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1. Exponential integrate-and-fire neuron model

The exponential I&F model is specified by Eqs. (5) and (6) in Methods section “I&F neuron models” with
function f defined by

f(V ) :=
∆T

τm
exp

(
V − VT

∆T

)
− V

τm
, (1)

where ∆T is the threshold slope factor and VT denotes the effective threshold voltage. The exponential
term in Eq. (1) effectively approximates the rapidly increasing Na+ current at spike initiation [1] and yields
an improved fit to intracellular measurements of current-voltage relationships (typically obtained in-vitro)
compared to the leaky I&F model [2, 3]. The value of Vs does not play an important role as long as it is
sufficiently larger than the effective threshold VT. In fact, when V increases beyond VT, it diverges to infinity
in finite time due to the exponential term, which defines a spike. In practice, however, the spike is said
to occur when V reaches Vs. The exponential I&F model used here is further equipped with an absolute
refractory period of length Tref , during which V (t) is clamped at Vr.

A change of VT or ∆T in the exponential I&F model can be completely compensated in terms of spiking
dynamics by appropriate changes of µ, σ, Vr and Vs. This can be seen using the change of variables
Ṽ := (V − VT)/∆T. Consequently, the relevant parameters for inference from spike train data are µ, σ, τm,
Vr and Tref .

2. Numerical solution for ISI density pISI

Below we present two numerical solution schemes: the first one uses a finite volume discretization and is
generally applicable for arbitrary variations of the input parameters, the second one uses the Fourier transform
and is suitable for small amplitude variations of the parameters. Depending on the model scenario the latter
scheme may be computationally more efficient than the former. Python code for both numerical schemes is
available at https://github.com/neuromethods/inference-for-integrate-and-fire-models.

2.1 Solution based on finite volume discretization

This method employs a recently developed finite volume numerical scheme with implicit time discretization
and Scharfetter-Gummel flux approximation, adapted from [4] for the first passage time problem. It provides
an accurate solution of Eqs. (9)–(13) in Methods section “Method 1: conditioned spike time likelihood” for
arbitrary variations of the mean input. In brief, we first discretize the domain [Vlb, Vs] into NV equidistant
grid cells [Vm− 1

2
, Vm+ 1

2
] with centers Vm, m ∈ {1, . . . , NV }, V1 < V2 < · · · < VNV

, where V 1
2

= Vlb and

VNV + 1
2

= Vs are the out-most cell borders. Within each cell the numerical approximation of pV (V, s) is

assumed to be constant and corresponds to the average value denoted by pV (Vm, s). Integrating Eq. (9) over
the volume of cell m, and applying the divergence theorem, yields

∂

∂s
pV (Vm, s) =

qV (Vm− 1
2
, s)− qV (Vm+ 1

2
, s)

∆V
, (2)
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where ∆V = V2 − V1. To solve Eq. (2) forward in time (represented by the ISI variable s) the fluxes at the
borders of each cell are approximated using the first order Scharfetter-Gummel flux [5],

qV (Vm+ 1
2
, s) = vm+ 1

2
(s)

pV (Vm, s)− pV (Vm+1, s) exp
(
−vm+ 1

2
(s)∆V/D

)
1− exp

(
−vm+ 1

2
(s)∆V/D

) , (3)

where vm+ 1
2
(s) = f(Vm+ 1

2
) + µISI(s) and D = 1

2σ
2 denote the drift and diffusion coefficients, respectively.

For the time discretization we rewrite Eq. (2) (with Eq. (3)) in vectorized form and approximate the
involved time derivative as first order backward difference to ensure numerical stability. This yields in each
time step of length ∆s a linear system for the vector pn+1 of probability density values at sn+1, given the
values pn at the previous time step sn, with vector elements pnm = pV (Vm, sn),

(I− ∆s

∆V
Gn)pn+1 = pn, (4)

where I is the identity matrix and Gn ∈ RNV ×NV is a tridiagonal matrix that contains the discretization
of the membrane voltage (cf. Eqs. (2), (3)), including the absorbing and reflecting boundary conditions
(Eqs. (12) and (13) of Methods section “Method 1: conditioned spike time likelihood”).

