
Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

The authors develop a set of techniques for fitting integrate-and-fire neuron models to data, using a 

maximum-likelihood approach based on spike times. The techniques involve solving or approximating 

a Fokker-Planck equation to evaluate inter-spike-interval likelihoods. The techniques are validated 

using simulated networks and data from mouse hippocampal neurons for which ground-truth 

connectivity data is available. Overall, I think this is a valuable application of these Fokker-Planck 

approaches to an inference problem, and suggests more principled ways of building integrate-and-fire 

models to match to data. The paper is well-written and clear, so I have only a few comments.  

 

Comments:  

1) In Section 2, why was the membrane time constant set to the true value? Could it not also be 

estimated?  

 

2) I would like to see an expanded discussion of the issue of non-stationarity (page 10) in the main 

text. This seems like it would be a major issue for any in vivo recording. Currently, the text mentions 

two methods and an analysis of variations of mean input at three different timescales, but the 

information provided is insufficient to understand what actually is being performed. The Methods 

section is more helpful, but could use additional justification of the methods (why three timescales, 

and what is the justification for the "combined timescale" estimate?).  

 

3) I was unclear why the input standard deviation in Fig. 7 wouldn't change between models with and 

without adaptation. Is there a reason that the two parameters should be completely decoupled from 

one another in the inference? This should be explained more fully.  

 

 

 

Reviewer #2:  

Remarks to the Author:  

The authors develop maximum likelihood based approaches to fitting integrate-and-fire models to 

extracellular recordings, specifically approaches that allow to use data that consists solely of spike 

times. Since population extracellular recordings are far more common than access to the membrane 

voltage of a population of neurons, there is value in such approaches.  

 

My main concern is that the paper addresses a problem that has been repeatedly considered in prior 

work, yet is unclear about comparison to existing techniques. The paper considers multiple inference 

scenarios and I am still unclear as to in which (if any) of these scenarios does the approach allow 

biologically interesting information to be learned in a qualitatively superior way to that possible in 

previous approaches. I would also be interested if that is not the case, and the approach is just more 

computationally efficient, quantitatively more accurate, can be used with less data, or perhaps just 

more principled. But whichever of these claims are true they need to be clearly described and 

quantified for each scenario considered. As the paper stands I found this information too difficult to 

parse out and cannot recommend publication in its current format.  

 

Major comments:  

1. As stated above, my main concern is that I found it extremely difficult to parse out what specifically 

this approach enables that cannot be done with previous methods, or the specific advantages over 

existing methods. The paper considers multiple scenarios:  

i. Mean and standard deviation of input to a single neuron.  



a. Synthetic data  

b. In-vitro  

ii. EPSP shaped perturbations  

iii. Synaptic inference  

a. Simulation fully observed  

b. Simulation partially observed  

c. In-vivo  

iv. I&F models with adaptation  

v. Estimation of neuronal inputs from in-vivo recordings  

The authors did include quantitative comparison to existing techniques in the results or figures. Some 

of these, for instance item i, have been directly addressed by previous approaches and many of these 

could have easily been compared to a variety of previous approaches, either more principled 

approaches or more straightforward approaches. The authors often report high accuracy for their 

results, but such numbers are very difficult to interpret as absolute numbers without reference to a 

comparison value. For each item the authors must either present the most pertinent comparison, or 

ideally comparisons to multiple existing techniques, while including straightforward extensions where 

necessary (e.g., grid searches for simple unknown but necessary parameters such as mean input 

current). Then the authors can clearly layout what specifically their approach improves: accuracy, 

computation time, amount of data necessary, etc. Where there is no substantial improvement, as I 

would expect to be the case for instance in item i, the authors can either present this as a useful 

introductory analysis, or claim that they prefer their technique since it is more principled, or 

something else. But this has to be much clearly and explicitly presented per result and not just in a 

somewhat vague Discussion paragraph.  

 

2. Related to this point, Figure 5 which discusses inference of synaptic connectivity on experimental 

data, appears to describe the results that are closest to what the paper aims to do, or at least that is 

what I understand inferring microcircuits, and the data described come with associated semi-ground 

truth. Therefore the lack of comparison here is most frustrating. The ROC curves look very good, 

which seems impressive, yet the empirical CCG presented shown in bottom left of Fig. 5A also looks 

very different from background, leading one to assume that straightforward techniques would also 

work quite well. As a matter of fact, reference 35, from which the authors took the data, also claims 

accurate inference of connections from CCG itself. Perhaps the current approach does better, but 

explicit comparison has to be made to allow a reader to appreciate that.  

 

3. I couldn’t understand the results related to subsampling observed neurons from a larger simulated 

network, which is the more relevant regime to look at for simulated data. The authors simply state 

that: “Estimation accuracy of connectivity structure and coupling strengths was surprisingly good for 

sufficiently long simulated recordings in this scenario.”. This is indeed surprising and requires more 

clarification.  

 

4. The logic of section 6 seemed strange to me. The main point seems to be Figure 8E-F, the balance 

of excitation and inhibition inferred by their model, but the authors go through a path of claiming that 

their models are effective that is unclear and not entirely convincing to me. The authors assess their 

approach by comparing it to simpler models, but these models appear to be rather weak models: “To 

assess whether the complexity of this model is adequate given the available data we considered 

simpler models for comparison. For spontaneous activity, we compared our model to a Poisson 

process with constant rate. For click-evoked activity, we examined two additional models: (i) the leaky 

I&F model with only one (either excitatory or inhibitory) click-triggered input described by a delayed 

alpha function; (ii) a model in which the stimulus induced only a constant additional input.” Each of 

these comparisons takes out a key component that is very likely to be important and therefore neither 

of these comparisons seem very informative. It was difficult for me therefore to judge the 



reasonableness of Figure 8E-F. The authors make strong claims regarding this point: “Fitting only 

spike-trains, our approach therefore uncovers fundamental constraints on synaptic inputs and the 

local microcircuit without access to the values of the intra-cellular membrane potential.” Accordingly, 

more support and explanation would be helpful.  

 

5. Though this comment is subjective, I found the paper’s tendency to oversell its results unappealing. 

Specifically, the paper pushes some of the main terminology beyond their natural usage. First, the 

authors refer to I&F models as mechanistic models. This is simply not the case, it is a 

phenomenological model. I refer the authors to the first paragraph of Abbott (1999) on the I&F model: 

“In 1907, long before the mechanisms responsible for the generation of neuronal action potentials 

were known, Lapicque developed a neuron model that is still widely used today [3,7]. This remarkable 

achievement stresses that, in neural modeling, studies of function do not necessarily require an 

understanding of mechanism. Significant progress is possible if a phenomenon is adequately 

described, even if its biophysical basis cannot be modeled.“. Moreover multiple other papers 

referenced by the authors (if not all of them) properly refer to I&F models as phenomenological 

models. I&F models can certainly by viewed as closer to mechanism than abstract statistical models, 

as the authors claim, but this does not justify calling it a mechanistic model. Similarly, the paper 

claims to be “Inferring and validating mechanistic models of neural microcircuits based on spike-train 

data“ but most of the results are inference of inputs to single neurons, which is not the standard 

usage for microcircuit models (though admittedly this is a not well defined term). It appears that the 

authors feel that single I&F models can be referred to as a microcircuit model: “We fitted a simple 

microcircuit model to these data. In the model, a leaky I&F model neuron received feed-forward 

excitatory and inhibitory inputs triggered by the clicks, as well as a fluctuating background input.” But 

this is hardly what comes to my mind when one refers to a microcircuit model. I understand the desire 

to make the paper more likely to be read by a general audience, but I feel the authors would be better 

served by not stretching definitions.  

