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1. METABRIC breast cancer cohort 1

1.1 Context

For the METABRIC breast cancer cohort, Castro et al. (2016) described a survival analysis that used
regulon activity to sort samples in the cohort, which was then stratified and evaluated by Kaplan Meyer
(KM) and Cox regression approaches. The authors also described 36 transcription factors (TFs) that were
associated with genetic risk of breast cancer. For these 36 TFs, Fletcher et al. (2013) reconstructed regulons
using the cohort’s microarray transcriptome data (Curtis et al., 2012). Our goals in this section are, for the
METABRIC cohort 1 (n=997): (1) to estimate regulon activity for these 36 TFs in individual samples, (2) to
use regulon activity to sort and stratify the samples, considering sorted covariates, and (3) to assess regulon
activity as predictor variable in univariate and multivariate survival analyses.

1.2 Package installation and data sets

The RTNsurvival package is available from the R/Bioconductor repository, together with other required
packages. Installing and then loading the Fletcher2013b data package will make available all data required
for this case study.
#-- Set the Bioconductor repository
#-- Please make sure to use bioc version >= 3.8 (R >= 3.5)
source("https://bioconductor.org/biocLite.R")
biocVersion()

#-- Install RTNsurvival and other required packages
#-- RTNsurvival (>=1.4.4); Fletcher2013b (>=1.16.0); RTN (>= 2.6.2)
biocLite(c("RTNsurvival","Fletcher2013b"))
install.packages("pheatmap")

#-- Call packages
library(RTNsurvival)
library(Fletcher2013b)
library(pheatmap)

#-- Load 'rtni1st' data object, which includes regulons and expression profiles
data("rtni1st")

The rtni1st data also provides clinical and molecular information for 997 samples from the METABRIC
cohort 1 (Curtis et al., 2012). The following variables are included in the rtni1st data: time to disease-specific
death (time), event death (event), age (Age), tumour grade (Grade, G1, G2 and G3 ), tumour size (Size),
lymph nodes (LN ), ER status from IHC (ER+ and ER-), PAM50 subtypes (LumA, LumB, Basal, Her2, and
Normal), hormone therapy (HT ) and ethnicity (Ethnicity).
#-- Check available attributes in 'colAnnotation'
colAnnotation <- tni.get(rtni1st, what="colAnnotation")
head(colAnnotation)

#-- A list of transcription factors of interest (here, 36 risk-associated TFs)
risk.tfs <- c("AFF3", "AR", "ARNT2", "BRD8", "CBFB", "CEBPB", "E2F2", "E2F3", "ENO1",

"ESR1", "FOSL1", "FOXA1", "GATA3", "GATAD2A", "LZTFL1", "MTA2", "MYB",
"MZF1", "NFIB", "PPARD", "RARA", "RB1", "RUNX3", "SNAPC2", "SOX10",
"SPDEF", "TBX19", "TCEAL1", "TRIM29", "XBP1", "YBX1", "YPEL3", "ZNF24",
"ZNF434", "ZNF552", "ZNF587")
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1.3 Data preprocessing

The data preprocessing consists of a single step that creates a TNS-class object. This step uses the
tni2tnsPreprocess function, which requires (1) a transcriptional regulatory network computed by the RTN
package, and (2) a list of regulators.
#-- Create TNS-class object from the 'rtni1st'
tns1st <- tni2tnsPreprocess(tni = rtni1st, regulatoryElements = risk.tfs,

time = "time", event = "event", endpoint = 120,
keycovar = c("Age","Grade"))

