SUPPLEMENTARY INFORMATION

Direct determination of four phenolic secoiridoids in oil olive by ultra-high performance liquid chromatography-triple quadruple mass spectrometry analysis

A. Luque-Muñoz,^a R. Tapia,^b A. Haidour,^{*,a} J. Justicia,^b and J. M. Cuerva^{*,b}

^a Nuclear Magnetic Resonance Unit, Scientific Instrumentation Center, University of Granada, E-18071 Granada, Spain
^b Department of Organic Chemistry, University of Granada, Campus Fuentenueva s/n, E-18071 Granada, Spain

* Corresponding authors: jmcuerva@ugr.es (Dr. Juan M. Cuerva), ahaidour@ugr.es (Dr. A. Haidour)

Contents

- Synthesis and purification of analytes	S1
- ¹ H, ¹³ C, 2D-COSY and 2D-HSQC spectra for 3	S2-S3
- ¹ H, ¹³ C, 2D-COSY and 2D-HSQC spectra for 4	S4-S5
- ¹ H, ¹³ C, 2D-COSY and 2D-HSQC spectra for 5	S6-S7
- ¹ H, ¹³ C, 2D-COSY and 2D-HSQC spectra for 6	S8-S9
- ¹ H, ¹³ C, and 2D-HSQC spectra for 1-d ₅	S10-S11
- Assignment of ¹ H NMR spectrum for 3 , 4 , 5 and 6	S12-S13
- H1 and H3 assigned to each diastereomer of 4 and 6	S14
- 2D-HSQC assignment of the elenolic fragment for the diastereomers of 4 and 6	S15
- Mass spectral fragmentation of the [M–H] ⁻ ion of 3 , 4 , 5 , 6 and 1-d 5	S16-S17
- Proposed fragmentation mechanisms for 3 , 4 , 5 and 6	S18
- Chromatograms of ACN injections after analyzing a sample with absence and presence of TFH in the chromatographic gradient	S19
- Chromatographic program of the analytical method	S20
- Supplementary references	S21

Synthesis and purification of analytes

The synthesis of the analytes was carried out using bibliography:

- Oleacein and oleocanthal were semi-synthesized in one step, using oleuropein and ligstroside as precursors, under Krapcho decarbomethoxylation conditions¹, respectively.
- Monoaldehydic oleuropein aglycone and monoaldehydic ligstroside aglycone were synthesized from oleuropein and ligstroside, respectively, following the procedure described in literature ².

Oleuropein and ligstroside were extracted from olive leaves, after treatment in boiling water for 1 hour. Then, this aqueous phase was extracted with butanol (x2), dried over anhydrous Na₂SO₄, and the solvent was removed. The residue was purified by flash chromatography in silica gel (CH₂Cl₂: MeOH 8:2), to yield the corresponding oleuropein or ligstroside.

The analytes were purified by preparative HPLC. The column used was a Zorbax Rx-SIL column (5 m; 9.4×250 mm), and hexane and ethyl acetate were the solvents.

Figure S1. ¹H NMR spectrum (up) and ¹³C NMR spectrum (down) of oleacein (**3**) in CDCl₃. These spectra match those of literature ^{3–5}.

Figure S2. 2D-COSY spectrum (up) and 2D-HSQC spectrum (down) of oleacein (3) in CDCl₃.

Figure S3. ¹H NMR spectrum (up) and ¹³C NMR spectrum (down) of oleocanthal (4) in CDCl₃. These spectra match those of literature ^{3–5}.

Figure S4. 2D-COSY spectrum (up) and 2D-HSQC spectrum (down) of oleocanthal (4) in CDCl₃.

Figure S5. ¹H NMR spectrum (up) and ¹³C NMR spectrum (down) of monoaldehydic oleuropein aglycone (5) in CDCl₃. ¹H and ¹³C signal assignment has been done with the help of bibliography ^{3,5–7}. (5S,8S,9S) and (5S,8R,9S) diastereoisomers have already been described in CDCl₃ ⁷.

Figure S6. 2D-COSY spectrum (up) and 2D-HSQC spectrum (down) of monoaldehydic oleuropein aglycone (5) in CDCl₃.

Figure S7. ¹H NMR spectrum (up) and ¹³C NMR spectrum (down) of monoaldehydic ligstroside aglycone (6) in CDCl₃. ¹H and ¹³C signal assignment has been done with the help of bibliography ^{6,8}. (5S,8S,9S) diastereoisomers have already been described in CDCl₃ ⁸.

Figure S8. 2D-COSY spectrum (up) and 2D-HSQC spectrum (down) of monoaldehydic ligstroside aglycone (**5**) in CDCl₃.

Figure S9. ¹H NMR spectrum (up) and ¹³C NMR spectrum (down) of hydroxytyrosol-d₅ (**1-d**₅) in CD₃OD.

Figure S10. 2D-HSQC spectrum of hydroxytyrosol-d₅ (1-d₅) in CD₃OD.

Figure S11. Assignment of ¹H NMR spectrum for 3, 4, 5 and 6.

S13

Figure S12. H1 and H3 assigned to each diastereomer of a) monoaldehydic oleuropein aglycone and b) monoaldehydic ligstroside aglycone.

