SUPPLEMENTARY INFORMATION

Direct determination of four phenolic secoiridoids in oil olive by ultra-high performance liquid chromatography-triple quadruple mass spectrometry analysis

A. Luque-Muñoz,^a R. Tapia,^b A. Haidour,^{*,a} J. Justicia,^b and J. M. Cuerva^{*,b}

^aNuclear Magnetic Resonance Unit, Scientific Instrumentation Center, University of Granada, E-18071 Granada, Spain ^bDepartment of Organic Chemistry, University of Granada, Campus Fuentenueva s/n, E-18071 Granada, Spain

***** Corresponding authors: jmcuerva@ugr.es (Dr. Juan M. Cuerva), ahaidour@ugr.es (Dr. A. Haidour)

Contents

Synthesis and purification of analytes

The synthesis of the analytes was carried out using bibliography:

- Oleacein and oleocanthal were semi-synthesized in one step, using oleuropein and ligstroside as precursors, under Krapcho decarbomethoxylation conditions $\frac{1}{2}$, respectively.
- Monoaldehydic oleuropein aglycone and monoaldehydic ligstroside aglycone were synthesized from oleuropein and ligstroside, respectively, following the procedure described in literature².

Oleuropein and ligstroside were extracted from olive leaves, after treatment in boiling water for 1 hour. Then, this aqueous phase was extracted with butanol $(x2)$, dried over anhydrous Na2SO4, and the solvent was removed. The residue was purified by flash chromatography in silica gel $(CH_2Cl_2$: MeOH 8:2), to yield the corresponding oleuropein or ligstroside.

The analytes were purified by preparative HPLC. The column used was a Zorbax Rx-SIL column (5 m; 9.4×250 mm), and hexane and ethyl acetate were the solvents.

Figure S1. ¹H NMR spectrum (up) and ¹³C NMR spectrum (down) of oleacein (**3**) in CDCl3. These spectra match those of literature $3-5$.

Figure S2. 2D-COSY spectrum (up) and 2D-HSQC spectrum (down) of oleacein (**3**) in CDCl3.

Figure S3. ¹H NMR spectrum (up) and ¹³C NMR spectrum (down) of oleocanthal (4) in CDCl₃. These spectra match those of literature $3-5$.

Figure S5. ¹H NMR spectrum (up) and ¹³C NMR spectrum (down) of monoaldehydic oleuropein aglycone (5) in CDCl₃. ¹H and ¹³C signal assignment has been done with the help of bibliography ^{3,5–7}. (5S,8S,9S) and (5S,8R,9S) diastereoisomers have already been described in CDCl₃⁷.

Figure S6. 2D-COSY spectrum (up) and 2D-HSQC spectrum (down) of monoaldehydic oleuropein aglycone (**5**) in CDCl3.

Figure S7. ¹H NMR spectrum (up) and ¹³C NMR spectrum (down) of monoaldehydic ligstroside aglycone (6) in CDCl₃. ¹H and ¹³C signal assignment has been done with the help of bibliography $6,8$. (5S,8S,9S) diastereoisomers have already been described in CDCl₃⁸ .___________________

Figure S8. 2D-COSY spectrum (up) and 2D-HSQC spectrum (down) of monoaldehydic ligstroside aglycone (**5**) in CDCl3.

Figure S9. ¹H NMR spectrum (up) and ¹³C NMR spectrum (down) of hydroxytyrosol-d₅ (1-d₅) in CD3OD.

Figure S10. 2D-HSQC spectrum of hydroxytyrosol-d₅ (1-d₅) in CD₃OD.

Figure S11. Assignment of ¹H NMR spectrum for **3**, **4**, **5** and **6**.

S13

Figure S12. H1 and H3 assigned to each diastereomer of a) monoaldehydic oleuropein aglycone and b) monoaldehydic ligstroside aglycone.

	(5S, 8S, 9S) / (5S, 8S, 9R)	(5S, 8R, 9R)	(5S, 8R, 9S)
1	$9.56 - 199.59$	$9.74 - 201.08$	$9.52 - 200.00$
3	$7.62 - 156.82$ (8S,9R)	$7.62 - 156.82$	$7.56 - 155.33$
	$7.57 - 155.55$ (8S,9S)		
5	$3.33 - 28.30$	$3.61 - 27.59$	$3.38 - 27.29$
6	$\begin{array}{c} \n 2.91 \\ \hline\n 2.21\n \end{array}$ 38.79	$\frac{2.55}{2.37}$ > 36.50	$\left(\frac{2.90}{2.55}\right)$ 37.12
8	$4.15 - 69.64$	$4.30 - 69.36$	$4.41 - 70.89$
9	$2.50 - 50.93$	$2.75 - 54.15$	$2.56 - 54.17$
10	$1.54 - 18.03$	$1.37 - 19.25$	$1.38 - 19.50$

Table S1. 2D-HSQC assignment of the elenolic fragment for the diastereomers of monoaldehydic ligstroside aglycone using 2D-NOESY and 1D-TOCSY. C12 could not be assigned.