1.4 Regulon activity of individual samples

The tnsPlotGSEA2 function estimates a regulon activity score for a single sample in a cohort, using a
two-tailed Gene Set Enrichment Analysis (GSEA-2T). In GSEA-2T, a regulon’s positive and negative targets
are each considered separate as pos and neg gene sets. These gene sets are evaluated against a differential
gene expression signature, which differs between samples, and is typically calculated in RTNsurvival as
follows: For each gene in a sample, a differential gene expression is calculated from its expression in the
sample relative to its average expression in the cohort; the genes are then ordered as a ranked list representing
a differential gene expression signature, also called the sample’s phenotype. Supplementary Figure 1a
shows the estimation of ESR1 regulon activity for a single tumour sample from the METABRIC breast cancer
cohort. For each gene set (pos and neg) a walk down the ranked list is performed, stepwise. When a gene in
the gene set is found, its position is marked in the rug plot, with the colour corresponding to the gene set.
A running sum, shown as the pink and blue (pos and neg gene sets, respectively) lines, increases when the
gene at that position belongs to the gene set and decreases when it doesn’t. The maximum distance of each
running sum from the x-axis represents the enrichment score. GSEA-2T produces two per-sample enrichment
scores (ES), whose difference (dES = ESpos - ESneg) represents the regulon activity. The goal is to assess,
for each sample, whether the target genes are overrepresented among the genes that are more positively or
negatively differentially expressed. For a sample within a cohort, a large positive dES indicates an induced
(activated) regulon, while a large negative dES indicates a repressed regulon. Luminal A sample MB-5365
has an activated pattern for ESR1 (Supplementary Figure 1a), while basal-like sample MB-2742 has a
repressed pattern (Supplementary Figure 1b). The regulon status is assigned as undetermined when
ESpos and ESneg distributions are skewed to the same side of the ranked list of genes (Supplementary
Figure 1c).
#-- Two-tailed GSEA plots for individual samples
tnsPlotGSEA2(tns1st, "MB-5365", regs = "ESR1")
tnsPlotGSEA2(tns1st, "MB-2742", regs = "ESR1")
tnsPlotGSEA2(tns1st, "MB-5027", regs = "ESR1")

1.5 Regulon activity profiles

Regulon activity profiles (RAPs) seek to characterize regulatory program similarities and differences between
samples in a cohort. In order to assess a large number of samples, we implemented a function that computes
the two-tailed GSEA for the entire cohort. For each regulon, the tnsGSEA2 function estimates a regulon
activity score for each sample in the METABRIC cohort 1.
#-- Compute regulon activity for individual samples (this may take a while)
#-- ...for a faster (parallel) option, please see the 'tnsGSEA2' documentation
tns1st <- tnsGSEA2(tns1st)

3



b

P
he

no
ty

pe

−5

0

5
MB−2742

Regulon
negative positive

E
nr

ic
hm

en
t s

co
re

Position in the ranked list of genes

●

●

0 5000 10000 15000 20000

−0.5

0.0

0.5

●

●

Adj. p−value
neg < 1e−03
pos < 1e−03
diff < 1e−03

ESR1

dES = −1.61

a
P

he
no

ty
pe

−5

0

5
MB−5365

Regulon
negative positive

E
nr

ic
hm

en
t s

co
re

Position in the ranked list of genes

●

●

0 5000 10000 15000 20000

−0.5

0.0

0.5

●

●

Adj. p−value
neg < 1e−03
pos < 1e−03
diff < 1e−03

ESR1

dES = 1.54

P
he

no
ty

pe

−5

0

5
MB−5027

Regulon
negative positive

E
nr

ic
hm

en
t s

co
re

Position in the ranked list of genes

●●

0 5000 10000 15000 20000

−0.5

0.0

0.5

●

●

Adj. p−value
neg = 5.4e−02
pos < 1e−03
diff = 3.6e−01

ESR1

dES = 0.05

c
sample sample sample

Supplementary Figure 1: Example of using a two-tailed GSEA to calculate ESR1 regulon activity in individual tumour
samples. The phenotype is the sample’s differential gene expression signature, which is obtained by comparing the expression
of each gene in the current sample with its average expression across all samples in the cohort. The phenotype is used to
generate the ranked list of genes on which the two-tailed GSEA is carried out for positive and negative targets (red and blue
bars, respectively). For sample PAM50 LumA MB-5365 (a) the ESR1 regulon is activated (dES>0), while for sample PAM50
basal-like MB-2742 (b) the ESR1 regulon is repressed (dES<0). Sample MB-5027 (c) represents an inconclusive case, with
positive and negative targets skewed to the same side of the ranked list of genes. These plots reproduce results from Castro et al.
(2016).