The ISI density, Eq. (14), in this representation is obtained by evaluating the flux, Eq. (3) above, at
the spike voltage Vs, taking into account the absorbing boundary condition, Eq. (12), and introducing an
auxiliary ghost cell [6] with center VNV +1, which yields

pISI(sn+1|µISI[0, sn],θ) = qV (VNV + 1
2
, sn+1) = vNV + 1

2
(sn)

1 + exp(−vNV + 1
2
(sn)∆V/D)

1− exp(−vNV + 1
2
(sn)∆V/D)

pn+1
NV

. (5)

For additional details we refer to [4] (incl. supplemental material therein). Note that this method also allows
for the variation of other parameters, in addition to the mean input, within the ISI. Naturally, the finite
volume scheme can be used to compute the first order approximation (15) for small amplitude variations of
the mean input in a straightforward way: using J = 0 for p0ISI, and a small value J > 0 to calculate pISI, to
obtain p1ISI ≈ (pISI− p0ISI)/J . An alternative method to compute p0ISI and p1ISI, which may be computationally
more efficient in certain cases, is presented in the next section.

2.2 Solution for weak input perturbations based on Fourier transform

The method described below is inspired by [7] and provides a solution of Eqs. (9)–(13) in Methods section
“Method 1: conditioned spike time likelihood” for constant mean input, or small amplitude variations of
it, through a perturbative approach. It extends the technique proposed in [7] to the case of time-varying
mean input within the ISI, and can be adjusted for small amplitude variations of other parameters in a
straightforward way.

We consider µISI(s) = µ0
ISI + Jµ1

ISI(s) with small |J | according to Eq. (16). The solution of the first
passage time system to first order in J can be expressed as pV (V, s) ≈ p0V (V, s) + Jp1V (V, s). We insert
this in the Fokker-Planck system, Eqs. (9)–(13), and neglect terms of order > 1 in J . The resulting
system is then Fourier-transformed over time using separation of variables, pV (V, s) = x(V )y(s), such that
p̂V (V ;ω) = F [pV (V, s)] = x(V )ŷ(ω), with Fourier transform and the inverse transform defined by

ŷ(ω) := F [y(s)] =

∫ ∞
−∞

y(s)e−iωsds, y(s) = F−1[ŷ(ω)] =

∫ ∞
−∞

ŷ(ω)

2π
eiωsdω, (6)

where ω denotes angular frequency. This yields the following two (coupled) systems, one for the steady-state
solution p̂0V (V ;ω),

dq̂0V
dV

= −iωp̂0V (7)

dp̂0V
dV

=
2

σ2

(
[f(V ) + µ0

ISI] p̂
0
V − q̂0V

)
(8)
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subject to

p̂0V (Vs;ω) = 0, lim
V→−∞

q̂0V (V ;ω) = 0 (9)

lim
V↘Vr

q̂0V (V ;ω)− lim
V↗Vr

q̂0V (V ;ω) = 1 (10)

and one for p̂1V (V ;ω),

dq̂1V
dV

= −iωp̂1V (11)

dp̂1V
dV

=
2

σ2

(
[f(V ) + µ0

ISI] p̂
1
V + ĥ(V ;ω)− q̂1V

)
(12)

with function ĥ(V ;ω) = F [µ1
ISI(s)p

0
V (V, s)], subject to

p̂1V (Vs;ω) = 0, lim
V→−∞

q̂1V (V ;ω) = 0. (13)

The ISI density (in the frequency domain) is then given by

p̂ISI(ω) ≈ p̂0ISI(ω) + Jp̂1ISI(ω) = q̂0V (Vs;ω) + Jq̂1V (Vs;ω). (14)

We solve the linear ordinary differential equations (7)–(13) above for each fixed frequency ω by splitting the
solutions,

p̂0V (V ;ω) = p̂0ISI(ω)p̂0α(V ;ω) + p̂0β(V ;ω), q̂0V (V ;ω) = p̂0ISI(ω)q̂0α(V ;ω) + q̂0β(V ;ω) (15)

and analogously for p̂1V (V ;ω), q̂1V (V ;ω). The components (p̂0α, q̂
0
α) and (p̂0β , q̂

