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Supplementary Note 1

Nodes (cortical/ sub-cortical areas) with high curvature, strength and betweenness centrality from the high resolution (998 x
998) connectivity matrices from Hagmann et al. 20081. The tables below list the top 25% of nodes appearing in 3 (or more)
participants out of 5, with the highest curvature, strength and centrality. Cortical areas only found by curvature are highlighted
in red.
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Supplementary Note 2

Nodes (cortical/ sub-cortical areas) with high curvature, strength and betweenness centrality from the lower resolution (116 x
116) connectivity matrices generated from the MGH-USC HCP Consortium DSI datasets. The tables below list the top 25% of
nodes appearing in 18 (or more) participants out of 33, with the highest curvature, strength and centrality. Cortical areas only
found by curvature are highlighted in red.
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Supplementary Note 3

Nodes (cortical areas), and corresponding functional communities, with significant differences in structural connectivity
between age groups. Results shown below were obtained using the Gordon2 atlas with 333 nodes, and provide raw p-values,
significant after type I error correction using the Holm-Sidak method. Details regarding nodes (number etc.) of Gordon atlas2

can be downloaded from https://sites.wustl.edu/petersenschlaggarlab/parcels-19cwpgu/2.
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Supplementary Note 4

Nodes (cortical areas), and corresponding functional communities, with significant differences in structural connectivity due
to ASD. Results shown below were obtained using the Gordon2 atlas with 333 nodes, and provide raw p-values, significant
after type I error correction using the Holm-Sidak method. Details regarding nodes (number etc.) of Gordon atlas2 can be
downloaded from https://sites.wustl.edu/petersenschlaggarlab/parcels-19cwpgu/2.
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Supplementary Note 5
This section describes the patterns of structural connectivity changes associated with ASD, as they relate to phenotypic measures.
To carry out the analysis, correlations were computed between nodes with significant differences between ASD and TD (as
identified by nodal measures i.e., curvature, strength, betweenness centrality and clustering coefficient) and affected phenotypic
measures. Supplementary Figures 5 and 6 show significant correlations (in red color) with p-value less than 0.05. Following is
a brief description of the information uniquely provided by node curvature in relation to phenotypic measures.

Supplementary Figure 5. Correlation between nodes with statistically significant differences in structural connectivity of ASD and TD
subjects, and phenotypic measures with statistically significant differences between groups using San Diego State University (SDSU) data.

A recent study3, based on resting-state functional MRI, reported that Social Responsiveness Scale4 (SRS) sub-factors
(social awareness, cognition, communication, motivation and autistic mannerisms) negatively correlated with the functional
connectivity strength of the default modes network (DMN), consistent with prior studies, as discussed by the authors3. They
also reported that levels of hyperactivity/impulsiveness and inattention behavioral problems were positively correlated with
the functional connectivity strength of the executive control network (ECN). The cerebellum network had higher functional
connectivity in ASD, compared to TD individuals. Finally, repetitive behavior has been reported to relate to the functional
connectivity of the temporal lobes5.

Here in this study, based on structural connectivity, node strength (of identified brain areas) shows similar behavior of
negative correlation with SRS sub-factors (as shown in Supplementary Figures 5 and 6). However, not all sub-factors are
identified by node strength or any other node measure. Curvature of the right temporal lobe (Brodmann area 38, which is
involved in emotional and social processing) and SRS sub-factor Motivation (both Raw and converted T-scores), and Repetitive
Behavior Scale-Revised (RBSR), are found to be negatively correlated. The left orbito-frontal cortex (ECN) curvature was
also uniquely identified to correlate positively with the Autism Diagnostic Observation Schedule (ADOS-2) Restricted and
Repetitive behavior scale. This is in line with the above mentioned studies and supplement the information provided by other
node measures. Additionally, curvature of the anterior division of the temporal fusiform cortex (involved in recognition tasks,
such as body and faces) positively correlated with several Child Behavior Checklist (CBCL) scores (e.g. Attention, Aggressive
behavior) and RBSR sub-factor Self-injurious behavior. Finally, Supplementary Figure 6 shows that curvature of the left
visual area negatively correlated with SRS sub-factor Mannerisms, RBSR sub-scale Restricted Interests and CBCL sub-factor
Thoughts Problems.
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Supplementary Figure 6. Correlation between nodes with statistically significant differences in structural connectivity of ASD and TD
subjects, and phenotypic measures with statistically significant differences between groups using Trinity Center for Health Sciences (TC)
data.
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Supplementary Note 6

Topological Entropy of a graph G is the logarithm of the spectral radius of the adjacency matrix A, i.e., the logarithm of the
maximum of the absolute values of the eigenvalues of A6.

Supplementary Note 7

Supplementary Figure 7. Reproduction of robustness analysis presented in Alstott et al7, using node deletion for the high resolution
connectivity matrices (998×998) from Hagmann et al1. The size of the largest component and global efficiency are computed (with or
without transformation of the connectivity matrix weights) after targeted removal of nodes with decreasing strength or betweenness centrality.
The top row shows results for the original connectivity matrix while the bottom row shows results after Gaussian transformation of its
weights. Note that results shown in panel C and D are similar to Fig. 3 in previous work7.

8/9



Supplementary Note 8
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Supplementary Figure 8. Correlation between different node measures using the low-resolution MGH-USC HCP dataset (33 individuals).
The histograms approximate the distribution of correlation (over the 33 datasets) between pairs of nodal measures computed at 116 nodes
(AAL template).

References

1. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLOS Biol. 6, 1–15 (2008).

2. Gordon, E. M. et al. Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cereb.
Cortex 26, 288–303 (2014).

3. Chia Min, C., Pinchen, Y., Ming, W., Tzu, C. & Teng, H. Deriving and validating biomarkers associated with autism
spectrum disorders from a large-scale resting-state database. Sci. Reports 9, 9043 (2019).

4. Constantino, J. N. et al. Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness
scale with the autism diagnostic interview-revised. J. Autism Dev. Disord. 33, 427–433 (2003).

5. Abbott, A. et al. Repetitive behaviors in autism are linked to imbalance of corticostriatal connectivity:a functional
connectivity mri study. Soc. cognitive affective neuroscience 13 (2017).

6. Chen, Y., Georgiou, T., Pavon, M. & Tannenbaum, A. Robust transport over networks. IEEE Transactions on Autom.
Control. 62, 4675–4682 (2017).

7. Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L. & Sporns, O. Modeling the impact of lesions in the human brain.
PLOS Comput. Biol. 5, 1–12 (2009).

9/9


	References