Supplementary Figure 2 shows a heatmap of regulon activity profiles across the METABRIC cohort,
together with tumour ER+/- status and PAM50 subtypes. To a large extent, regulon activity segregates
samples into meaningful tumour subtypes. These results are consistent with previous studies showing that
regulon activity can be used to sort samples in a cohort (for details, examples and additional interpretations
on using the dES metric, please refer to Campbell et al. (2016), Castro et al. (2016), Robertson et al. (2017)
and Campbell et al. (2018)).
#-- Get regulon activity and sample attributes
regact_gsea <- tnsGet(tns1st, "regulonActivity")$dif
sdata <- tnsGet(tns1st, "survivalData")
attribs <- c("ER+", "ER-","LumA","LumB","Basal","Her2","Normal")

#-- Plot regulon activity profiles
pheatmap(t(regact_gsea), annotation_col = sdata[,attribs], show_colnames = FALSE,

annotation_legend = FALSE, clustering_method = "ward.D2",
clustering_distance_rows = "correlation",
clustering_distance_cols = "correlation")

1.6 Univariate and multivariate survival analyses with RTNsurvival

The RTNsurvival package uses regulon activity as a predictor variable to study associations between regulons
and survival. The tnsKM function can be used to generate Kaplan-Meier curves for one covariate (i.e. regulon)
at a time. Supplementary Figure 3a separates the METABRIC cohort (n=997 samples) into three strata
according to ESR1 regulon activity (dES<0, undetermined, and dES>0), and Supplementary Figure 3b
shows the corresponding Kaplan-Meier curves. High ESR1 regulon activity is strongly associated with better
survival (log-rank P = 1.96e-08), reproducing results from Castro et al. (2016). Supplementary Figures
3c-d illustrate an inverse case, with high PPARD regulon activity associated with poorer survival (log-rank
P = 1.03e-07). This representation is very convenient for describing the predictor variable along with sample
attributes (covariates) and survival curves.
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#-- Run KM analysis for regulons
tns1st <- tnsKM(tns1st)
tnsPlotKM(tns1st, regs = "ESR1", attribs = attribs, panelWidths=c(3,1,4), width = 6)
tnsPlotKM(tns1st, regs = "PPARD", attribs = attribs, panelWidths=c(3,1,4), width = 6)

Additionally, in order to study the main effects of survival predictors in a multivariate analysis we use the
tnsCox function, which can adjust the analysis by including confounding factors or other covariates. This
function relates the activity of one regulon to times-to-events in a multivariate, additive Cox proportional
hazards model, and generates a graphic showing the calculated hazard ratios (HR). Supplementary Figure
3e shows that within the 36 regulons there are two subsets with statistically significant hazard ratios (HR
< 1 or HR > 1, 95% CI). The regulons associated with with higher risk have higher activity values in ER-
tumours, particularly basal-like tumors; conversely, regulons associated with lower risk have higher activity in
ER+ tumours (Supplementary Figure 2).
#-- Run Cox analysis for regulons
tns1st <- tnsCox(tns1st)
tnsPlotCox(tns1st, height = 7)
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Supplementary Figure 2: Unsupervised hierarchical clustering of regulon activity profiles across the 997 samples of
METABRIC cohort 1 for the set of 36 TFs associated with genetic risk of breast cancer described in Castro et al. (2016).

5



e
S

am
pl

es

ESR1

1

201

401

601

801

997

−2 −1 0 1 2

E
R

+
E

R
−

Lu
m

A
Lu

m
B

B
as

al
H

er
2

N
or

m
al

S
ur

vi
va

l p
ro

ba
bi

lit
y

0 40 80 120

0.0

0.2

0.4

0.6

0.8

1.0

Positive dES: 539 (99)
undetermined: 106 (23)
Negative dES: 340 (109)

Logrank P: 7.06e-08a

c

S
am

pl
es

Regulon activity (dES)

PPARD

1

201

401

601

801

997

−2 −1 0 1 2

E
R

+
E

R
−

Lu
m

A
Lu

m
B

B
as

al
H

er
2

N
or

m
al

S
ur

vi
va

l p
ro

ba
bi

lit
y

Months

0 40 80 120

0.0

0.2

0.4

0.6

0.8

1.0

Positive dES: 384 (130)
undetermined: 123 (33)
Negative dES: 478 (68)

Logrank P: 2.86e-07

b

d

0.3 1.0 3.0
Hazard Ratio (95% CI)