0
β) respectively solve Eqs. (7)–(8)

with p̂0α = 0, q̂0α = 1 and p̂0β = q̂0β = 0 at V = Vs and limV↘Vr
q̂0β − limV↗Vr

q̂0β = 1. The components (p̂1α, q̂
1
α)

and (p̂1β , q̂
1
β) solve Eqs. (11)–(12) with p̂1α = 0, q̂1α = 1 and p̂1β = q̂1β = 0 at V = Vs. These solution components

can be conveniently computed by backward integration from Vs to a sufficiently small lower bound Vlb < Vr.
We then obtain p̂0ISI and p̂1ISI by satisfying the reflecting boundary conditions (in (9) and (13)):

p̂0ISI(ω) = −
q̂0β(Vlb;ω)

q̂0α(Vlb;ω)
, p̂1ISI(ω) = −

q̂1β(Vlb;ω)

q̂1α(Vlb;ω)
. (16)

The ISI density in the time domain is finally calculated by the inverse transform, pISI(s|µISI[0, s],θ) =
F−1[p̂ISI(ω)] using Eqs. (14) and (16).

In practice, we first solve the steady-state system (7)–(10), evaluate the function ĥ which appears in
Eq. (12) and then solve the system for the change in ISI density due to the perturbation, (11)–(13). Note

that knowledge of µ1
ISI(s) for s ≥ 0 is required to calculate ĥ. If the input perturbations are given by delta

pulses (as for the networks in Results section “Inference of synaptic coupling”) the calculation of ĥ is greatly

simplified; e.g., for a pulse at s = s0, µ1
ISI(s) = δ(s− s0) we have ĥ(V ;ω) = e−iωs0p0V (V, s0).

3. Related I&F-based method for benchmarks

We considered the approach from [8] for comparison. This method infers the parameters of a generalized
leaky I&F model with spike history dependence in response to a fluctuating background input and a time-
varying stimulus by maximizing the spike train likelihood. For this purpose an approximation based on the
Fokker-Planck equation is used [9]. The method is applicable to the model scenarios in Results sections
“Inference of background inputs”, “Inference of input perturbations” and “Inference of neuronal adaptation”.
We ensured equal conditions for the benchmarks in terms of model dynamics, parameters to be estimated,
amount of observed data and computational resources. An efficient implementation in Matlab with integrated
C/C++ code for accelerated program execution was used for the method from [8]; the code is available at
http://pillowlab.princeton.edu/code GIF.html. All tests were performed on the same personal computer.
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Specifically, the model from [8] adapted for our benchmarks involves Eqs. (5) and (7) in Methods section
“I&F neuron models”, where the time-varying mean input µ(t) consists of three additive components: a
constant baseline µ, perturbations given by the convolution of the kernel k(t) with the sequence of perturbation
pulses x(t) =

∑
l δ(t− t̃l), i.e., k ∗ x(t) :=

∫∞
0
k(τ)x(t− τ)dτ , and spike history-dependent input given by the

convolution of kernel h(t) with the spike train s(t) =
∑
k δ(t− tk), i.e., h ∗ s(t). The kernels k(t) and h(t)

were parametrically described using a particular set of basis functions (raised cosines with log scaling of the
time axis; for details see [8]). To ensure equal numbers of estimated parameters for the different methods
we used two basis functions for each kernel, whose weights were the parameters to be inferred. The basis
functions were selected to yield, when equally weighted, a kernel shape that is similar to the shape of the
respective equivalent kernel in our description. The selected basis functions and resulting kernels are shown
in Supplementary Figs. 3e and 8d.

For benchmarks on inference of background inputs (cf. Results section “Inference of background inputs”)
we omitted the perturbation and spike history components, k(t) = h(t) = 0; for inference of input perturbations
(cf. Results section “Inference of input perturbations”) we set h(t) = 0 and measured detection sensitivity
as for methods 1a and 2; for inference of neuronal adaptation (cf. Results section “Inference of neuronal
adaptation”) we set k(t) = 0.

