

Supplementary Figure 1. Representative Sanger sequencing chromatographs of edited HEK293 cells enriched using TREE- and RoT-based approaches. Sanger sequencing chromatographs of Site-1, Site-2, and Site-3 of GFP-positive, GFP-negative, and unsorted cell populations isolated with TREE- and RoT-based approaches.



**Supplementary Figure 2. TREE allows for base editing of refractory APOE(R158) locus in HEK293 cells.** (a) HEK293 cells were transfected with pEF-GFP, pCMV-BE4-Gam, and sg(TS). Comparison of transfection efficiency (percentage of GFP-positive cells) and editing efficiency (percentage of C-to-T conversion at target nucleotide) in unsorted cell populations at Site-1, Site-2, Site-2, and APOE(R158) locus. (b) Representative Sanger sequencing chromatographs of APOE(R158) locus in GFP-positive, GFP-negative, and unsorted cell populations isolated with RoT-based methods. (c) Representative flow cytometry plot of HEK293 cells in which TREE was applied targeting the APOE(R158) locus. (d) HEK293 cells were transfected with pEF-BFP, pCMV-BE4-Gam, and pDT-sgRNA. Comparison of transfection efficiency (percentage of BFP-positive cells) and editing efficiency (percentage of C-to-T conversion at target nucleotide) in unsorted cell populations at Site-1, Site-2, Site-3, and APOE(R158) locus. (d) HEK293 cells were transfected with pEF-BFP, pCMV-BE4-Gam, and pDT-sgRNA. Comparison of transfection efficiency (percentage of BFP-positive cells) and editing efficiency (percentage of C-to-T conversion at target nucleotide) in unsorted cell populations at Site-1, Site-2, Site-3, and APOE(R158) locus. (e) Representative Sanger sequencing chromatographs of APOE(R158) locus in GFP-positive, GFP-negative, and unsorted cell populations isolated with TREE-based methods.



**Supplementary Figure 3. TREE fluorescent output in HEK293 cells is transient.** (a) HEK293 cells were transfected with pEF-BFP, pCMV-BE4-Gam, and pDT-sgRNA and GFP-positive cells were isolated by flow cytometry. Replated GFP-positive cells were analyzed by fluorescent microscopy and flow cytometry at various time points post-sorting. (b) Representative fluorescent microscopy images of cells prior to cell sorting (D-1, Pre-sort) and various time points (D0, D7, D10) after sorting. (c) Representative flow cytometry plots of (i) untransfected HEK293 cells, (ii) pEF-GFP transfected HEK293 cells, and (iii) TREE-enriched GFP-positive HEK293 cells 10 days after sorting.



Supplementary Figure 4. Analysis of multiplexed edited HEK293 cells using TREE- and RoTbased methods. (a) Representative flow cytometry plot of HEK293 cells in which multiplex TREE was applied simultaneously targeting Site-1, Site-2, and Site-3. (b) Representative Sanger sequencing chromatographs of the Site-1, Site-2, and Site-3 loci in GFP-positive, GFP-negative, and unsorted cell populations isolated with TREE multiplex-based methods. (c) Comparison of base editing efficiencies at Site-1, Site-2, and Site-3 in GFP-positive, GFP-negative, and unsorted cell populations using TREE-based methods to target these sites individually or in a multiplexed manner. n=3; N.S. = not significant.