R
e

g
u

lo
n

s
 a

n
d

 o
th

e
r 

c
o
va

ri
a

te
s

E2F3
ENO1
E2F2

GATAD2A
CEBPB

MTA2
PPARD
FOSL1
TBX19

NFIB
TRIM29
SOX10

YBX1
CBFB

RUNX3
SPDEF

RARA
SNAPC2
ZNF587

AR
ZNF24
FOXA1

MZF1
BRD8
MYB
RB1

AFF3
ZNF434

ESR1
XBP1

GATA3
TCEAL1
ZNF552
YPEL3

LZTFL1
ARNT2
Grade

Age

other covariates
associated, HR<1

not associated
associated, HR>1

Supplementary Figure 3: Univariate and multivariate survival analyses for single regulons. For the ESR1 regulon: (a)
Left: stratification by ESR1 regulon activity (dES) of all 997 samples in METABRIC cohort 1. Samples with inconclusive
regulon activity (i.e. undetermined status) are indicated in grey. Right: ER status and PAM50 subtypes. (b) Kaplan-Meier
survival curves for the dES groups highlighted in (a). Numbers indicate patients in each group and, in curved parentheses,
deceased patients (results reproduced from Castro et al., 2016). (c-d) As in (a,b), for the PPARD regulon. (e) Cox multivariate
analysis for 36 risk-associated regulons, each considered with age, grade, and regulon activity, for disease-specific survival in the
METABRIC cohort 1.

1.7 Identification of proliferation-related regulons

Previous literature has indicated challenges in gene set-based survival analysis. Shimoni (2018) described
a “random bias” that was attributed to a large proliferation signature that affects a substantial proportion
of the genes in the genome. The author implemented a method that removes the bias by adjusting the
gene expression data. The method is largely based on the meta-PCNA signature described by Venet et al.
(2011), which consists of 131 genes that are associated with proliferation in breast cancer. Shimoni (2018)
used the meta-PCNA signature to adjust gene expression for a large number of other cancer types. We used
the meta-PCNA signature in our original study (Castro et al., 2016) to identify regulons associated with
proliferation in breast cancer, following a method that we described in Fletcher et al. (2013). The method
consists of an enrichment analysis where we test which regulons are enriched with the meta-PCNA genes.
Since the meta-PCNA signature was inferred in breast cancer, we can apply it to the METABRIC cohort.

In this example we show how to identify regulons enriched with the meta-PCNA signature. From our 36 risk
TFs, only 3 regulons (E2F2, E2F3 and ENO1) are enriched with the signature. All three are linked to poor
outcomes, consistent with their enrichment with proliferation markers. Please refer to Castro et al. (2016)
and Fletcher et al. (2013) for additional details.
#-- Load meta-PCNA signature available from Fletcher2013b data package
data("miscellaneous")

6



#-- Run MRA analysis pipeline
rtna1st <- tni2tna.preprocess(rtni1st, hits=metaPCNA)
rtna1st <- tna.mra(rtna1st)

#-- Check regulons enriched with meta-PCNA genes
metaPCNA_enriched <- tna.get(rtna1st, what="mra")

Table 1: Top 10 regulons enriched with meta-PCNA signature

Regulon Pvalue Adjusted.Pvalue
PTTG1 1.0e-49 5.7e-47
FOXM1 1.9e-34 5.5e-32
E2F2 6.1e-24 1.1e-21
E2F8 2.1e-23 2.9e-21
HMGB2 1.7e-16 1.9e-14
ILF2 5.3e-13 5.0e-11
VENTX 5.3e-11 4.3e-09
ZNF395 9.1e-11 6.5e-09
TGIF2 1.1e-10 6.6e-09
PURA 7.0e-10 4.0e-08

intersect(metaPCNA_enriched$Regulon, risk.tfs)