4. Ground truth connection labels from in-vivo data

(Mono)synaptic connections were assumed to produce excess synchrony above baseline co-modulation in a
short interval following PYR spikes. To generate estimated ground truth connection labels we adopted the
approach in [10]. A CCG (0.4 ms binning) was computed for each PYR-INT pair using the evoked PYR
spikes. For positive labels the peak of the CCG in the interval [0.8, 2.8] ms needed to exceed that from the
slowly co-modulated baseline, and it needed to be significantly larger than the largest peak in the anticausal
direction (short negative lags). The lower frequency baseline was computed by convolving the observed CCG
with a partially hollow Gaussian kernel, with a standard deviation of 10 ms and a hollow fraction of 60%.
We estimated the probability of obtaining a spike count sc of n as observed (or higher) in the mth time lag
within [0.8, 2.8] ms of the CCG, given the expected, low frequency baseline rate λs(m) using the Poisson
distribution with a continuity correction,

Pfast(sc(m) ≥ n|λs(m)) = 1−
n−1∑
k=0

λks (m)e−λs(m)

k!
− λns (m)e−λs(m)

n! 2
. (17)

Similarly, we estimated the probability of obtaining the observed spike count n (or higher) in the mth time lag
within [0.8, 2.8] ms of the CCG as expected from the maximum rate λa across negative lags within [−2, 0] ms
using the Poisson distribution with a continuity correction,

Pcausal(sc(m) ≥ n|λa) = 1−
n−1∑
k=0

λkae
−λa

k!
− λna e

−λa

n! 2
. (18)

Connections were labeled as synapses if Pfast < 0.001 and Pcausal < 0.0026 for all (binned) lags in [0.8, 2.8] ms,
according to the rigorous criterion defined in [10].
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Supplementary Figures
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Supplementary Figure 1. Estimation and benchmark results using simulated data of single-cell spon-
taneous activity. a: ISI and membrane voltage histograms corresponding to the example in Fig. 1a, together with
the densities pISI and pV for τm estimated or set to wrong values (true τm = 20 ms). b, top: spike rate and ISI CV as
a function of µ; below: standard deviation of estimates for µ, σ and τm, respectively, according to the Cramer-Rao
bound for K = 1000. c: 25th-75th percentile (central 50 %) of relative errors between estimated and true parameter
values for µ, σ and τm as a function of number of spikes; top: results from method 1, bottom: results from the
method described in [8]. d: central 50 % of computation times corresponding to the estimations in c (for details
see Supplementary Methods section 3). e: same as Fig. 1a,b for the exponential I&F model instead of the leaky
I&F model. Membrane voltage histogram and pV reflect non-refractory times. Parameter values were Vs = 30 mV,
Vr = 0 mV, τm = 20 ms, ∆T = 1.5 mV, VT = 15 mV, µ = 1 mV/ms, σ = 3.5 mV/

√
ms, ∆T = 1.5 mV, Tref = 3 ms

and K = 400.
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Supplementary Figure 2. Correlation between estimated input parameters and empirical input statis-
tics from in-vitro ground truth data. Pearson correlation coefficient % between estimated and empirical input
statistics for all PYRs and INTs, and for two stimulus durations: 5 s-long simuli (cf. Fig. 2c) and 15 s-long stimuli
(corresponding to 3 repetitions of 5 s stimuli with equal statistics).
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Supplementary Figure 3. Estimation and benchmark results for input perturbations using simulated
data. a: 25th-75th percentile (central 50 %) of relative errors between estimated and true parameter values for J (left)
and τ (center) as a function of true J using methods 1a (red) and 2 (blue), and for the two perturbation parameters
using the method from [8] (right). Estimates are based on spike trains of length 100 s (for details see Supplementary
Methods section 3). True τ = 10 ms. b: central 50 % of relative errors between estimated and true parameter values
for µ, σ and τm from our approach (left) and the one from [8] (right) using the same data as in a. Note that the
parameters of input perturbations as well as µ, σ and τm were simultaneously inferred. c: detection sensitivity as a
function of J for the methods used in a (solid lines) and a CCG-based method (dashed line, cf. Fig. 3d). d: central
50 % of computation times (left) and numbers of observed spikes and events (right) as a function of J , corresponding
to the estimations in a–c. Note that slight asymmetries in a–d for excitatory compared to inhibitory perturbations
may be due to differences in the number of observed spikes. e, left: true time series of mean input perturbation
triggered at time 0 for J = 0.2 mV/ms (green) and reconstructions from the methods used in a (gray; best 75%
according to the combined relative errors in a); right: selected basis functions for the method from [8].
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Supplementary Figure 4. Impact of weak input perturbations on the expected ISI. a: change of expected
ISI due to a weak input perturbation that causes a sudden deflection of 0.5 mV in the membrane voltage (〈ISI〉pert
- 〈ISI〉) as a function of time tpert within the ISI at which the perturbation occurs, for different background input
statistics. b, top: spike rate and ISI CV as a function of µ for different values of σ (cf. Fig. 1e); below: corresponding
maximal (relative) change of expected ISI caused by an input perturbation (as in a).
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Supplementary Figure 5. Additional estimation results for synaptic coupling strengths using simulated
data. a: density of estimated vs. true coupling strengths from a network of N = 50 neurons, with Pearson correlation
coefficient % and mean absolute error MAE between true and estimated coupling strengths indicated; otherwise as in
Fig. 5b. b: average correlation coefficient 〈%〉 (top) and average maximal BACC 〈max BACC〉 (center) across the
5 networks in Fig. 5g as a function of recording duration for the three methods (I&F, GLM, CCG); average mean
absolute error 〈MAE〉 between true and estimated coupling strengths and delays, respectively, for the I&F method
(bottom). c–f : detailed inference results from the three methods (as shown in Fig. 5d, 5e right and 5f) corresponding
to the networks in Fig. 5h–k as indicated. Results from each 5 networks are shown; ROC curves represent averages.
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CCG method GLM method I&F method I&F GLM CCGa
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conn. prob. 0.1,  1 ms delay,  strong coupling 