BG-OT1: C C C T A C A T C G T G C A G T G C T T Untransfected: 94 95 TREE: 95 95 BG-OT2: C C C A A G T A G T G C A G T G C T T Untransfected: 97 90 TREE: 97 94 BG-OT3: A A C C A A G A T G T G C A G T G C T T Untransfected: 95 93 TREE: 91 96 BG-OT4: A A C C A G C G C C T G C A G T G C T T **Untransfected:** 95 96 96 TREE: 95 97 95 BG-OT5: C C C C A T G G C T T G C T G T G C T T Untransfected: 97 91 TREE: 98 96 Site1-OT1: C A C C C A G A C T G A G C A C G T G C Untransfected: 98 97 98 
 RoT:
 97
 98
 98

 REE:
 98
 96
 97
TREE: Site1-OT2: G A C A C A G A C C G G G C A C G T G A Untransfected: 98 95 RoT: 98 97 TREE: 98 97 Site1-OT3: A G C T C A G A C T G A G C A A G T G A Untransfected: 98 98 RoT: 97 97 TREE: 89 97 Site1-OT4: A G A C C A G A C T G A G C A A G A G A Untransfected: 96 96 RoT: 94 96 TREE: 92 93 Site1-OT5: G A G C C A G A A T G A G C A C G T G A Untransfected: 96 95 RoT: 96 95 95 94 TREE: Site2-OT1: G A A C A C A A T G C A T A G A T T G C Untransfected: 80 92 RoT: 97 96 TREE: 94 94 Site2-OT2: G C A G T C T A T G C T T T A T G T T T Untransfected: 90 88 RoT: TREE: 89

Continued on next page.

| Site3-OT1:<br>Untransfected:<br>RoT:<br>TREE: | Т | G | С<br>91<br>93<br>89              | A | C<br>94<br>93<br>90              | Т                   | G | С<br>92<br>93<br>92 | G | G | С | С | G | G | A | G | G | A | G | G |
|-----------------------------------------------|---|---|----------------------------------|---|----------------------------------|---------------------|---|---------------------|---|---|---|---|---|---|---|---|---|---|---|---|
| Site3-OT2:<br>Untransfected:<br>RoT:<br>TREE: | G | G | <mark>С</mark><br>90<br>95<br>94 | Т | <mark>C</mark><br>84<br>91<br>82 | Т                   | G | С<br>93<br>95<br>94 | G | G | С | Т | G | G | A | G | G | G | G | G |
| Site3-OT3:<br>Untransfected:<br>RoT:<br>TREE: | G | G | С<br>92<br>93<br>91              | A | <mark>C</mark><br>96<br>88<br>91 | G                   | A | С<br>95<br>93<br>93 | G | G | С | Т | G | G | A | G | G | Т | G | G |
| Site3-OT4:<br>Untransfected:<br>RoT:<br>TREE: | G | G | <mark>С</mark><br>92<br>94<br>94 | A | Т                                | C<br>97<br>90<br>91 | A | С<br>96<br>94<br>92 | G | G | С | Т | G | G | A | G | G | Т | G | G |
| Site3-OT4:<br>Untransfected:<br>RoT:<br>TREE: | G | G | C<br>98<br>96<br>97              | G | C<br>94<br>94<br>82              | Т                   | G | C<br>95<br>98<br>98 | G | G | C | G | G | G | A | G | G | Т | G | G |

Supplementary Figure 5. Analysis of off-target sites in multiplexed edited HEK293 cells using TREE- and RoT-based methods. GFP-positive cell populations isolated from TREE and RoT approaches were PCR-amplified and subjected to Sanger sequencing on the top predicted off-target loci for the sgRNA sequences for sg(BG) and genomic Sites 1-3. The C nucleotides in red text are potential Cs that can undergo C-to-T conversion within the editing window in the protospacer. The numbers below each C are quantification of the percentage of Cs of the Sanger sequence chromatograms using EditR.



Supplementary Figure 6. Identification of exclusive targeting events in clonal population in edited HEK293 cells using TREE. Representative Sanger sequencing chromatographs of clonal cell populations that contain edits exclusively at the target C and not any other Cs within the editing window.