 

Minor comments:  

1. In general I found multiple figures to be crowded and ineffective. There is often a lot of detail in the 

figure that is very difficult to know how to interpret while crucial detail remains difficult to judge. For 

instance, Figure 8A bottom appears to contain crucial information regarding the comparison that will 

ultimately be made in Figure 8E-F, but it is tiny, not well-described and overwhelmed by the much 

larger (and seemingly less informative) subplots 8B-D.  

 

2. Often important information regarding the results is present only in the methods, and sometimes 

sparsely described there, for instance the sensitivity measure used in Figure 3D.  

 

3. Percentile is sometimes written as “%-ile”. This is non-standard usage and should be avoided.  

 

4. Section regarding figure 4: “The estimation accuracy of synaptic strengths is still good in case of 

weak correlations of the external input fluctuations (correlation coefficient c ≤ 0.05 for each pair of 

observed neurons) but clearly decreases as these correlations increase (Fig. 4E). In particular, positive 

correlations c > 0 lead to an overestimation of the coupling strengths.”  

Figure 4E shows only two scatters, one for c=0.05 and one for c=0.1. The Pearson’s correlation of the 

former is 0.95 and the latter 0.94. The described shift up of weights can be observed but is not 

quantified, and the quantification doesn’t show a decrease in accuracy, which makes relating the 

figure to the text confusing.  

 

5. Top of page 11: “for the combined timescales variant; when using all instead of max. thresh 1000 

PYR spikes….”. Max. as an abbreviation should be avoided in the text.  

 



6. Page 11 describing adaptation: “This behavior is typically mediated by a slowly decaying 

transmembrane potassium current, which rapidly accumulates when the neuron spikes repeatedly.” I 

couldn’t tell with certainty if this is meant as an abbreviated description of calcium dependent 

potassium currents or not. The authors don’t have to mention this, but if they do a clearer description 

(including a reference) would be useful.  

 

7. As stated above I wouldn’t call section 6 fitting a simple microcircuit model.  

 

8. The authors sometimes include words in parentheses for unclear reasons. For instance: “This 

enables to better isolate pairwise interactions from (ubiquitous) fluctuating drive…” either ubiquitous is 

an important word in this center and should be retained without parentheses or it can be removed. 

Unclear usage of parentheses can be confusing.  

 

9. “Neurons were separated into PYRs and INTs according to their spiking statistics.” The term spiking 

statistics could be read to indicate that spike waveform was not used, which is not the case, at least in 

the paper that the authors reference.  

 

 

 

Reviewer #3:  

Remarks to the Author:  

In this manuscript, Ladenbauer and colleagues present a probabilistic approach to fit integrate and fire 

models to extracellularly recorded neurons. The methods are used to infer connectivity between 

neurons and stimulus-response relationships. This method aims to bridge the gap between purely 

phenomenological tools and biophysical descriptions of neurons.  

 

Unfortunately, I have strong concerns about the novelty of the methods and the strength of the claims 

that the LIF approach improves upon purely statistical models. Thus, while the general goals behind 

this methods paper are of wide interest, I cannot recommend this paper to be published in Nature 

Communications at this time.  

 

My main critique of this paper concerns the novelty of the integrate-and-fire methodology. Several of 

the modeling problems presented in the results section fall within the generalized integrate and fire 

model from Pillow et al. (2005), for which code is publicly available. Comparing the results from 

Ladenbauer and colleagues to equation 1 from Pillow et al:  

- results section 2 considered the case where I_{stim}0=constant,I_{spk}=0.  

- results section 3 uses the model with I_{spk} = 0 the stimulus is \mu_{1}  

- results section 5 includes the I_{spk} term which captures adaptation  

- results section 6 applies the full generalized IF model to spiking data in response to a sensory 

stimulus, as Pillow et al did with retinal ganglion cells (but with a specific decomposition of the linear 

stimulus filter).  

Given previous work by Paninski and colleagues cited in this manuscript that established the log 

concavity of the generalized IF’s likelihood function, accurately recovering the IF model’s parameters 

with maximum likelihood estimation given enough data in the simulation studies here was expected.  

 

One of the major contributions of this paper is estimating connectivity between extracellularly 

recorded neurons. The discussion states that the IF model can “better isolate pairwise interactions 

from (ubiquitous) fluctuating drive”. The introduction claims that statistical models suffer from a lack 

of connection to biophysical structures and that this paper serves to bridge the gap between 

biophysical and statistical models. However, the authors have not cited an extremely similar study 

using generalized linear models (GLMs) to tackle the problems in results sections 3-4 (while also 



including adaptation): Volgushev et al. (2015). Thus, these claims are not substantiated because the 

LIF model isn’t compared to anything like GLMs to show that the biophysical approach shows more 

than can be seen with a phenomenological model.  

 

I would still encourage the authors to build on the novel content of this paper for future publications. 

This includes:  

1. Faster estimation of the stochastic LIF model. How do methods 1a,b and 2 compare in speed and 

accuracy to previous Fokker-Planck estimation tools? The code from Pillow et al is available from the 

Pillow lab website for comparison.  

2. Application of the generalized LIF to ferret cortex. What do we learn from this model fit?  

3. LIF for estimating connectivity. How does this method compare to the GLM estimator in Volgushev 

et al? Does this biophysical tool validate the more abstract GLM approach? Or does the biophysical 

model pick up on things the GLM misses? Data, but not code, from the Volgushev paper is available 

from the Stevenson lab website.  

 

References:  

 

Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ. (2005). Prediction and Decoding of 

Retinal Ganglion Cell Responses with a Probabilistic Spiking Model. Journal of Neuroscience 25:11003-

11013.  

 

Volgushev M, Ilin V, Stevenson IH (2015). Identifying and Tracking Simulated Synaptic Inputs from 

Neuronal Firing: Insights from In Vitro Experiments. PLoS Comput Biol 11(3): 

e1004167.doi:10.1371/journal.pcbi.1004167  

 

Specific comments and suggestions:  

 

- The presentation of statistical analyses was difficult to follow. Population and perturbation results 

(Figs 3-5) use the likelihood formulation for fitting the IF models, but do not appear to take advantage 

of the probabilistic formulation for model selection/hypothesis testing (does a connection exist? Is 

J>0?). For example, I found the methods used to calculate detection sensitivity in Figure 3D unclear 

and difficult to compare between CCG and LIF modeling. It was notable for the adaptation/in vivo 

results (results sections 5 & 6) changed to use AIC for model selection; the paper would benefit from 

applying this approach more consistently.  