	(5S,8S,9S) / (5S,8S,9R)	(5S,8R,9R)	(5S,8R,9S)
1	9.56 - 199.59	9.74 - 201.08	9.52 - 200.00
3	7.62 – 156.82 (8S,9R)	7 (2) 15(92	7.56 – 155.33
	7.57 – 155.55 (8S,9S)	7.02 - 130.82	
5	3.33 - 28.30	3.61 - 27.59	3.38 - 27.29
(2.91	2.55	2.90
0	2.21	2.37	2.55
8	4.15 - 69.64	4.30 - 69.36	4.41 - 70.89
9	2.50 - 50.93	2.75 - 54.15	2.56 - 54.17
10	1.54 - 18.03	1.37 – 19.25	1.38 - 19.50

Table S1. 2D-HSQC assignment of the elenolic fragment for the diastereomers of monoaldehydic ligstroside aglycone using 2D-NOESY and 1D-TOCSY. C12 could not be assigned.

Table S2. 2D-HSQC assignment of the elenolic fragment for the diastereomers of monoaldehydic oleuropein aglycone using 2D-NOESY and 1D-TOCSY. C12 could not be assigned.

	(58,88,98) / (58,88,9R)	(58,8R,9R)	(5S,8R,9S)
1	9.60 - 199.96	9.81 - 201.28	9.54 - 200.19
3	7.65 – 157.37	7 65 157 27	7 50 156 08
	7.62 - 156.08	7.03 - 137.37	7.39 - 130.08
5	3.37 - 28.30	3.62 - 27.62	3.40 - 27.11
6	2.86	2.56	2.88
	2.21	2.40	2.56
8	4.19 - 69.83	4.29 - 69.52	4.47 - 70.96
9	2.63 - 51.13	2.78 - 54.10	2.65 - 54.66
10	1.57 - 18.02	1.39 - 19.20	1.41 - 19.50

Monoaldehydic oleuropein aglycone

Monoaldehydic ligstroside aglycone

Figure S13. Mass spectral fragmentation of the $[M-H]^-$ ion of a) oleacein, b) oleocanthal, c) monoaldehydic oleuropein aglycone, d) monoaldehydic ligstroside aglycone and e) hydroxytyrosol-d₅. Cone voltage (V) and collision energy (eV) used for each mass spectrum are shown in parentheses.

S17

Figure S14. Proposed fragmentation mechanisms for **3**, **4**, **5** and **6** according to the bibliography shown in Table 1.

Figure S15. Chromatograms of ACN injections after analyzing a sample ($V_a=25 \ \mu L$; N=80). Chromatographic gradient without THF (left) and with THF (right).

Time (min)	% A	% B	% C		
0.0	30	70	0	Isocratic separation	
2.0	30	70	0		
2.1	0	100	0		
3.5	0	100	0	Calama da sina	
4.0	0	0	100	Column cleaning	
4.4	0	0	100		
4.5	30	70	0	Equilibration of column	
7.5	30	70	0		

Table S3. Chromatographic program of the analytical method.

Supplementary references

- 1. Vougogiannopoulou, K. *et al.* One-step semisynthesis of oleacein and the determination as a 5-lipoxygenase inhibitor. *J. Nat. Prod.* **77**, 441–445 (2014).
- Nardi, M. *et al.* Biomimetic synthesis and antioxidant evaluation of 3,4-DHPEA-EDA [2-(3,4-hydroxyphenyl) ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate]. *Food Chem.* 162, 89–93 (2014).
- 3. Montedoro, G. *et al.* Simple and Hydrolyzable Compounds in Virgin Olive Oil. 3. Spectroscopic Characterizations of the Secoiridoid Derivatives Gianfrancesco. *J. Agric. Food Chem.* **41**, 2228–2234 (1993).
- 4. Owen, R. W. *et al.* Identification of lignans as major components in the phenolic fraction of olive oil. *Clin. Chem.* **46**, 976–988 (2000).
- Pérez-Trujillo, M., Gómez-Caravaca, A. M., Segura-Carretero, A., Fernández-Gutiérrez, A. & Parella, T. Separation and identification of phenolic compounds of extra virgin Olive Oil from Olea Europaea L. by HPLC-DAD-SPE-NMR/MS. Identification of a new diastereoisomer of the aldehydic form of oleuropein aglycone. J. Agric. Food Chem. 58, 9129–9136 (2010).
- Christophoridou, S., Dais, P., Tseng, L. I. H. & Spraul, M. Separation and identification of phenolic compounds in olive oil by coupling high-performance Liquid Chromatography with Postcolumn Solid-Phase Extraction to Nuclear Magnetic Resonance Spectroscopy (LC-SPE-NMR). J. Agric. Food Chem. 53, 4667–4679 (2005).
- 7. Gariboldi, P., Jommi, G. & Verotta, L. Secoiridoids from Olea europaea. *Phytochemistry* **25**, 865–869 (1986).
- 8. Caliş, Í., Hosny, M., Khalifa, T. & Nishibe, S. Secoiridoids from Fraxinus angustifolia. *Phytochemistry* **33**, 1453–1456 (1993).