Table S2. 2D-HSQC assignment of the elenolic fragment for the diastereomers of monoaldehydic oleuropein aglycone using 2D-NOESY and 1D-TOCSY. C12 could not be assigned.

	(5S, 8S, 9S) / (5S, 8S, 9R)	(5S, 8R, 9R)	(5S, 8R, 9S)
1	$9.60 - 199.96$	$9.81 - 201.28$	$9.54 - 200.19$
3	$7.65 - 157.37$	$7.65 - 157.37$	$7.59 - 156.08$
	$7.62 - 156.08$		
5	$3.37 - 28.30$	$3.40 - 27.11$ $3.62 - 27.62$	
6	2.86×2.21 >39.13	$2.56 \times$ >36.61	2.88 >37.27
		2.40	2.56
8	$4.19 - 69.83$	$4.29 - 69.52$	$4.47 - 70.96$
9	$2.63 - 51.13$	$2.78 - 54.10$	$2.65 - 54.66$
10	$1.57 - 18.02$	$1.39 - 19.20$	$1.41 - 19.50$

Monoaldehydic oleuropein aglycone Monoaldehydic ligstroside aglycone

Figure S13. Mass spectral fragmentation of the [M−H]- ion of a) oleacein, b) oleocanthal, c) monoaldehydic oleuropein aglycone, d) monoaldehydic ligstroside aglycone and e) hydroxytyrosol-d₅. Cone voltage (V) and collision energy (eV) used for each mass spectrum are shown in parentheses.

S17

Figure S14. Proposed fragmentation mechanisms for **3**, **4**, **5** and **6** according to the bibliography shown in Table 1.

S18

Figure S15. Chromatograms of ACN injections after analyzing a sample ($V_a=25 \mu L$; N=80). Chromatographic gradient without THF (left) and with THF (right).

Time (min)	% A	% B	$\%$ C		
0.0	30	70	θ	Isocratic separation	
2.0	30	70	θ		
2.1	0	100	θ	Column cleaning	
3.5	0	100	$\boldsymbol{0}$		
4.0	0	Ω	100		
4.4	0	Ω	100		
4.5	30	70	θ	Equilibration of column	
7.5	30	70	0		

Table S3. Chromatographic program of the analytical method.

Supplementary references

- 1. Vougogiannopoulou, K. *et al.* One-step semisynthesis of oleacein and the determination as a 5-lipoxygenase inhibitor. *J. Nat. Prod.* **77,** 441–445 (2014).
- 2. Nardi, M. *et al.* Biomimetic synthesis and antioxidant evaluation of 3,4-DHPEA-EDA [2- (3,4-hydroxyphenyl) ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate]. *Food Chem.* **162,** 89–93 (2014).
- 3. Montedoro, G. *et al.* Simple and Hydrolyzable Compounds in Virgin Olive Oil. 3. Spectroscopic Characterizations of the Secoiridoid Derivatives Gianfrancesco. *J. Agric. Food Chem.* **41,** 2228–2234 (1993).
- 4. Owen, R. W. *et al.* Identification of lignans as major components in the phenolic fraction of olive oil. *Clin. Chem.* **46,** 976–988 (2000).
- 5. Pérez-Trujillo, M., Gómez-Caravaca, A. M., Segura-Carretero, A., Fernández-Gutiérrez, A. & Parella, T. Separation and identification of phenolic compounds of extra virgin Olive Oil from Olea Europaea L. by HPLC-DAD-SPE-NMR/MS. Identification of a new diastereoisomer of the aldehydic form of oleuropein aglycone. *J. Agric. Food Chem.* **58,** 9129–9136 (2010).
- 6. Christophoridou, S., Dais, P., Tseng, L. I. H. & Spraul, M. Separation and identification of phenolic compounds in olive oil by coupling high-performance Liquid Chromatography with Postcolumn Solid-Phase Extraction to Nuclear Magnetic Resonance Spectroscopy (LC-SPE-NMR). *J. Agric. Food Chem.* **53,** 4667–4679 (2005).
- 7. Gariboldi, P., Jommi, G. & Verotta, L. Secoiridoids from Olea europaea. *Phytochemistry* **25,** 865–869 (1986).
- 8. Calis, Í., Hosny, M., Khalifa, T. & Nishibe, S. Secoiridoids from Fraxinus angustifolia. *Phytochemistry* **33,** 1453–1456 (1993).