 

- Equations 15 & 50 show that the coupling inputs are limited to delta functions (in contrast to 

Volgushev et al). Bottom left of Fig 5A suggests that the delta shape misses prediction of the true 

CCG. Does this approximation limit/bias detection of more realistic EPSP shapes?  

 

- Figure 4: C-D – Estimated inhibitory coupling weights appear biased towards 0. Are excitatory 

weights estimated more accurately?  

E - Is the effect of correlation a constant positive bias? How does this compare with shuffling-based 

CCG methods for detecting pairwise correlations?  

 

- In section 6, the excitatory and inhibitory components of the stimulus response are additive. Is this 

decomposition of input into these components unique? And can they be compared to recorded 

synaptic currents (if available)?  

 

- Section 4.2 and Fig 5A – The method for estimating the mean rate appears ad hoc, and is not 

justified in simulation. Page 10 indicates that 3 timescales were used to estimate the mean rate and 



the results were combined “using the largest absolute z-score across the three timescales for each 

connection.” I am unsure what this means.  



Response to the reviewers 
 

We thank the reviewers for their constructive criticism and helpful suggestions, which led us to 

substantially extend our study and the manuscript. We modified all main figures, and added 9 

supplementary ones to address all the suggestions. In particular, we  

1) included systematic comparisons with related methods,  

2)  significantly extended and advanced our results on inference of synaptic couplings in sub-

sampled networks,  

3)  incorporated an additional ground truth dataset,  

4)  clarified the benefits of our approach throughout the paper.  

Our comprehensively revised manuscript now includes an extensive number of validations, 

systematically using ground truth data from in-vitro and in-vivo electrophysiological recordings 

for all considered inference scenarios (four different datasets), and benchmarks against several 

existing model-based and model-free approaches.  

We would further like to emphasize the novelty of our methods for the inference of connectivity 

in spiking network models in an in-vivo setting; related approaches have been previously 

applied for single I&F neurons (Pillow et al. 2005, Paninski et al. 2004) or networks limited to 

vanishing input fluctuations (Cocco et al. 2009). Instead here we focus on strongly fluctuating 

inputs that are required to produce in-vivo-like spiking statistics.  

Below we provide detailed responses to the reviewers’ comments (comments in blue, answers 

in black). 

 

 

Reviewer #1 (Remarks to the Author): 

 

The authors develop a set of techniques for fitting integrate-and-fire neuron models to data, 

using a maximum-likelihood approach based on spike times. The techniques involve solving or 

approximating a Fokker-Planck equation to evaluate inter-spike-interval likelihoods. The 

techniques are validated using simulated networks and data from mouse hippocampal neurons 

for which ground-truth connectivity data is available. Overall, I think this is a valuable application 

of these Fokker-Planck approaches to an inference problem, and suggests more principled 

ways of building integrate-and-fire models to match to data. The paper is well-written and clear, 

so I have only a few comments. 

 

Comments: 

1) In Section 2, why was the membrane time constant set to the true value? Could it not also be 

estimated? 

We have revised Results section 2 (Inference of background inputs), taking explicitly into 

account the membrane time constant. In particular, we have included it in our estimations and 

provided a detailed explanation why it can be fixed at a reasonable value. 

 



2) I would like to see an expanded discussion of the issue of non-stationarity (page 10) in the 

main text. This seems like it would be a major issue for any in vivo recording. Currently, the text 

mentions two methods and an analysis of variations of mean input at three different timescales, 

but the information provided is insufficient to understand what actually is being performed. The 

Methods section is more helpful, but could use additional justification of the methods (why three 

timescales, and what is the justification for the "combined timescale" estimate?). 

We have elaborated on this issue in Results section 4 (Inference of synaptic coupling). The 

optimal timescale is a priori not clear, therefore we examined how this parameter affects 

detection accuracy. Interestingly, it influenced detection performance only weakly, which may be 

explained by the large signal-to-noise ratio in that dataset.  

For the “combined timescales” estimates we aimed to optimize detection sensitivity by using the 

largest absolute z-score across the three timescales for each postsynaptic neuron. We have 

removed this part because that procedure did not yield improved results. 

 

3) I was unclear why the input standard deviation in Fig. 7 wouldn't change between models 

with and without adaptation. Is there a reason that the two parameters should be completely 

decoupled from one another in the inference? This should be explained more fully. 

We have clarified this point in Results section 5 (Inference of neuronal adaptation). Indeed, the 

presence of adaptation in the model affects the correlation coefficient between estimated and 

empirical input standard deviation only very weakly (see Fig. S9). This can be explained by the 

fact that the adaptation variable varies slowly (estimated adaptation time constant > 4x 

membrane time constant on average); therefore, it affects the ISI mean more strongly than its 

variance which is predominantly influenced by the fast input fluctuations (parameter sigma). 

Consequently, the estimated sigma is much less affected than the estimated mean input (mu). 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors develop maximum likelihood based approaches to fitting integrate-and-fire models 

to extracellular recordings, specifically approaches that allow to use data that consists solely of 

spike times. Since population extracellular recordings are far more common than access to the 

membrane voltage of a population of neurons, there is value in such approaches. 

 

My main concern is that the paper addresses a problem that has been repeatedly considered in 

prior work, yet is unclear about comparison to existing techniques. The paper considers multiple 

inference scenarios and I am still unclear as to in which (if any) of these scenarios does the 

approach allow biologically interesting information to be learned in a qualitatively superior way 

to that possible in previous approaches. I would also be interested if that is not the case, and 

the approach is just more computationally efficient, quantitatively more accurate, can be used 

with less data, or perhaps just more principled. But whichever of these claims are true they need 

to be clearly described and quantified for each scenario considered. As the paper stands I found 

this information too difficult to parse out and cannot recommend publication in its current format. 

 



Major comments: 

1. As stated above, my main concern is that I found it extremely difficult to parse out what 

specifically this approach enables that cannot be done with previous methods, or the specific 

advantages over existing methods. The paper considers multiple scenarios: 

i. Mean and standard deviation of input to a single neuron. 

a. Synthetic data 

b. In-vitro 

ii. EPSP shaped perturbations 

iii. Synaptic inference 

a. Simulation fully observed 

b. Simulation partially observed 

c. In-vivo 

iv. I&F models with adaptation 

v. Estimation of neuronal inputs from in-vivo recordings 

The authors did include quantitative comparison to existing techniques in the results or figures. 

Some of these, for instance item i, have been directly addressed by previous approaches and 

many of these could have easily been compared to a variety of previous approaches, either 

more principled approaches or more straightforward approaches. The authors often report high 

accuracy for their results, but such numbers are very difficult to interpret as absolute numbers 

without reference to a comparison value. For each item the authors must either present the 

most pertinent comparison, or ideally comparisons to multiple existing techniques, while 

including straightforward extensions where necessary (e.g., grid searches for simple unknown 

but necessary parameters such as mean input current). Then the authors can clearly layout 

what specifically their approach improves: accuracy, computation time, amount of data 

necessary, etc. Where there is no substantial improvement, as I would expect to be the case for 

instance in item i, the authors can either present this as a useful introductory analysis, or claim 

that they prefer their technique since it is more principled, or something else. But this has to be 

much clearly and explicitly presented per result and not just in a somewhat vague Discussion 

paragraph. 