**Supplementary Figure 7. TREE allows for base editing in hPSCs.** (a) Representative flow cytometry plots in which TREE was employed in hPSCs utilizing (i) untransfected (ii) pCMV-BE4-Gam or (iii) pCMV-AncBE4. (b) Editing efficiency (percentage GFP-positive cells) of targeting in hPSCs line with various amounts of pEF-AncBE4 plasmid and ratios with the sg(BG) vector. n = 3, \* = p<0.05. (c) Representative Sanger sequencing chromatographs of Site-1 in GFP-positive, GFP-negative, and unsorted cell populations isolated with TREE- and RoT-based methods in which pEF-BE4-Gam or pEF-AncBE4 was utilized. (d) Representative flow cytometry plot of hPSCs in which TREE was applied targeting the APOE(R158) locus. (e) Representative Sanger sequencing chromatographs of APOE(R158) locus in GFP-positive, GFP-negative, and unsorted cell populations isolated with TREE-based methods.



**Supplementary Figure 8. TREE fluorescent output in hPSCs is transient.** Representative flow cytometry plots of (i) untransfected hPSCs, (ii) TREE-enriched GFP-positive hPSCs 0 days (iii) 14 days after sorting.

| а           | Untransfected Site-1   | TREE:Site-1                |                   |        |               |  |  |
|-------------|------------------------|----------------------------|-------------------|--------|---------------|--|--|
|             | Editing<br>window PAN  | /I Reads                   | Editing<br>window | PAM    | % of<br>Reads |  |  |
| WT          | GGCCCAGACTGAGCACGTGATG | G 99.7                     | GGCCCAGACTGAGCACG | TGATGG | 5.2           |  |  |
| 18          | GGTCCAGACTGAGCACGTGATG | G 0.1                      | GGTCCAGACTGAGCACG | TGATGG | 0.0           |  |  |
| 17          | GGCTCAGACTGAGCACGTGATG | G 0.1                      | GGCTCAGACTGAGCACG | TGATGG | 0.1           |  |  |
| 16          | GGCCTAGACTGAGCACGTGATG | G 0.1                      | GGCCTAGACTGAGCACG | TGATGG | 0.3           |  |  |
| 12          | GGCCCAGATTGAGCACGTGATG | G 0.0                      | GGCCCAGATTGAGCACG | TGATGG | 0.0           |  |  |
| 18,17       | GGTTCAGACTGAGCACGTGATG | G 0.0                      | GGTTCAGACTGAGCACG | TGATGG | 0.0           |  |  |
| 18,16       | GGTCTAGACTGAGCACGTGATG | G 0.0                      | GGTCTAGACTGAGCACG | TGATGG | 0.0           |  |  |
| 18,12       | GGTCCAGATTGAGCACGTGATG | G 0.0                      | GGTCCAGATTGAGCACG | TGATGG | 0.0           |  |  |
| 17,16       | GGCTTAGACTGAGCACGTGATG | G 0.0                      | GGCTTAGACTGAGCACG | TGATGG | 85.2          |  |  |
| 17,12       | GGCTCAGATTGAGCACGTGATG | G 0.0                      | GGCTCAGATTGAGCACG | TGATGG | 0.1           |  |  |
| 16,12       | GGCCTAGATTGAGCACGTGATG | G 0.0                      | GGCCTAGATTGAGCACG | TGATGG | 0.2           |  |  |
| 18,17,16    | GGTTTAGACTGAGCACGTGATG | G 0.0                      | GGTTTAGACTGAGCACG | TGATGG | 6.2           |  |  |
| 17,16,12    | GGCTTAGATTGAGCACGTGATG | G 0.0                      | GGCTTAGATTGAGCACG | TGATGG | 2.4           |  |  |
| 18,16,12    | GGTCTAGATTGAGCACGTGATG | G 0.0                      | GGTCTAGATTGAGCACG | TGATGG | 0.0           |  |  |
| 18,17,12    | GGTTCAGATTGAGCACGTGATG | G 0.0                      | GGTTCAGATTGAGCACG | TGATGG | 0.0           |  |  |
| 18,17,16,12 | GGTTTAGATTGAGCACGTGATG | G 0.0                      | GGTTTAGATTGAGCACG | TGATGG | 0.1           |  |  |
| b           | Untransfected APOE     |                            | TREE:APOE         |        |               |  |  |
|             | Editing<br>window PAN  | / <sup>% of</sup><br>Reads | Editing<br>window | PAM    | % of<br>Reads |  |  |
| WT          | GAAGCGCCTGGCAGTGTACCAG | G 93.4                     | GAAGCGCCTGGCAGTGT | ACCAGG | 64.2          |  |  |
| 16          | GAAGTGCCTGGCAGTGTACCAG | G 2.5                      | GAAGTGCCTGGCAGTGT | ACCAGG | 5.2           |  |  |
| 14          | GAAGCGTCTGGCAGTGTACCAG | G 0.1                      | GAAGCGTCTGGCAGTGT | ACCAGG | 1.1           |  |  |
| 13          | GAAGCGCTTGGCAGTGTACCAG | G 0.1                      | GAAGCGCTTGGCAGTGT | ACCAGG | 1.0           |  |  |
| 16,14       | GAAGTGTCTGGCAGTGTACCAG | G 1.1                      | GAAGTGTCTGGCAGTGT | ACCAGG | 1.2           |  |  |
| 16,13       | GAAGTGCTTGGCAGTGTACCAG | G 0.4                      | GAAGTGCTTGGCAGTGT | ACCAGG | 1.0           |  |  |
| 14,13       | GAAGCGTTTGGCAGTGTACCAG | G 0.5                      | GAAGCGTTTGGCAGTGT | ACCAGG | 7.0           |  |  |
| 16,14,13    | GAAGTGTTTGGCAGTGTACCAG | G 1.9                      | GAAGTGTTTGGCAGTGT | ACCAGG | 19.2          |  |  |