## [1] "E2F2" "E2F3" "ENO1"

1.8 Other metrics for assessing regulator activity

There are other tools that provide computational infrastructure to explore regulatory networks. Lefebvre
et al. (2010) and Tarca et al. (2009) developed competing methods to infer sample-specific activities of
curated pathways, called PARADIGM (PAthway Recognition Algorithm using Data Integration on Genomic
Models) and SPIA (Signaling Pathway Impact Analysis), respectively. Both approaches predict pathway
activities in a sample using gene expression and/or other genomic data (e.g. copy number alterations). One
essential aspect of these approaches is that they have been designed to assess activity of curated pathways,
usually represented by sets of genes annotated in a peer-reviewed process dedicated to provide understanding
on, e.g. cells, organisms and ecosystems. Currently a large number of resources provide reference pathway
annotation, for example, KEGG (Kanehisa et al., 2016), Reactome (Fabregat et al., 2018), PID (Schaefer et
al., 2009), Gene Ontology (The Gene Ontology Consortium, 2017) and MSigDB (Liberzon et al., 2015), the
latter representing gene set collections that encompass various other curated pathway resources. However,
neither of these approaches is designed to reconstruct TF-centric regulons for a tissue of interest, and neither
calculates regulon activity on an individual sample basis. To our knowledge, only RTN (Castro et al., 2016;
Fletcher et al., 2013) and VIPER (Alvarez et al., 2016) provide computational infrastructure for that purpose,
both tools using the same principles as the MARINa algorithm (Lefebvre et al., 2010), which is inspired by
the two-tailed GSEA (Lamb et al., 2006). Alvarez et al. (2016) compared 12 regulon activity metrics and
concluded that the three-tailed analytic Rank-based Enrichment Analysis (aREA-3T) algorithm provides
better accuracy and specificity in detecting changes in protein activity after genetic perturbations, closely
followed by GSEA-2T. Both GSEA-2T and aREA-3T algorithms are available in RTNsurvival for sorting
samples in a cohort. Supplementary Figures 3a,b show GSEA-2T results for the ESR1 regulon. To
calculate similar results using aREA-3T:
#-- Compute regulon activity for individual samples using aREA-3T algorithm
tns1st_area <- tnsAREA3(tns1st)
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#-- Sort sample by regulon activity estimated by aREA-3T and GSEA-2T algorithms
regact_area <- tnsGet(tns1st_area, "regulonActivity")$dif
r_gsea <- apply(regact_gsea, 2, rank)
r_area <- apply(regact_area, 2, rank)
plot(r_gsea[,"ESR1"], r_area[,"ESR1"])

#-- Compute regulon activity for individual samples using aREA-3T algorithm
tns1st_area <- tnsKM(tns1st_area)
tnsPlotKM(tns1st_area, regs = "ESR1", attribs = attribs, panelWidths=c(3,1,4), width = 6)

Supplementary Figure 4a shows that aREA-3T and GSEA-2T algorithms are highly concordant in sorting
samples by ESR1 regulon activity. Supplementary Figures 4b,c show a KM analysis run by RTNsurvival
using aREA-3T (compare to Supplementary Figures 3a,b). As the regulon activity scores from the current
aREA-3T implementation follow a more continuous distribution than those from GSEA-2T, aREA-3T provides
clearer boundaries to stratify the cohort into pos vs. neg groups, but less-clear boundaries to assign the
undetermined group; therefore the cohort is simply divided into two groups with positive and negative aREA
scores.
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Supplementary Figure 4: Concordance between aREA-3T and GSEA-2T algorithms in sorting samples in a cohort. (a) The
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GSEA-2T algorithms (x-axis). (b) Left: stratification by ESR1 regulon activity (estimated by aREA-3T) of all 997 samples in
METABRIC cohort 1. Right: ER status and PAM50 subtypes. (c) Kaplan-Meier survival curves for the groups highlighted in
(b). Numbers indicate patients in each group and, in curved parentheses, deceased patients.
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2. TCGA hepatocellular carcinoma cohort (TCGA-LIHC)

2.1 Context

In section 1, we used a precalculated transcriptional network for the METABRIC breast cancer cohort,
which we made available as the Fletcher2013b data package. In section 2, we work with a TCGA cohort.
We walk through how to use RTN and RTNsurvival with harmonized GRCh38/hg38 RNA-seq data, which we
download from the Genomic Data Commons (GDC, https://gdc.cancer.gov) with the TCGAbiolinks package
(Colaprico et al., 2016). We combine the gene expression data with the cohort’s molecular and clinical data,
which we download from the The Cancer Genome Atlas Research Network (2017) supplements. We use
outcomes data that we download from the Cell web site for the Pan-Cancer Atlas clinical data publication
(Liu et al., 2018). We show how to calculate the network from this data with RTN, then how to perform
outcome analysis with RTNsurvival. Our goals are similar to those in section 1.