We thank the reviewer for their extensive and constructive comments. 

We have extended and reorganized the manuscript to include explicit comparisons with several 

alternative approaches across all inference scenarios (background inputs, input perturbations, 

synaptic coupling, and neuronal adaptation). We now compare our methods to 1) straight-

forward, model-free techniques based on cross-correlograms (CCGs), 2) established, model-

based methods which rely on Poisson point processes and point process GLMs, and 3) a 

related approach based on I&F neurons (Pillow et al. 2005, Paninski et al. 2004): 

● For inference of background inputs, input perturbations and neuronal adaptation (Results 

sections 2, 3, and 5) we benchmarked our approach on synthetic data against a related 

I&F-based method proposed by Pillow et al. (2005) both in terms of estimation accuracy, 

including detection sensitivity for input perturbations, and computation time (see Figs. 

S1c,d, S3a-e and S8a-d). An efficient implementation for that method is freely available, as 

was pointed out by Reviewer 3. We ensured equal conditions for the benchmarks in terms 

of model dynamics, parameters to be estimated, amount of observed data and 



computational resources. Note that the descriptions of neuronal inputs and adaptation in 

the two I&F models differ. Note further that the method from Pillow et al. (2005) is not 

directly applicable to inference of synaptic coupling in networks (Results section 4). Across 

all benchmark tests our methods show clear improvements on estimation accuracy (and 

detection sensitivity) as well as a substantial reduction of computation times, up to orders of 

magnitude. 

● In Results section 2 we further considered a Poisson point process for likelihood-based 

comparison on in-vitro and in-vivo data (see Fig. 2d,g). The I&F model is the preferred one 

according to the Akaike information criterion across all cells/stimuli/conditions. 

● In Results sections 3 (input perturbations) and 4 (synaptic coupling) we included model-

free, CCG-based methods for direct comparisons on detection accuracy (see Figs. 3c,d, 

S3c, 4b-d, 5e-h, S5b-f, S6 and S7b,c). Our methods outperformed the CCG approach in 

most comparisons, with only one exception where both approaches performed similarly 

(Fig. S7, see response to point 2 below) due to high signal-to-noise ratios. 

● On inference of synaptic coupling in terms of detection and estimation of relative strengths 

of sub-sampled networks we additionally compared our approach to a method based on a 

point process GLM that is well constrained for the considered scenario (see Figs. 5d,f,g,h, 

S5b-f and S6). In particular, we chose a GLM that is tailored to capture the spiking 

dynamics in the synthetic data with minimal number of parameters. Our method performed 

clearly better on all tests.  

Note that point process GLMs are flexible models which can be designed and optimized to 

well fit observed spike trains (see, e.g., Pillow et al. 2008, Stevenson et al. 2012). However, 

that approach is prone to overfitting unless strong constraints and/or regularization are 

enforced (see, e.g., Pillow et al. 2008, Stevenson et al. 2012, Aljadeff et al. 2016, Gerhard 

et al. 2017). An advantage of our approach in this respect is that the number of model 

parameters for optimization is comparably small, which strongly reduces the risk of 

overfitting, without sacrificing essential aspects of neural dynamics (such as refractoriness, 

adaptation or a resistive membrane). We have explained the relation to GLM-based 

methods in Results section 4 and in the Discussion. 

On the in-vitro perturbation dataset another, yet indirect, comparison between our approach 

and a GLM method is possible by comparing Fig. 4c (method 2) with Fig. 2G in Volgushev 

et al. (2015). Detection time of our method 2 appears to be shorter overall. 

Furthermore, we have improved our discussion on related I&F-based methods.     

 

2. Related to this point, Figure 5 which discusses inference of synaptic connectivity on 

experimental data, appears to describe the results that are closest to what the paper aims to do, 

or at least that is what I understand inferring microcircuits, and the data described come with 

associated semi-ground truth. Therefore the lack of comparison here is most frustrating. The 

ROC curves look very good, which seems impressive, yet the empirical CCG presented shown 

in bottom left of Fig. 5A also looks very different from background, leading one to assume that 

straightforward techniques would also work quite well. As a matter of fact, reference 35, from 

which the authors took the data, also claims accurate inference of connections from CCG itself. 



Perhaps the current approach does better, but explicit comparison has to be made to allow a 

reader to appreciate that. 

We have included explicit comparisons with the model-free CCG approach (see Fig. S7). 

Indeed, the CCG method resulted in comparable detection accuracy, which may be explained 

by the large signal-to-noise ratio in this dataset, as English et al. (2017) focused on strong PYR-

INT connections. This is now explained in Results section 4.2.  

Note, however, that our approach yields higher detection sensitivity on in-vitro ground truth data 

(Results section 3.2) and improved accuracy on synthetic network data (Results section 4.1) 

compared to the CCG method when the signal-to-noise ratio is lower. 

 

3. I couldn’t understand the results related to subsampling observed neurons from a larger 

simulated network, which is the more relevant regime to look at for simulated data. The authors 

simply state that: “Estimation accuracy of connectivity structure and coupling strengths was 

surprisingly good for sufficiently long simulated recordings in this scenario.” This is indeed 

surprising and requires more clarification. 

We thank the reviewer for this comment. Inference of synaptic coupling from sub-sampled 

networks has now become a key part of the revised manuscript (Results section 4, see Figs. 

5c-h, S5b-f and S6). We explained the challenges caused by shared input from unobserved 

neurons, the roles of connection density, delays, coupling strengths and measurement noise in 

this regard, and we clarified how those impede the different methods (our I&F-based vs. GLM-

based and CCG-based).  

A general challenge in sub-sampled networks arises from spike train correlations at small time 

lags generated by shared connections from unobserved neurons, regardless of whether a direct 

connection is present. These spurious correlations strongly impair our ability to distinguish the 

effects of synaptic connections from those caused by correlated inputs using CCGs, especially 

when coupling delays are small. Systematic comparisons between the three methods show that 

our I&F method masters this challenge best (Figs. 5c-h, S5b-f and S6).  

One of the benefits of our approach is that it includes an explicit, principled mechanism to 

account for the effects of unobserved neurons, which are absorbed in the estimated statistics of 

the fluctuating background inputs. Correlated fast input fluctuations are not directly modeled, 

their effects are compensated for in the estimation of the background input parameters, 

whereas shared input dynamics on a longer timescale are explicitly captured by slow variations 

of the mean input for each neuron. This facilitates the isolation of pairwise synaptic interactions 

from common drive. Furthermore, we corrected for a potential bias in coupling strength 

estimates, due to effects of unobserved neurons that are not captured otherwise, by our 

inference method. 

In sum, our approach yields accurate inference results for sub-sampled networks as long as the 

correlations between the hidden inputs, due to shared connections from unobserved neurons, 

are not too large. In particular, it outperforms classical CCG-based and GLM-based methods. 

