5.98E-01	8.61E-06
Enhydris enhydris	7	196	4.21E+02	9.67E-02	1.39E-06
Leioheterodon madagascariensis	6	194	2.80E+03	7.77E-01	1.12E-05
Naja kaouthia	7	208 - 209	3.52E+04	1.11E+00	1.61E-05
Naja siamensis	8	208 - 209	2.41E+03	1.75E+00	2.52E-05
Ophiophagus hannah	8	208 - 209	6.34E+03	2.77E+01	3.99E-04
Ahaetulla prasina	9	209	7.92E+04	4.28E+00	6.16E-05
Coelognathus radiatus	7	209	4.44E+03	1.90E+00	2.74E-05
Eunectes murinus	5	208 - 210	4.66E+02	8.07E-01	1.16E-05
Epicrates cenchria cenchria	3	209	9.95E+01	8.32E-01	1.20E-05
Crotalus oreganus helleri	4	195	4.34E+02	2.68E+00	3.86E-05
Boa constrictor imperator	5	196	3.66E+01	8.02E-01	1.16E-05

Supplementary Table S7. Summary of PBI-DdeI satellite DNA copy number estimates for the snake species studied

¹Number of monomeric repeats sequenced (n)

	a :	G 1		Number of animal used
Family	Species	Snake group	Abbreviation	(female + male)
Cylindrophiidae	Cylindrophis ruffus	Henophidia	CRU	1 + 1
Boidae	Epicrates maurus	Henophidia	EMA	0 + 1
	Eunectes murinus	Henophidia	EMU	0 + 1
	Epicrates cenchria cenchria	Henophidia	ECE	0 + 1
	Boa constrictor imperator	Henophidia	BCO	1 + 0
Xenopeltidae	Xenopeltis unicolor	Henophidia	XUN	1 + 1
Pythonidae	Python bivittatus	Henophidia	PBI	1 + 1
Acrochordidae	Acrochordus javanicus	Caenophidia	AJA	1 + 1
Viperidae	Daboia siamensis	Caenophidia	DSI	1 + 1
	Cerastes cerastes	Caenophidia	CCE	1 + 1
	Trimeresurus albolabris	Caenophidia	TAL	0 + 1
	Crotalus oreganus helleri	Caenophidia	CORE	0 + 1
	Crotalus durissus unicolor	Caenophidia	CDU	1 + 0
	Crotalus horridus	Caenophidia	СНО	0 + 1
	Bitis gabonica	Caenophidia	BGA	1 + 0
Homalopsidae	Homalopsis buccata	Caenophidia	HBU	1 + 1
	Enhydris enhydris	Caenophidia	EEN	1 + 1
Lamprophiidae	Leioheterodon madagascariensis	Caenophidia	LMA	1 + 1
Elapidae	Naja kaouthia	Caenophidia	NKA	10 + 10
	Naja siamensis	Caenophidia	NSI	1 + 1
	Ophiophagus hannah	Caenophidia	OHA	1 + 1
	Bungarus candidus	Caenophidia	BCA	1 + 1
	Bungarus flaviceps	Caenophidia	BFL	1 + 1
Colubridae	Oligodon fasciolatus	Caenophidia	OFA	1 + 1
	Ahaetulla prasina	Caenophidia	APR	1 + 1
	Boiga dendrophila	Caenophidia	BDE	1 + 1
	Gonyosoma oxycephalum	Caenophidia	GOX	1 + 1
	Coelognathus flavolineatus	Caenophidia	CFL	1 + 1
	Xenochrophis flavipunctatus	Caenophidia	XFL	1 + 1
	Coelognathus radiatus	Caenophidia	CRA	1 + 1
	Ptyas mucosa	Caenophidia	PMU	1 + 1
	Pantherophis guttatus	Caenophidia	PGU	1 + 1
	Boiga ocellata	Caenophidia	BOC	0 + 1
	Boiga cyanea	Caenophidia	BCYA	0 + 1
	Boiga cynodon	Caenophidia	BCY	0 + 1
	Rhabdophis nigrocinctus	Caenophidia	RNI	0 + 1
	Ahaetulla nasuta	Caenophidia	ANA	1 + 0
	Chrysopelea paradisi	Caenophidia	CPA	1 + 0
	Chrysopelea ornata	Caenophidia	COR	1 + 0
	Gonyosoma prasinum	Caenophidia	GPR	1 + 0

Supplementary Table S8. Summary of snake species studied

а										
u							•	•		
								-		
b	CRU-M	CRU-F	EMA-M	EMA-F	XUN-M	XUN-F	PBI-M	PBI-F	AJA-M	AJA-F
	DSI-M	DSI-F	CCE-M	CCE-F	HBU-M	HBU-F	EEN-M	EEN-F	LMA-M	LMA-F
	PGU-M	PGU-F	NKA-M	NKA-F	NSI-M	NSI-F	OHA-M	OHA-F	BCA-M	BCA-F
	BFL-M	BFL-F	OFA-M	OFA-F	APR-M	APR-F	BDE-M	BDE-F	GOX-M	GOX-F
	CFL-M	CFL-F	XRA-M	XRA-F	CRA-M	CRA-F	PMU-M	PMU-F	EMU-M	ECE-M
	BCO-F	TAL-M	CORE-M	CDU-F	BGA-F	CHO-M	BCY-M	BCO-M	BCYA-M	RNI-M
	ANA-F	CPA-F	COR-F	GPR-F				PBI-DdeI satDNA		

Supplementary Figure 1S (Thongchum et al.)