2.2 Download pre-processed data

To run RTNsurvival for a new cohort, we need a gene expression matrix for the cohort, a list of transcriptional
factors, and patient metadata from the cohort. The patient metadata may consist solely of some outcome
— e.g. overall survival (OS), progression-free interval (PFI), disease-free interval (DFI). While the patient
information must be include at least two variables, time and event, it may also contain more information
that can be used as attributes and covariates in RTNsurvival functions.

First, we’ll download the pre-processed SummarizedExperiment object. All the preprocessing steps, from the
initial GDC download to the final object, are available on the csgroen/RTN_example_TCGA_LIHC repository
on Github. The downloaded object consists of three main components: a gene expression matrix, a patient
metadata data frame and a gene metadata data frame. We will also get a separate object that contains a list
of transcription factors with the necessary annotation.

First, we’ll download the pre-processed SummarizedExperiment object. All the preprocessing steps, from the
initial GDC download to the final object, are available on the csgroen/RTN_example_TCGA_LIHC repository
on Github. The downloaded object consists of three main components: a gene expression matrix, a patient
metadata data frame and a gene metadata data frame. We will also get a separate object that contains a list
of transcription factors with the necessary annotation.
#-- Repository link and file names
repo_link <- "https://github.com/csgroen/RTN_example_TCGA_LIHC/raw/master/"
fname_exp <- "tcgaLIHCdata_preprocessed.RData"
fname_tfs <- "tfEnsembls.RData"

#-- Download TCGA LIHC data
download.file(paste0(repo_link, fname_exp), fname_exp)
load(fname_exp)

#-- Download transcription factor list and pre-process
download.file(paste0(repo_link, fname_tfs), fname_tfs)
load(fname_tfs)

#-- Call libraries
library(RTNsurvival)
library(SummarizedExperiment)
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2.3 Inference of the regulatory network with RTN

The RTN pipeline starts with the construction of a TNI-class object, using the tni.constructor method.
This method takes in a matrix of gene expression and metadata on the samples and genes, as well as a
vector of the regulators to be evaluated. Here, the expression matrix and metadata are available as a
SummarizedExpression object.
#-- TNI constructor
lihcTNI <- tni.constructor(tcgaLIHCdata, regulatoryElements = tfEnsembls)

This method also performs pre-processing to check the consistency of all the given arguments and to maximize
algorithm performance. It returns a TNI (Transcriptional Network - Inference) object. The next steps run
the RTN pipeline to generate the regulons (please refer to Fletcher et al. (2013), Castro et al. (2016) and
Robertson et al. (2017) for additional details). To run in multithreaded mode, we suggest looking at the
tni.permutation and tni.boostrap documentation.
#-- RTN pipeline
#-- Note: this may take some time; for multithreaded mode, please see
#-- 'tni.permutation' or 'tni.bootstrap' documentation
lihcTNI <- tni.permutation(lihcTNI, pValueCutoff = 10^-5, estimator = "spearman")
lihcTNI <- tni.bootstrap(lihcTNI, nBootstraps = 200)
lihcTNI <- tni.dpi.filter(lihcTNI)

The tni.regulon.summary method lets us get information about the regulons reconstructed by our network.
For most calculations, we’ll use the DPI-filtered network, which is enriched with direct regulation relationships.
From the summary below, we see that the median regulon size is 30 targets and the mean size is about 49,
and, while most regulons in the network will be small, some regulons have over 400 targets.
tni.regulon.summary(lihcTNI)

## This regulatory network comprised of 807 regulons.

## -- DPI-filtered network:

## regulatoryElements Targets Edges
## 807 17709 39425
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 12.0 30.0 48.9 64.0 434.0

## -- Reference network:

## regulatoryElements Targets Edges
## 807 17709 1646659
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 137 1376 2040 3622 7807
## ---