 

4. The logic of section 6 seemed strange to me. The main point seems to be Figure 8E-F, the 

balance of excitation and inhibition inferred by their model, but the authors go through a path of 



claiming that their models are effective that is unclear and not entirely convincing to me. The 

authors assess their approach by comparing it to simpler models, but these models appear to 

be rather weak models: “To assess whether the complexity of this model is adequate given the 

available data we considered simpler models for comparison. For spontaneous activity, we 

compared our model to a Poisson process with constant rate. For click-evoked activity, we 

examined two additional models: (i) the leaky I&F model with only one (either excitatory or 

inhibitory) click-triggered input described by a delayed alpha function; (ii) a model in which the 

stimulus induced only a constant additional input.” Each of these comparisons takes out a key 

component that is very likely to be important and therefore neither of these comparisons seem 

very informative. It was difficult for me therefore to judge the reasonableness of Figure 8E-F. 

The authors make strong claims regarding this point: “Fitting only spike-trains, our approach 

therefore uncovers fundamental constraints on synaptic inputs and the local microcircuit without 

access to the values of the intra-cellular membrane potential.” Accordingly, more support and 

explanation would be helpful. 

Given the substantial extensions of the manuscript performed during the revision, we have 

decided to remove the part on inference of click-evoked inputs from extracellular recordings in 

behaving ferrets, because these data do not involve ground truth information. An expanded 

analysis using our methods is planned for a separate study that is targeted towards auditory 

neuroscientists and will be presented in a more specialized contribution. 

 

5. Though this comment is subjective, I found the paper’s tendency to oversell its results 

unappealing. Specifically, the paper pushes some of the main terminology beyond their natural 

usage. First, the authors refer to I&F models as mechanistic models. This is simply not the case, 

it is a phenomenological model. I refer the authors to the first paragraph of Abbott (1999) on the 

I&F model: “In 1907, long before the mechanisms responsible for the generation of neuronal 

action potentials were known, Lapicque developed a neuron model that is still widely used today 

[3,7]. This remarkable achievement stresses that, in neural modeling, studies of function do not 

necessarily require an understanding of mechanism. Significant progress is possible if a 

phenomenon is adequately described, even if its biophysical basis cannot be modeled.“. 

Moreover multiple other papers referenced by the authors (if not all of them) properly refer to 

I&F models as phenomenological models. I&F models can certainly by viewed as closer to 

mechanism than abstract statistical models, as the authors claim, but this does not justify calling 

it a mechanistic model. Similarly, the paper claims to be “Inferring and validating mechanistic 

models of neural microcircuits based on spike-train data“ but most of the results are inference of 

inputs to single neurons, which is not the standard usage for microcircuit models (though 

admittedly this is a not well defined term). It appears that the authors feel that single I&F models 

can be referred to as a microcircuit model: “We fitted a simple microcircuit model to these data. 

In the model, a leaky I&F model neuron received feed-forward excitatory and inhibitory inputs 

triggered by the clicks, as well as a fluctuating background input.” But this is hardly what comes 

to my mind when one refers to a microcircuit model. I understand the desire to make the paper 

more likely to be read by a general audience, but I feel the authors would be better served by 

not stretching definitions. 



Following the reviewer’s comment, we have reexamined the language used in the paper and 

avoided “mechanistic” as much as possible. In our revised manuscript, especially in the 

Introduction, we have clarified the position of I&F models with respect to more detailed models. 

We now present them as an intermediate level of description, more mechanistic than abstract 

statistical models (as the reviewer agrees) but less biophysically detailed than, e.g., models of 

the Hodgkin-Huxley type. Note that the understanding of I&F models has evolved in the last 

decade. Building upon the classical view of a neuron as a threshold device, these models have 

been advanced in recent years to account for the diverse electrophysiological features of 

neurons (Brunel et al. 2014): they effectively describe the dynamics of the neural membrane 

voltage and can be equipped with several mechanisms (for example, concerning spike initiation, 

adaptive excitability or distinct compartments; see, e.g., Fourcaud-Trocme et al. 2003, 

Ladenbauer et al. 2014, Ostojic et al. 2015) to generate diverse spiking behaviors and model 

multiple neuron types (see, e.g., Teeter et al. 2018). Note that the approximations in the I&F 

class compared to models of the Hodgkin-Huxley type are particularly warranted when 

quantitatively characterizing neural circuits based on spike-train data only, as multiple sets of 

biophysical parameters in those complex models can reproduce identical firing patterns (Prinz et 

al. 2003, Marder & Taylor 2011). 

For the sake of compactness, we have kept “mechanistic” in the title, but we will remove it if the 

reviewer feels strongly against it. 

Regarding the “microcircuits”, note that we have removed the part on inference of click-evoked 

inputs (see previous response), hence “microcircuit” is solely used within the context of inferring 

connectivity. 

 

 

Minor comments: 

1. In general I found multiple figures to be crowded and ineffective. There is often a lot of detail 

in the figure that is very difficult to know how to interpret while crucial detail remains difficult to 

judge. For instance, Figure 8A bottom appears to contain crucial information regarding the 

comparison that will ultimately be made in Figure 8E-F, but it is tiny, not well-described and 

overwhelmed by the much larger (and seemingly less informative) subplots 8B-D. 

We have completely revised all figures, particularly taking into account the reviewer’s 

suggestion. Note that the previous Fig. 8 has been removed (see response above). 

 

2. Often important information regarding the results is present only in the methods, and 

sometimes sparsely described there, for instance the sensitivity measure used in Figure 3D. 

We have included important methodological information in the Results and improved the 

Methods sections.  

 

3. Percentile is sometimes written as “%-ile”. This is non-standard usage and should be 

avoided. 

We have improved the notation as suggested. 

 



4. Section regarding figure 4: “The estimation accuracy of synaptic strengths is still good in case 

of weak correlations of the external input fluctuations (correlation coefficient c ≤ 0.05 for each 

pair of observed neurons) but clearly decreases as these correlations increase (Fig. 4E). In 

particular, positive correlations c > 0 lead to an overestimation of the coupling strengths.” 

Figure 4E shows only two scatters, one for c=0.05 and one for c=0.1. The Pearson’s correlation 

of the former is 0.95 and the latter 0.94. The described shift up of weights can be observed but 

is not quantified, and the quantification doesn’t show a decrease in accuracy, which makes 

relating the figure to the text confusing. 

We have included an additional measure, the mean absolute error, to better quantify any bias in 

the estimated coupling strengths (cf. Figs. 5b,d, S5b-f and S6). Note that the entire Results 

section 4 has been substantially revised and extended.  

 

5. Top of page 11: “for the combined timescales variant; when using all instead of max. thresh 

1000 PYR spikes….”. Max. as an abbreviation should be avoided in the text. 

We have adjusted the notation as suggested. 

 

6. Page 11 describing adaptation: “This behavior is typically mediated by a slowly decaying 

transmembrane potassium current, which rapidly accumulates when the neuron spikes 

repeatedly.” I couldn’t tell with certainty if this is meant as an abbreviated description of calcium 

dependent potassium currents or not. The authors don’t have to mention this, but if they do a 

clearer description (including a reference) would be useful. 