		10	20	30	40	50	60	70	80	90	100	6
					• [• • • •] • • • •]							
Consensus_PBI	1	TGTTTGTCTGAG	CCAGGAACCT	GAGTTGTGAAA	GGGCAGTTTTGC	CATTGCAAGA	ATAGGCCATT	GAGCAATTGO	GGTAATAGO	CC-GTTTCTT	CCAAA	99
Consensus_XUN	1						A	3				99
Consensus_EMU	1						A(3		•••-	.T.TT	99
Consensus_NSI	1		G	c								99
Consensus_NKA	1		GA	.T		T						99
Consensus_APR	1							3			.T.TT	99
Consensus_LMA	1						A0	3				99
Consensus_ECE	1	C	G	C		GT			CG		. TGTT	99
Consensus_CRA	1		G	.T		G			A.		.T.TT	99
Consensus_AJA	1		A							.G.C	.GGTT	88
Consensus_OHA	1	G	GG.			C.			T		.T.TT	99
Consensus_EEN	1									C	. GGTT	86
Consensus_EMA	1					T		3		C	.T.TT	86
Consensus_BCO	1					T		3		T	.T.TT	86
Consensus CORE	1					т					T.TT.	85
-		12	 14 bp dele 	tions								
		110	120	130	140	150	160	170	180	190	200	
		· · · · · · · · · ·			• [• • • •] • • • •]		.					
Consensus_PBI	100	TTACTTCTTGGG	TACACTCTTC	CGGCAAGGA-G	AGATTCATGAAA	CCACGATGTT	TTTCTGATTC	TACTGCCTCGG	GAGAACAT	SAATCATCAGC	TCTTT	198
Consensus_XUN	100		.T						c			198
Consensus_EMU	100		AT G	AA	T				c			198
Consensus_NSI	100	T	.T	AT		AT			G.			198
Consensus NKA	100		AC	A								198
Consensus APR	100		AT	A					c			198
Consensus LMA	100		.T						c			198
Consensus ECE	100		AT A	A						c		198
Consensus CRA	100		AT	A.AG		A.G				CA.		198
Consensus AJA	89		AC	AA.								187
Consensus OHA	100		AT G	A	G							198
Consensus EEN	87		AC	A								185
Consensus EMA	87		AT G	AA	Τ				c			185
Consensus BCO	87		AT G	AA	Τ				c			185
Consensus CORE	86		AT G	AA	Τ				c			184
-												
		210				Conserved see	quence motif	box of satDN	IA			
Consensus PBI	199	TTCAAATCTCG	209									
Consensus XUN	199	G.	209									
Consensus EMU	199	G.	209									
Consensus NSI	199	G.	209									
Consensus NKA	199	G.	209									
Consensus APR	199	G.	209									
Consensus LMA	199	G	209									
Consensus ECE	199	G.	209									
Consensus CPA	199	G	209									
Consensus ATA	188	G	198									
Consensus OHA	199	G	209									
Consensus EEN	186		196									
Consensus EMA	186	G.	196									
Consensus BCO	186	G.	196									
Consensus_BCO	185	······	195									
CONSENSUS_CORE	103	· · · · · · · · · · · · · · · · · · ·	100									

Supplementary Figure 3S (Thongchum et al.)

Supplementary Figure 4S (Thongchum et al.)

Consensus_Str	100	11044410100	205
Consensus_SFII	187	G.	197
Consensus_SFIII	201	G.	211

Supplementary Figure 5S (Thongchum et al.)

Supplementary Figure 6S (Thongchum et al.)

Supplementary Figure 7S (Thongchum et al.)

Supplementary Figure 9S (Thongchum et al.)

Supplementary Figure 11S (Thongchum et al.)

Supplementary Figure 12S (Thongchum et al.)

Supplementary Figure 13S (Thongchum et al.)

CRU-M CRU-F EMA-M EMA-F XUN-M XUN-F PBI-M PBI-F AJA-F AJA-M DSI-M DSI-F CCE-M CCE-F HBU-M HBU-F EEN-M EEN-F LMA-M LMA-F PGU-M PGU-F NKA-M NSI-M NSI-F OHA-M OHA-F BCA-F NKA-F BCA-M BFL-M BFL-F OFA-M OFA-F APR-M BDE-M BDE-F GOX-M GOX-F APR-F CFL-M CFL-F XRA-M XRA-F CRA-M CRA-F PMU-M PMU-F EMU-M ECE-M BCO-F TAL-M CORE-M CDU-F BGA-F CHO-M BCY-M BCO-M BCYA-M RNI-M ANA-F CPA-F COR-F GPR-F PBI-DdeI satDNA

Dot blot hybridization (Original file for Supplementary Fig. 1S)

Agarose gel electrophoresis (Original file for Supplementary Fig. 2S)

Southern blot hybridization (Original file for Supplementary 9S)