Supplementary Figure 9. Next generation sequencing (NGS) analysis of allelic outcomes at target sites in hPSCs. NGS analysis for the target site when TREE was applied to edit Site-1 or the APOE(R158) in hPSCs. The number to left of the allelic outcome indicates the position upstream (5') relative to the PAM. Abbreviation: WT = wild-type unedited locus.

Supplementary Table 1. List of sgRNA sequences used in this study.

| Site       | Sequence (5'→3')      |
|------------|-----------------------|
| Site-1     | GGCCCAGACTGAGCACGTGA  |
| Site-2     | GAACACAAAGCATAGACTGC  |
| Site-3     | GGCACTGCGGCTGGAGGTGG  |
| APOE(R158) | GAAGCGCCTGGCAGTGTACC  |
| BFP(H66Y)  | GACCCACGGCGTGCAGTGCTT |
| C10RF228   | GTGCTGTTAGCACCCTGGAAA |

# Supplementary Table 2. List of primers used in this study to amplify on-target sites.

| Primer     | Forward Sequence (5'→3')     | Reverse Sequence (5'→3')  |
|------------|------------------------------|---------------------------|
| Site-1     | ATGTGGGCTGCCTAGAAAGG         | CCCAGCCAAACTTGTCAACC      |
| Site-2     | CCAGCCCCATCTGTCAAACT         | TGAATGGATTCCTTGGAAACAATGA |
| Site-3     | TGGTCTTCTTTCCCCTCCCCTGCCCTCC | GGCCTGGAGGCGGGGGCTCAGAGA  |
| APOE(R158) | GGACGAGACCATGAAGGAGTTGAAGGC  | CCACCTGCTCCTTCACCTCGTCCAG |