We have improved the description, including two suitable references. 

 

7. As stated above I wouldn’t call section 6 fitting a simple microcircuit model. 

This section has been removed, as explained above. 

 

8. The authors sometimes include words in parentheses for unclear reasons. For instance: “This 

enables to better isolate pairwise interactions from (ubiquitous) fluctuating drive…” either 

ubiquitous is an important word in this center and should be retained without parentheses or it 

can be removed. Unclear usage of parentheses can be confusing. 

We have revised our usage of parentheses throughout, and removed them at places where 

ambiguous interpretation could not be excluded.  

 

9. “Neurons were separated into PYRs and INTs according to their spiking statistics.” The term 

spiking statistics could be read to indicate that spike waveform was not used, which is not the 

case, at least in the paper that the authors reference. 

We have clarified this point. 

 

 

Reviewer #3 (Remarks to the Author): 

 



In this manuscript, Ladenbauer and colleagues present a probabilistic approach to fit integrate 

and fire models to extracellularly recorded neurons. The methods are used to infer connectivity 

between neurons and stimulus-response relationships. This method aims to bridge the gap 

between purely phenomenological tools and biophysical descriptions of neurons. 

 

Unfortunately, I have strong concerns about the novelty of the methods and the strength of the 

claims that the LIF approach improves upon purely statistical models. Thus, while the general 

goals behind this methods paper are of wide interest, I cannot recommend this paper to be 

published in Nature Communications at this time. 

We thank the reviewer for the constructive comments. In response, we have substantially 

extended our study, by 1) including systematic comparisons with related methods, 2) expanding 

and advancing our results on inference of synaptic couplings in sub-sampled networks, 3) 

incorporating an additional ground truth dataset. Our revised manuscript now includes 

validations using ground truth data from in-vitro and in-vivo recordings for all inference 

scenarios, and benchmarks against several existing methods.  

We would further like to highlight the novelty of our methods for the estimation of couplings in 

spiking network models in an in-vivo setting; related previous approaches have been designed 

for single I&F neurons (Pillow et al. 2005, Paninski et al. 2004) or networks limited to vanishing 

input fluctuations (Cocco et al. 2009). 

 

My main critique of this paper concerns the novelty of the integrate-and-fire methodology. 

Several of the modeling problems presented in the results section fall within the generalized 

integrate and fire model from Pillow et al. (2005), for which code is publicly available. 

Comparing the results from Ladenbauer and colleagues to equation 1 from Pillow et al: 

- results section 2 considered the case where I_{stim}0=constant,I_{spk}=0. 

- results section 3 uses the model with I_{spk} = 0 the stimulus is \mu_{1} 

- results section 5 includes the I_{spk} term which captures adaptation 

- results section 6 applies the full generalized IF model to spiking data in response to a sensory 

stimulus, as Pillow et al did with retinal ganglion cells (but with a specific decomposition of the 

linear stimulus filter). 

Given previous work by Paninski and colleagues cited in this manuscript that established the log 

concavity of the generalized IF’s likelihood function, accurately recovering the IF model’s 

parameters with maximum likelihood estimation given enough data in the simulation studies 

here was expected. 

We thank the reviewer for pointing out this study and the available code. In the revised 

manuscript, we benchmarked our methods against the related approach from Pillow et al. 

(2005) using synthetic data in all applicable scenarios: inference of background inputs, input 

perturbations and neuronal adaptation (Results sections 2, 3, and 5). We compared estimation 

accuracy, detection sensitivity (for input perturbations), and computation time (see Figs. S1c,d, 

S3a-e and S8a-d). We ensured equal conditions for the benchmarks in terms of model 

dynamics, parameters to be estimated, amount of observed data and computational resources. 

Note that the method from Pillow et al. (2005) is not directly applicable to inference of synaptic 

coupling in networks (Results section 4). Across all benchmark tests our methods show clear 



improvements on estimation accuracy and detection sensitivity as well as a substantial 

reduction of computation times, up to orders of magnitude. 

 

One of the major contributions of this paper is estimating connectivity between extracellularly 

recorded neurons. The discussion states that the IF model can “better isolate pairwise 

interactions from (ubiquitous) fluctuating drive”. The introduction claims that statistical models 

suffer from a lack of connection to biophysical structures and that this paper serves to bridge the 

gap between biophysical and statistical models. However, the authors have not cited an 

extremely similar study using generalized linear models (GLMs) to tackle the problems in results 

sections 3-4 (while also including adaptation): Volgushev et al. (2015). Thus, these claims are 

not substantiated because the LIF model isn’t compared to anything like GLMs to show that the 

biophysical approach shows more than can be seen with a phenomenological model. 

We have applied our methods to the in-vitro ground truth data from Volgushev et al. (2015) and 

directly compared them to a CCG-based method in terms of detection performance (see Fig. 4). 

These results validate our approach and demonstrate that it is more sensitive than the model-

free CCG method. Furthermore, it appears more sensitive compared to the GLM method used 

in Volgushev et al. (2015): detection times of our method 2 appear to be shorter overall by 

comparing Fig. 4c with Fig. 2G in Volgushev et al. (2015). We focused on the first experiment in 

Volgushev et al. (2015), which involves one artificial presynaptic spike train for each recorded 

neuron (the second experiment in that paper considered multiple presynaptic spike trains per 

neuron, which were independently generated).  

The data from Volgushev et al. (2015) constitute a valuable testbed for methods that aim to infer 

synaptic couplings. However, these data do not include some of the challenging obstacles 

caused by unobserved neurons in vivo, such as input correlations in a partially observed 

network due to unobserved neurons, and nonstationary drive. We focus on these issues in 

Results section 4: inference of synaptic coupling from sub-sampled networks. We have 

significantly expanded the corresponding results, and this section has become a key part of the 

revised manuscript (see Figs. 5c-h, S5b-f and S6). We compare our approach to CCG-based 

and GLM-based methods, explain the challenges caused by shared input from unobserved 

neurons and the roles of connection density, delays, coupling strengths and measurement noise 

in this regard.  

A general challenge in sub-sampled networks arises from spike train correlations at small time 

lags generated by shared connections from unobserved neurons, regardless of whether a direct 

connection is present. These spurious correlations strongly impair our ability to distinguish the 

effects of synaptic connections from those caused by correlated inputs using CCGs, especially 

when coupling delays are small. Systematic comparisons between the three methods show that 

our I&F method masters this challenge best. One of the benefits of our approach is that it 

includes an explicit, principled mechanism to account for the effects of unobserved neurons, 

which are absorbed in the estimated statistics of the fluctuating background inputs. Correlated 

fast input fluctuations are not directly modeled, their effects are compensated for in the 

estimation of the background input parameters, whereas shared input dynamics on a longer 

timescale are explicitly captured by slow variations of the mean input for each neuron. This 

facilitates the isolation of pairwise synaptic interactions from common drive. Furthermore, we 



corrected for a potential bias in coupling strength estimates, due to effects of unobserved 

neurons that are not captured otherwise, by our inference method. 

