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Appendix A: Notation

Table S1 summarizes the notation used throughout
this study. Overall, we use n = 0, 1, . . . , N to index time
levels (timestamp) and m = 1, 2, . . . ,M to index molec-
ular states. For clarity, we note that t0 is not associated

with any of the intensities in ~ID, ~IA and that our analysis
employs M =∞.

In grouping similar variables, we use: arrows to de-
note lists (traces) over time e.g. ~s = (s1, s2, . . . , sN );
tildes to denote lists over the molecule state-space
e.g. λ̃D = (λDσ1

, λDσ2
, . . . , λDσM ); double tildes to denote

lists of lists over the molecular state space e.g. ˜̃π =
(π̃σ1 , π̃σ2 , . . . , π̃σM , π̃∗); and bars to gather photo-physical
parameters e.g. ω̄D = (ωD0 , ω

D
1 , ω

D
∗ ).

The sttistical notation “X ∼ F”, where X is a random
variable and F is a probability distribution, indicates1–3

that X is sampled from F or simply that X follows the
probability measure (i.e. probability density or probabil-
ity mass function) associated with F .

Appendix B: Summary of Equations

For completeness, below we summarize the entire set
of equations used in the formulation and analysis of sm-
FRET measurements. In generative form and full statis-
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TABLE S1. Summary of notation used in this study.

Variable Description
δt data acquisition time
δτ exposure time
tn time at step n
IDn donor intensity measured at step n
IAn acceptor intensity measured at step n
fDn donor photo-state at step n
fAn acceptor photo-state at step n
sn molecule state at step n
σm distinct molecule state

πσm→σm′ transition probability from σm to σm′ in one step
π∗→σm initial probability for σm
ξD background donor photo-emission rate
ξA background acceptor photo-emission rate
λS donor photo-emission rate without FRET
λDσm donor photo-emission rate of σm with FRET
λAσm acceptor photo-emission rate of σm with FRET
εσm FRET efficiency of σm
λD∗n apparent donor photo-emission rate at step n

λA
∗

n apparent donor photo-emission rate at step n
ε∗n apparent FRET efficiency at step n
ωD0 donor photo-activation, after dark step
ωD1 donor photo-activation, after bright step
ωD∗ donor photo-activation, at initial step
ωA0 acceptor photo-activation, after dark step
ωA1 acceptor photo-activation, after bright step
ωA∗ acceptor photo-activation, at initial step

cD→D donor-to-donor cross-talk coefficient
cD→A donor-to-acceptor cross-talk coefficient
cA→A acceptor-to-acceptor cross-talk coefficient
cA→D acceptor-to-donor cross-talk coefficient
qD quantum efficiency in the donor’s wavelength
qA quantum efficiency in the acceptor’s wavelength
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tical notation, these are

β̃ ∼ GEMσ1,σ2,...(γ) (B1)

π̃∗|β̃ ∼ DPσ1,σ2,...(αβ̃) (B2)

π̃σm |β̃ ∼ DPσ1,σ2,...(αβ̃) (B3)

κDσm ∼ Gamma
(
φDκ , ψ

D
κ /φ

D
κ

)
(B4)

κAσm ∼ Gamma
(
φAκ , ψ

A
κ /φ

A
κ

)
(B5)

κS ∼ Gamma
(
φSκ , ψ

S
κ/φ

S
κ

)
(B6)

θ ∼ Gamma (φθ, ψθ/φθ) (B7)

ρD ∼ Gamma
(
φDρ , ψ

D
ρ /φ

D
ρ

)
(B8)

ρA ∼ Gamma
(
φAρ , ψ

A
ρ /φ

A
ρ

)
(B9)

ωD∗ ∼ Beta
(
ηD∗ , ζ

D
∗
)

(B10)

ωD0 ∼ Beta
(
ηD0 , ζ

D
0

)
(B11)

ωD1 ∼ Beta
(
ηD1 , ζ

D
1

)
(B12)

ωA∗ ∼ Beta
(
ηA∗ , ζ

A
∗
)

(B13)

ωA0 ∼ Beta
(
ηA0 , ζ

A
0

)
(B14)

ωA1 ∼ Beta
(
ηA1 , ζ

A
1

)
(B15)

s1|˜̃π ∼ Categoricalσ1,σ2,... (π̃∗) (B16)

fD1 |ω̄D ∼ Bernoulli(ωD∗ ) (B17)

fA1 |ω̄A ∼ Bernoulli(ωA∗ ) (B18)

sn|sn−1, ˜̃π ∼ Categoricalσ1,σ2,...