## Supplementary Table 3. Parameters for EditR analysis.

| Target<br>Site | Sequencing<br>Direction | Protospacer          | 5' bound            | 3' bound           |
|----------------|-------------------------|----------------------|---------------------|--------------------|
| Site 1         | Forward                 | GGCCCAGACTGAGCACGTGA | GGCCTGGGTCAA        | ттсстттсстстс      |
| Site-1         | Reverse                 | TCACGTGCTCAGTCTGGGCC | GAGGAAAGGAAGCCCTGCT | CAGGCCAGGGCTGGA    |
| Site-2         | Forward                 | GAACACAAAGCATAGACTGC | CCCGCTGGCCCTGT      | TCAGGCTGGCCCGC     |
|                | Reverse                 | GCAGTCTATGCTTTGTGTTC | CCAGCCCGCTGGCCCTGTA | AGCTATTCAGGCT      |
| Site 2         | Forward                 | GTGGCACTGCGGCTGGAGGT | GATGACAGGCAGGGGCA   | CAGCACCAGA         |
| Sile-3         | Reverse                 | ACCTCCAGCCGCAGTGCC   | CCGCGGTGCCCCTGCCT   | AAGCGGAGACTCTGGTGC |
|                | Forward                 | GAAGCGCCTGGCAGTGTACC | CTGCGCAAGCTGCG      | TCGGCGCCCTCGCG     |
| APUE(R158)     | Reverse                 | GGTACACTGCCAGGCGCTTC | GGATGGCGCTGA        | GCCTCGCCTCCCACC    |

# Supplementary Table 4. PCR conditions for each target site analyzed by Sanger sequencing.

|            | Initial donature time | Denature time and | Annealing time and | Extension time and | Final extension  |
|------------|-----------------------|-------------------|--------------------|--------------------|------------------|
| Target     |                       | temperature       | temperature        | temperature        | time and         |
|            | and temperature       |                   | temperature        |                    |                  |
| Site-1     | 98°C, 45 seconds      | 98°C, 10 seconds  | 54°C, 5 seconds    | 72°C, 20 seconds   | 72°C, 10 minutes |
| Site-2     | 98°C, 45 seconds      | 98 °C, 10 seconds | 56°C, 5 seconds    | 72°C, 20 seconds   | 72°C, 10 minutes |
| Site-3     | 98°C, 45 seconds      | 98°C, 10 seconds  | 56°C, 5 seconds    | 72°C, 20 seconds   | 72°C, 10 minutes |
| APOE(R158) | 98°C, 45 seconds      | 98°C, 10 seconds  | 62°C, 5 seconds    | 72°C, 20 seconds   | 72°C, 10 minutes |

Supplementary Table 5. List of primers used in this study to amplify off-target sites. Abbreviations: BG-OT = Off-targets associated with sg(BG), Site1-OT = Off-targets associated with sg(Site-1), Site2-OT = Off-targets associated with sg(Site-2), Site3-OT = Off-targets associated with Sg(Site-3).

| Primer    | Forward Sequence (5'→3')   | Reverse Sequence (5'→3')        |
|-----------|----------------------------|---------------------------------|
| BG-OT1    | GATGCGCTTCCGGAAGACC        | GCTTCTTGAGCTTCTCAGCG            |
| BG-OT2    | GGTAGCATGTTCAGGCACCAG      | CATCCCTAGTACCGAATCCCATATAGC     |
| BG-OT3    | CATCCTCCCACCTAAGCCTTTCAA   | TTGAGTTAATAGCATTATAACAATTTCCACA |
| BG-OT4    | ACTCCTTACAACCGGAAGGCAAAC   | TGGACGTGGTGAAGCCCGTGGTG         |
| BG-OT5    | TAGGTCTCTAGGGGGCCTCTG      | AGGCTGCCCAACAGCCCCACT           |
| Site1-OT1 | TCCCCTGTTGACCTGGAGAA       | CACTGTACTTGCCCTGACCA            |
| Site1-OT2 | TGAGATGTGGGCAGAAGGG        | TTGGTGTTGACAGGGAGCAA            |
| Site1-OT3 | GTCCAAAGGCCCAAGAACCT       | TGAGAGGGAACAGAAGGGCT            |
| Site1-OT4 | GCTCATCTTAATCTGCTCAGCC     | TCCTAGCACTTTGGAAGGTCG           |
| Site1-OT5 | AAAGGAGCAGCTCTTCCTGG       | GTCTGCACCATCTCCCACAA            |
| Site2-OT1 | GTGTGGAGAGTGAGTAAGCCA      | ACGGTAGGATGATTTCAGGCA           |
| Site2-OT2 | TTTTTTGGTACTCGAGTGTTATTCAG | CACAAAGCAGTGTAGCTCAGG           |
| Site3-OT1 | GGCATGGCTTCTGAGACTCA       | CCCCTTGCACTCCCTGTCTTT           |
| Site3-OT2 | GAAGAGGCTGCCCATGAGAG       | TTTGGCAATGGAGGCATTGG            |
| Site3-OT3 | GGTCTGAGGCTCGAATCCTG       | CTGTGGCCTCCATATCCCTG            |
| Site3-OT4 | TTTCCACCAGAACTCAGCCC       | CCTCGGTTCCTCCACAACAC            |
| Site3-OT5 | GCAGGGGAGGGATAAAGCAG       | CACGGGAAGGACAGGAGAAG            |