conn. prob. 0.2,  1 ms delay,  strong coupling 

Supplementary Figure 6. Estimation results for strong synaptic coupling using simulated data. a,b:
inference results from the three methods (as shown in Fig. 5d, 5e right, 5f and 5h–k left) for subsampled networks of
Ntot = 1000 (500 excitatory, 500 inhibitory) neurons with connection probability of 0.1 (a) and 0.2 (b); otherwise as
in Fig. 5h. Results from each 5 networks are shown; ROC curves represent averages.

b

c
max. BACC=0.94 
(max. ACC=0.95)

max. BACC=0.83 
(max. ACC=0.92) 
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(max. ACC=0.94)
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a
spontaneous PYR spikes
I&F method

spontaneous PYR spikes
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Supplementary Figure 7. Additional estimation results for synaptic couplings using in-vivo data. a:
ROC curves across 78 PYR-INT pairs using the spontaneous PYR spikes for σG = 1 s. Maximal (balanced) accuracy
values are indicated. b: ROC curves as in a, using the model-free CCG method instead of the I&F method. c:
histogram of CCG peak z-score values for all 78 PYR-INT pairs with true labels (derived using the evoked spikes)
indicated.
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Supplementary Figure 8. Estimation and benchmark results for adaptive model neurons using simu-
lated data. a, left: 25th-75th percentile (central 50 %) of estimated values for ∆w as a function of true ∆w using
method 1; center, right: central 50 % of relative errors between estimated and true parameter values for ∆w and τw
(center), and for the two adaptation parameters using the method from [8] (right). Estimates are based on 2000 spikes
(for details see Supplementary Methods section 3). True τw = 100 ms. b: central 50 % of relative errors between
estimated and true parameter values for µ and σ from method 1 (left) and the method from [8] (right) using the
same data as in a. Note that the adaptation parameters as well as µ and σ were simultaneously inferred. c: central
50 % of computation times as a function of ∆w, corresponding to the estimations in a and b. d, left: true time
series of adaptation current triggered by a spike at time 0 for ∆w = 0.5 mV/ms (green) and reconstructions from the
methods used in a (gray; best 75% according to the combined relative errors in a); right: selected basis functions for
the method from [8].
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Supplementary Figure 9. Correlation between estimated input parameters and empirical input statis-
tics for adaptive and nonadaptive models. Pearson correlation coefficient % between estimated and empirical
input statistics for the I&F model with adaptation (magenta symbols) and without adaptation (black symbols) for all
PYRs and INTs.

Supplementary Tables

Supplementary Table 1. Computation times for estimation examples.

Figure 1a 3a† 5a‡ 5c‡ 7b

Method 1 1a 2 1a 1a 1
Multiprocessing no no no yes yes no
Estimation time (min) < 0.2 < 10 < 2 < 17 < 117 < 7

All computations were performed on a hexa-core personal computer. †Applies to each of the two examples.
‡Computation time scaled sub-linearly with recording time (hence with number of observed spikes) and
supra-linearly with number of observed neurons.
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