In sum, our approach yields accurate inference results for sub-sampled networks as long as the 

correlations between the hidden inputs, due to shared connections from unobserved neurons, 

are not too large. In particular, it outperforms classical CCG-based and GLM-based methods. 

 

I would still encourage the authors to build on the novel content of this paper for future 

publications. This includes: 

1. Faster estimation of the stochastic LIF model. How do methods 1a,b and 2 compare in speed 

and accuracy to previous Fokker-Planck estimation tools? The code from Pillow et al is 

available from the Pillow lab website for comparison. 

We have included detailed benchmarks against the method from Pillow et al. (2005), using the 

efficient, available implementation (based on Matlab with integrated C code for accelerated 

program execution) in all applicable scenarios. Our methods show clear improvements on 

estimation accuracy, detection sensitivity, and computation time across all tests (see Figs. 

S1c,d, S3a-e and S8a-d). 

 

2. Application of the generalized LIF to ferret cortex. What do we learn from this model fit? 

We have removed the part on inference of click-evoked inputs from extracellular recordings in 

behaving ferrets (former Results section 6), because these data do not involve ground truth 

information. An expanded analysis using our methods is planned for a contribution on task-

related activity in auditory cortex which goes beyond the scope of this paper. Here, we focused 

on the inference methodology and, in particular, their validation using synthetic data and various 

ground truth recordings. 

 

3. LIF for estimating connectivity. How does this method compare to the GLM estimator in 

Volgushev et al? Does this biophysical tool validate the more abstract GLM approach? Or does 

the biophysical model pick up on things the GLM misses? Data, but not code, from the 

Volgushev paper is available from the Stevenson lab website. 

We validated our methods using the in-vitro ground truth data from Volgushev et al. (2015) and 

directly compared them to a CCG-based method in terms of detection performance (see Fig. 4). 

The results demonstrate that our approach is more sensitive than the model-free CCG method. 

Furthermore, it appears more sensitive compared to the GLM method used in Volgushev et al. 

(2015): detection times of our method 2 appear to be shorter overall by comparing Fig. 4c with 

Fig. 2G in Volgushev et al. (2015). 

Note that on inference of synaptic coupling in sub-sampled networks we additionally compared 

our approach to a method based on a point process GLM (see Figs. 5d,f,g,h, S5b-f and S6). In 

particular, we chose a GLM that is tailored to capture the spiking dynamics in the synthetic data 

with minimal number of parameters. Our method performed clearly better on all tests. 

 

References: 

 



Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ. (2005). Prediction and 

Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model. Journal of 

Neuroscience 25:11003-11013. 

 

Volgushev M, Ilin V, Stevenson IH (2015). Identifying and Tracking Simulated Synaptic Inputs 

from Neuronal Firing: Insights from In Vitro Experiments. PLoS Comput Biol 11(3): 

e1004167.doi:10.1371/journal.pcbi.1004167 

We thank the reviewer for the suggestions and for pointing to these relevant references.  

 

 

Specific comments and suggestions: 

 

- The presentation of statistical analyses was difficult to follow. Population and perturbation 

results (Figs 3-5) use the likelihood formulation for fitting the IF models, but do not appear to 

take advantage of the probabilistic formulation for model selection/hypothesis testing (does a 

connection exist? Is J>0?). For example, I found the methods used to calculate detection 

sensitivity in Figure 3D unclear and difficult to compare between CCG and LIF modeling. It was 

notable for the adaptation/in vivo results (results sections 5 & 6) changed to use AIC for model 

selection; the paper would benefit from applying this approach more consistently. 

We now use the AIC model comparison in Results section 2 (background input), where we 

compare I&F and Poisson models, and in Results section 5 (neuronal adaptation), where we 

compare adaptive and nonadaptive I&F models. We included a likelihood-based technique for 

detecting input perturbations in Results section 3.2 (cross-validated log-likelihood ratio, adopted 

from Volgushev et al. 2015) for comparison, in addition to techniques based on surrogate data 

where the effects of perturbations are absent (by simulations in case of synthetic data) or 

washed out (by perturbing spike times). In this way, the two different methods, I&F-based and 

model-free, CCG-based, can be compared by the same technique to detect significance (using 

surrogate data, since likelihood-based techniques cannot be applied to the CCG method).  

 

- Equations 15 & 50 show that the coupling inputs are limited to delta functions (in contrast to 

Volgushev et al). Bottom left of Fig 5A suggests that the delta shape misses prediction of the 

true CCG. Does this approximation limit/bias detection of more realistic EPSP shapes? 

We tested this point explicitly on the ground truth data from Volgushev et al. (2015) where 

artificial PSCs had a rise time of 1 ms and a decay time of 10 ms. In Results section 3.2 we 

used both alpha functions or delayed delta pulses to model PSCs (with two parameters each). 

Overall, both kernels lead to accurate results in detecting weak input perturbations, compared to 

the model-free CCG method.  

 

- Figure 4: C-D – Estimated inhibitory coupling weights appear biased towards 0. Are excitatory 

weights estimated more accurately? 

E - Is the effect of correlation a constant positive bias? How does this compare with shuffling-

based CCG methods for detecting pairwise correlations? 



We have significantly expanded Results section 4.1, where we focus on partially observed 

networks and compare our approach to CCG-based and GLM-based methods; former Fig. 4 

has been replaced by current Figs. 5, S5 and S6. We have introduced a simple procedure to 

correct for a potential systematic bias in the estimated coupling strengths (see Methods section 

7.1). The magnitudes of both excitatory and inhibitory weights are sometimes underestimated 

by our method (see, e.g., Fig. S5e,f) and overall, inhibition appears to be slightly more affected. 

This asymmetry is also noticeable for the other two methods, it can be intuitively understood 

from the CCG method: detecting weak inhibitory connections is particularly challenging because 

of increased correlations for small time lags due to unobserved neurons (see, e.g., Fig. 5h(ii)). 

This is now explained in the Results text. 

 

- In section 6, the excitatory and inhibitory components of the stimulus response are additive. Is 

this decomposition of input into these components unique? And can they be compared to 

recorded synaptic currents (if available)? 

We have removed this section, as explained above. 

 

- Section 4.2 and Fig 5A – The method for estimating the mean rate appears ad hoc, and is not 

justified in simulation. Page 10 indicates that 3 timescales were used to estimate the mean rate 

and the results were combined “using the largest absolute z-score across the three timescales 

for each connection.” I am unsure what this means. 

In Results section 4.2 we account for nonstationarity in a straightforward and simple way, which 

involves an additional parameter, the width of the Gaussian kernel that determines the 

timescale of the mean input variations. Indeed, the optimal value is a priori not clear. Our results 

show that this timescale influences detection performance only weakly, which may be explained 

by the large signal-to-noise ratio in the dataset.  

For the “combined timescales” estimates we aimed to optimize detection sensitivity by using the 

largest absolute z-score across the three timescales for each postsynaptic neuron. We have 

removed this part because that procedure did not yield improved results. 
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Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

The authors have made a number of changes that have improved the manuscript. I am now satisfied 

to recommend the manuscript for publication.  