# Supplementary Table 6. List of primers used in this study for NGS analysis.

| Primer     | Forward Sequence (5'→3')    | Reverse Sequence (5'→3')  |
|------------|-----------------------------|---------------------------|
| Site-1     | ATGTGGGCTGCCTAGAAAGG        | CCCAGCCAAACTTGTCAACC      |
| APOE(R158) | GGACGAGACCATGAAGGAGTTGAAGGC | CCACCTGCTCCTTCACCTCGTCCAG |

# Supplementary Table 7. PCR conditions for each target site subjected to NGS analysis.

| Target     | Initial denature time | Denature time and<br>temperature temperature |                 | Extension time and temperature | Final extension time and |  |
|------------|-----------------------|----------------------------------------------|-----------------|--------------------------------|--------------------------|--|
|            | and temperature       |                                              | temperature     |                                |                          |  |
| Site-1     | 98°C, 45 seconds      | 98°C, 10 seconds                             | 54°C, 5 seconds | 72°C, 20 seconds               | 72°C, 10 minutes         |  |
| APOE(R158) | 98°C, 45 seconds      | 98°C, 10 seconds                             | 62°C, 5 seconds | 72°C, 20 seconds               | 72°C, 10 minutes         |  |

Supplementary Table 8. Comparison of editing efficiency using RoT-based approaches at the same target loci in this manuscript, Komar et al., and Koblan et al.

|                   | Figure 3E Standage-Beier et al. |               |           | Figure 50<br>20 | C Komar et. a<br>)17 Aug 30;3 | al Sci Adv.<br>6(8) | Figure 1C Koblan et. al Nat<br>Biotechnol. 2018 Oct;36(9):843-<br>846 |           |           |  |
|-------------------|---------------------------------|---------------|-----------|-----------------|-------------------------------|---------------------|-----------------------------------------------------------------------|-----------|-----------|--|
|                   | Repo                            | rter of Trans | fection   |                 | No Reporte                    | r                   | Reporter of Transfection                                              |           |           |  |
|                   | Unsorted                        | Reporter-     | Reporter+ | Unsorted        | Reporter-                     | Reporter+           | Unsorted                                                              | Reporter- | Reporter+ |  |
| Site-1<br>(HEK 3) | 21.3±2.9                        | 3.3±2.8       | 40.7±7.0  | ~45             | N/A                           | N/A                 | ~38                                                                   | N/A       | ~55       |  |
| Site-2<br>(HEK 2) | 36.6±3.8                        | 13.3±5.9      | 49.7±5.1  | ~35             | N/A                           | N/A                 | ~20                                                                   | N/A       | ~38       |  |
| Site-3<br>(HEK 4) | 24.0±6.6                        | 7.6±5.0       | 45.3±1.5  | ~45             | N/A                           | N/A                 | ~25                                                                   | N/A       | ~40       |  |