2.4 Univariate and multivariate survival analyses with RTNsurvival

For the survival analysis, we’ll define Age and Tumour Stage as covariates for the Cox regression and evaluate
5-year (60 months) overall survival (OS).
#-- RTNsurvival pipeline
lihcTNS <- tni2tnsPreprocess(lihcTNI,

time = "OS.time.months", event = "OS",
endpoint = 60, keycovar = c("Age", "Tumor_Stage"))

lihcTNS <- tnsGSEA2(lihcTNS)
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lihcTNS <- tnsKM(lihcTNS)
lihcTNS <- tnsCox(lihcTNS)

We can explore the Kaplan-Meier and Cox model results compactly in tables.
#-- Explore results
head(tnsGet(lihcTNS, "kmTable"), 10)

Table 2: Top 10 regulons in survival curve differences (G-rho test).

Regulons ChiSquare Pvalue Adjusted.Pvalue
FUBP1 35.91304 0.0e+00 0.0000012
TAL1 34.36671 0.0e+00 0.0000013
YBX1 30.82942 0.0e+00 0.0000053
E2F6 29.10570 1.0e-07 0.0000096
HMGA1 32.48896 1.0e-07 0.0000099
ENO1 31.71557 1.0e-07 0.0000107
GMEB1 27.80588 1.0e-07 0.0000107
ETV5 25.72268 4.0e-07 0.0000276
TBX19 23.25694 1.4e-06 0.0000883
TSC22D4 22.56147 2.0e-06 0.0001142

head(tnsGet(lihcTNS, "coxTable"), 10)

Table 3: Top 10 regulons in Cox Proportional Hazards model.

Regulons HR Lower95 Upper95 Pvalue Adjusted.Pvalue
FUBP1 2.1408242 1.4948719 3.0659003 4.00e-07 0.0002328
YBX1 2.0069439 1.4249945 2.8265538 1.20e-06 0.0003319
HMGA1 1.4307089 1.1916198 1.7177693 2.90e-06 0.0004085
E2F6 2.0915900 1.4349031 3.0488112 2.90e-06 0.0004085
TAL1 0.4488133 0.2940245 0.6850903 6.00e-06 0.0006811
GMEB1 1.9245884 1.3521668 2.7393368 9.40e-06 0.0007730
ZNF408 1.7870618 1.3063348 2.4446946 9.60e-06 0.0007730
Tumor_Stage 1.6178076 1.2370032 2.1158406 1.85e-05 0.0012039
KLF9 0.7333000 0.6161108 0.8727795 2.09e-05 0.0012039
E2F5 1.8708093 1.3156337 2.6602598 2.14e-05 0.0012039

The tnsPlotKM method can provide a more complete picture, showing the dynamic range of the activity of a
regulon, and how other variables (e.g. Stage, mRNA subtypes) are distributed when the cohort is ordered by
activity. In this example, we use Tumor Stage and mRNA-cluster membership (only available for the 196 core
tumour samples, see TCGA, 2017) to get an idea of how samples with low and high HMGA1 activity differ.
#-- Kaplan-Meier panel
tnsPlotKM(lihcTNS, "HMGA1",

attribs = list(c("Stage_I", "Stage_II", "Stage_III", "Stage_IV"),
c("mRNA1", "mRNA2", "mRNA3", "mRNA4", "mRNA5")),

panelWidths = c(2,1,3))
#-- Cox multivariate plot
tnsPlotCox(lihcTNS, "HMGA1", ylab = "Regulons and covariates")

The left-most panel of Supplementary Figure 5a shows the distribution of HMGA1 regulon activity in
the cohort tumours, with low activity at the bottom and high activity at the top. The same order is used for
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Supplementary Figure 5: Regulon-based survival analysis for HMGA1 in TCGA-LIHC. (a) Three-panel Kaplan-Meier plot
for HMGA1. Left: ranking of regulon activity in the samples; Center: Stage and mRNA-cluster covariates along the samples;
Right: Kaplan-Meier curve for regulon activity strata. (b) Cox multivariate analysis with covariates Stage, and Age and HGMA1
regulon activity.

the covariate tracks in the center panel, showing tumour stage and mRNA cluster. Given the distribution of
the tumours, Stage is an interesting covariate for the Cox model. From Supplementary Figure 5b, we see
that even when evaluated with Age and Stage, HMGA1 is still informative of survival and linked to increased
hazard. In this model, each unit increase in HMGA1’s regulon activity corresponds to a 43% higher hazard.