(
π̃sn−1

)
(B19)

fDn |fDn−1, ω̄
D ∼ Bernoulli(ωDfDn−1

) (B20)

fAn |fAn−1, ω̄
A ∼ Bernoulli(ωAfAn−1

) (B21)

IDn |µDn ∼ Poisson
(
µDn δτ

)
(B22)

IAn |µAn ∼ Poisson
(
µAn δτ

)
(B23)

From those: Eqs. (B3)–(B5) apply for m = 1, 2, . . . ,
Eqs. (B19)–(B21) apply for n = 2, . . . , N , and
Eqs. (B21)–(B22) apply for n = 1, . . . , N .

According to the parametrization of the
Gamma(φ, ψ/φ) probability distribution we em-
ploy, φ is the usual shape parameter, and ψ is the mean
value.

Appendix C: Induced Priors on FRET Efficiency and
Emission Rates

Under the Gamma priors employed on θ and
κS , κDσm , κ

A
σm , ρ

D, ρA (see App. B), the induced
(i.e. marginal) priors on FRET efficiency and photo-
emission rates can be obtained by appropriate trans-
formations of random variables4. Specifically, the

associated prior probability densities, after the involved
calculus, become

P (εσm) ∝

(
1
εσm
− 1
)φDκ −1

(
1 +

ψAκ φ
A
κ

ψDκ φ
D
κ

(
1
εσm
− 1
))φDκ +φAκ

ε2σm

(C1)

P
(
λDσm

)
∝
Kφθ−φDκ

(
2
√

φθφDκ
ψθψDκ

λDσm

)
(
λDσm

)1−φθ+φ
D
κ

2

(C2)

P
(
λAσm

)
∝
Kφθ−φAκ

(
2
√

φθφAκ
ψθψAκ

λAσm

)
(
λAσm

)1−φθ+φ
A
κ

2

(C3)

P
(
λS
)
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(
2
√

φθφSκ
ψθψSκ

λDS

)
(λS)

1−φθ+φ
S
κ

2

(C4)

P
(
ξD
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2
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φθφDρ
ψθψDρ

ξD
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(ξD)
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φθ+φ
D
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2

(C5)

P
(
ξA
)
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(
2

√
φθφAρ
ψθψAρ

ξA
)

(ξA)
1−

φθ+φ
A
ρ

2

(C6)

where Kφ denotes the modified Bessel function of the
second kind5 and, due to clarity, normalization constants
in all densities are omitted.

In the case of φDκ = φAκ and ψDκ = ψAκ , the prior on εσm
takes the form of a Beta probability distribution, which
becomes non-informative (uniform) under φDκ = φAκ = 1.
The prior on the photo-emission rates are already in the
form of K probability distributions6.

Appendix D: Computational Scheme

A fully working version of the method described in this
study, termed bl-ICON, in Matlab source code and GUI
formats, is available in the Supplemental Material.

As mentioned in Sec. , the implementation gen-
erates samples from the posterior probability distri-

bution P
(
θ, ρD, ρA, κ̃D, κ̃A, ˜̃π, ω̄D, ω̄A, ~s, ~fD, ~fA|~ID, ~IA

)
through an MCMC scheme7,8 that relies on Gibbs sam-
pling.

Specifically, for the nonparametric variables, as in pre-
vious studies9–11, we use a weak limit approximation that
replaces Eq. (13) with:

β̃ ∼ Dirσ1,σ2,...,σM

( γ
M
,
γ

M
, · · · , γ

M

)
. (D1)
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The existing statistical theory9,10 ensures that, for suffi-
ciently large M , Eq. (D1) yields estimates that are indis-
tinguishable from Eq. (13).

Under Eq. (D1), our implementation generates poste-
rior samples by iterating the following Gibbs steps:

Step 1: Update fluorophore and molecule states

(~fD, ~fA, ~s) jointly using forward filtering-backward
sampling12? .

Step 2: Update the non-parametric base β̃ as described
previously9.

Step 3: Update transition probabilities ˜̃π, π̃∗ and photo-
switching probabilities ~ωD, ~ωA.

Step 4: Update the reference photo-emission rate θ.

Step 5: Update photo-emission background ρD, ρA and
fluorophore κ̃D, κ̃A, κS multipliers jointly using
a Hamiltonian Monte Carlo13,14 or Metropolis-
Hastings-within-Gibbs7,8 steps.

Due to the conjugacies2 Categorical-Dirichlet and
Poisson-Gamma, sampling of all variables in steps 3 and
4 is achieved directly.

Fine details of the outlined implementation can be
found in the bl-ICON’s source code, available in the
Supplemental Material
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