 

 

 

Reviewer #2:  

Remarks to the Author:  

The authors have improved the manuscript, adding much needed comparisons to previous literature 

and different approaches.  

 

Regarding non-synthetic data, performing direct comparison to the straightforward CCG method the 

authors show some improvement in one dataset (Figure 4) and comparable results in another (Figure 

S7).  

 

 

 

Reviewer #3:  

Remarks to the Author:  

The authors have provided extensive revisions that address many of my previous concerns about the 

scope of this paper within the existing literature on fitting stochastic I&F models to spike trains. The 

time and effort spent reframing and expanding this work has resulted in a greatly improved 

manuscript. I only have a few minor comments.  

 

I still have a few remaining comments about the comparison to GLM methods:  

1. The exact methods in Figure 4 do not appear to correspond exactly to the methods used in 

Volgushev et al Figure 2. Therefore, it's hard to compare the performance quantitatively. This would 

be improved by providing a GLM fit with the same 5-fold cross-validation and LL ratio comparison and 

adding the results as a column in Figs 4A,C.  

 

2. For the network GLM in section 4, could you provide more detail on the parametrization of the 

coupling terms so that it's easier to compare to the I&F model without needing to fig through Zaystev 

et al? This is necessary to judge whether the I&F estimation is due to the mechanistic model or 

differences in particular parametrization used to describe coupling in the two methods.  

 

3. Last paragraph of section 4.2 says the GLM method had greatly increased computational cost. How 

is this quantified?  

 

4. My point here is opinionated, but something for the authors to consider. Paragraph bottom of page 

15 and top of 16: GLM "is prone to overfitting unless strong constraints or regularization are 

enforced." I'd argue that the I&F methods here constitute such "strong constraints" on the 

assumptions in the GLM. This is by no means a negative aspect, but I suggest framing this argument 

in favor of the mechanistic approach (biophysically guided constraints, rather than more abstract 

constraints) as a more accurate characterization.  

 

5. This point is a only a suggestion (and may not currently have an answer): It'd be nice to see this 

model framed within existing literature connecting GLMs and stochastic IF models (see Mensi, Naud, & 

Gerstner 2011 "From stochastic nonlinear integrate-and-fire to generalized linear models"). Is there 



an intuitive reason why the more biophysical formulation gives better coupling estimates than the 

GLM?  



Response to Reviewer 3 
 
We thank the reviewer for their supportive comments. We have now implemented all the 
suggested changes. Below we provide a detailed, point-by-point response (comments in 
blue, answers in black). 
 
1. The exact methods in Figure 4 do not appear to correspond exactly to the methods used 
in Volgushev et al Figure 2. Therefore, it's hard to compare the performance quantitatively. 
This would be improved by providing a GLM fit with the same 5-fold cross-validation and LL 
ratio comparison and adding the results as a column in Figs 4A,C. 
 
To make our Figure 4 directly comparable to the Figure 2 of Volgushev et al., we have re-run 
our analyses with 10-fold cross-validation as in Vogushev et al., and updated the figure. Our 
Fig 4c is now directly comparable with their Fig 2G, and our Fig 4a is directly comparable 
with their Fig 2F. We now indicate this explicitly in the text. Both comparisons show clear 
improvements of our methods with respect to theirs. 
 
We would like to remark that 10-fold cross-validation lead to increased variance of test LLR 
across folds especially for short recording durations, which required to increase the number 
of short duration segments to obtain robust averages (that number of repetitions is not given 
in Volgushev et al.). These additional segments were also used in the CCG analysis (for 
reasons of comparability) which explains the small differences of revised Fig 4b and 4c 
(right) compared to the previous version. 
 
Note that the GLM code used by Volgushev et al. is not publicly available, hence some 
details of the analysis may still differ (such as number of repetitions used). Since the figures 
are otherwise directly comparable between the two papers, fitting a different GLM to their 
data could be considered misleading, so we opted against it. 
 
 
2. For the network GLM in section 4, could you provide more detail on the parametrization of 
the coupling terms so that it's easier to compare to the I&F model without needing to fig 
through Zaystev et al? This is necessary to judge whether the I&F estimation is due to the 
mechanistic model or differences in particular parametrization used to describe coupling in 
the two methods.  
 
Coupling terms are equivalent in the two models. The Zaytsev et al. GLM model uses 
delayed delta pulses on the variable that is interpret as membrane potential (which is passed 
through the exponential function to produce a Poisson spike rate). We have now clarified this 
in the Methods. 
 
 
3. Last paragraph of section 4.2 says the GLM method had greatly increased computational 
cost. How is this quantified? 
 
This sentence does not refer to our analyses, but to work previously performed in the 
English, McKenzie et al. 2017 paper, where the data was originally published. Each GLM fit 
took between 200 - 400s on a GPU (depending on the length of the recording) versus 20ms 
for the simple CCG analysis, so the GLM analysis was at least 10,000 times slower. We now 
specify this in Results section 4.2. 
 
 
4. My point here is opinionated, but something for the authors to consider. Paragraph bottom 
of page 15 and top of 16: GLM "is prone to overfitting unless strong constraints or 
regularization are enforced." I'd argue that the I&F methods here constitute such "strong 



constraints" on the assumptions in the GLM. This is by no means a negative aspect, but I 
suggest framing this argument in favor of the mechanistic approach (biophysically guided 
constraints, rather than more abstract constraints) as a more accurate characterization. 
 
We thank the reviewer for this suggestion, we have now edited the text at the top of p.16 to 
include it: 
 
“An advantage of our approach in this respect is that the basic mechanistic principles 
included in I&F models provide a natural regularization and reduce the number of model 
parameters, which strongly reduces the risk of overfitting. Note that our method 2 is 
essentially based on mapping I&F models to simplified, constrained GLM-like models.” 
 
 
5. This point is a only a suggestion (and may not currently have an answer): It'd be nice to 
see this model framed within existing literature connecting GLMs and stochastic IF models 
(see Mensi, Naud, & Gerstner 2011 "From stochastic nonlinear integrate-and-fire to 
generalized linear models"). Is there an intuitive reason why the more biophysical formulation 
gives better coupling estimates than the GLM? 
 
We believe that the reviewer refers here to the GLM model of Zaytsev et al. This model was 
not directly derived from an I&F model, so the connection here is not direct. Not that in 
contrast, our method 2 is directly related to mapping I&F models onto GLM-like models, as 
previously done in Ostojic & Brunel 2011 and Augustin, Ladenbauer et al. 2017. We have 
now clarified this in the Discussion paragraph that compares I&F models and GLMs (top of 
p.16). 
 



Reviewers' Comments:  

 

Reviewer #3:  

Remarks to the Author:  

The authors' response and revised manuscript have thoroughly addressed the few minor comments I 

had in the last round.  

The authors have done an excellent job demonstrating feasible methods for fitting noisy IF neurons to 

spike train data, and I strongly recommend this paper for publication.  
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