High mobility group A proteins are chromatin remodelers (Sgarra et al., 2018). HMGA1 overexpression
induces oncogenesis and metastasis in cultured cell lines of many phenotypes (Sumter et al., 2016). Indeed, its
overexpression is also linked to poorer prognostic is several cancer types, including hepatocarcinoma (Chang
et al., 2005) (Andreozzi et al., 2016).

For the regulon activity metric, we don’t consider the expression of the gene itself, only of its inferred targets;
hence, it’s a measure of how active a regulator is in a given tumour, not of the regulator’s expression in
that tumour. Here, we show that in addition to HMGA1’s expression being a prognostic marker (see above
publications), its regulon activity is also associated with poorer outcomes.
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3. Conclusions and perspectives

RTNsurvival extends the functionality of the RTN package by finding regulons that are associated with
outcomes like survival or progression. The regulon survival analysis uses information about the state of the
regulon (i.e. the targets of a regulator) to find these associations.

In these examples, we have used transcription factors as examples of regulators. Transcription factors are
particularly well-suited for transcriptional networks, but any regulators whose effect can be reliably measured
at the transcriptional level can be used by RTN and RTNsurvival.

While the multivariate analysis provided by the package considers covariates of the user’s choice, its default
analysis it considers only one regulon at the time with these covariates. (e.g. Supplementary Figure 5b)
For a multivariate survival analysis that considers covariates and more than one regulon at a time, the regulon
activity and all relevant covariates can be recovered from the TNS-class object, as follows.
#-- Get data and bind
full_survData <- tnsGet(lihcTNS, "survivalData")
regulon_activity <- tnsGet(lihcTNS, "regulonActivity")$dif
lihc_data <- cbind(full_survData, regulon_activity)

#-- Example Cox with multiple regulons (FUBP1 and HMGA1)
library(survival)
coxph(Surv(time, event) ~ Tumor_Stage + HMGA1 + FUBP1, data = lihc_data)

## Call:
## coxph(formula = Surv(time, event) ~ Tumor_Stage + HMGA1 + FUBP1,
## data = lihc_data)
##
## coef exp(coef) se(coef) z p
## Tumor_Stage 0.5053 1.6574 0.1038 4.869 1.12e-06
## HMGA1 0.1887 1.2077 0.0906 2.083 0.0372
## FUBP1 -0.3651 0.6941 0.1987 -1.837 0.0662
##
## Likelihood ratio test=27.87 on 3 df, p=3.874e-06
## n= 346, number of events= 116
## (25 observations deleted due to missingness)

This approach can also be used for more complex survival models, such as LASSO, Adaptive LASSO, Elastic
net and others. A LASSO approach was used by Robertson et al. (2017) to identify regulons and other
covariates linked to outcome in bladder cancer. R packages hdnom (Xiao et al., 2016) and caret (Kuhn, 2008)
provide frameworks for these models.

The current implementation of RTNsurvival accepts only regulons identified by RTN ; for a new cohort we
recommend computing regulons with RTN (see section 2).

Given an RTN transcriptional network for a cohort, RTNsurvival allows a user to 1) estimate the regulon
activity of individual samples, 2) generate regulon activity profiles across a cohort, 3) do univariate and
multivariate analyses to associate regulon activity with time-to-event (i.e. outcomes) data. Current
applications include: 1) assessing covariates across a cohort that has been sorted by regulon activity
(Robertson et al., 2017), 2) segregating a cohort for outcomes analysis (Robertson et al., 2017) (Castro et al.,
2016), 3) assessing differences between subtypes (Kamoun et al., 2018), and 4) assessing
homogeneity/heterogeneity within a subtype (Robertson et al., 2017).

The methods implemented in RTNsurvival can also be used with large-scale epigenomic data. For example,
recently we showed that regulon activity profiles were consistent with ATAC-seq chromatin accessibility of
distal enhancers in breast cancer (Corces et al., 2018). This result provides additional support for regulon
activities being a functional readout.

13



Session information

## R version 3.5.2 (2018-12-20)
## Platform: x86_64-pc-linux-gnu (64-bit)
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