Supplementary Information

E2F1 Acetylation Directs p300/CBP-mediated Histone Acetylation at DNA Double-Strand Breaks to Facilitate Repair.

Manickavinayaham et al.

Supplementary Information contains

Supplementary Figures 1 – 7

Supplementary Tables 1 – 3

а

Cador 5.0

TUDOR A1 TDRD2(NP_068653) A2 TDRD3(Q8H7E2) A3 TDRD4-1(Q8NU79) A5 TDRD4-1(Q8NU79) A6 TDRD7-1(Q8NU79) A6 TDRD7-1(Q8D405105) A7 TDRD7-3(NP_055105) A9 Ret-bp1(AR29543) A10 M96(AAH10013) A15 38P1(1-2(NP_005648)	TUDOR + B1 2C(IP 055876) B2 3C(IP 055876) B3 2C(IP 05512) B4 CG(1-72(IP 057102) B5 PHF20(IP 057502) B5 PHF20(IP 057520) B7 Pombe 1C(CAA22823) B9 JMJ02A-2(IP 055478) B9 JMJ02A-2(IP 055478) B1 LBR TDR(IP 919424) B11 LBR21(IIP 919424) B11 SPF30(c)(075940)	TUDDR / Tudor-Like C1 Lin9 TDR(b)(AAH65302) C2 JIMJ 28 UT(()NP 055630) C3 ARH4A (e)(NM 002822) G4 FHF19(NM 00109936) C5 SIND1 (e)(NM 014390) G6 UHRF1 Tudor-like(a) C7 C420 Tudor-Like(p) G8 C460 Tudor-Like(p)	MBT D1 SFMBT F.L(j) D2 SFMB1 4:MBT(j) D3 L(g)MBT1-3(HP 0:65293) D3 L(g)MBT1-3(HP 0:65293) D5 SCMH1(AR121522) D6 SCML1(NP 0:57413) D7 SCML2(AR464517) D8 LML2(0:696R5) D9 FME20 MBT(NP 0:57520) D10 CG1-72-MBT(NP 0:57102)	Hie-MBTs/ WD40 E1 SFMBT1(a) E1 SFMBT1(a) E4 ISFMBT1(a) E4 ISFMBT1(a) E5 ISMBT12(a) E5 ISMBT12(a) E6 SCMH1(a) E7 WD40 -WDR9(MN 018963) E9 WD40 -MDA946(0)(XT07309) E10 WD40 -RbAb46(0)(XT07309) E10 WD40 -RbAb46(0)(XT0730) E11 WD40 -Mep50(d)(AF478464)	
PhD + F1 BPTC(+4B)(BAA89208) F2 ING2(e)(AAH50003) F3 PHF2(IV 065383) F4 PHF8(CA142880) F5 DATF1(CA162860) F5 DATF1(CA1695708) F7 PCCX1(IVP_03560) F7 PCCX1(IVP_035600) F1 P420 PHF0(IVN_057520) F10 PHD PHF3 F11 PHD PHF3 F11 PHD PHF3 F12 PHD CHD5 (1-2)	PhD G1 Dnmt3a-His/GST(g) G2 Dnmt3b-His/GST(g) G3 DnMt3L N-term-His/GST(g) G4 Trim24 Brd+PhD(I) G5 ING3(e) (NP_06124)4(G6 ING4(e) (NP_061121054) G7 ING5(e) (NP_011705) G8 PHD_T1F1A(e) (015164) G9 THB6(e) (015016) G10 BRPF1(e) (P55201) G11 ML14(e) (09VHN6) G12 ML72(e) (09VH83)	PhD + H JMJD2APhD+2Tudor(NP_055478) H2 JMJCPhD(NP_055478) H3 M96Tudo+PhD(AAH4013) H4 MYST4PhD-PhD(AAH48199) H5 MSD1PhD-PhWP(Q6E173) H6 WHSC1PhD+PWWP(NP_579877) H7 B569PhD+ BRD(AAH12586) H8 ATR H9 RAL1 H1 BA2Tb/WSTF H11 CBP H12 TAF3 (k)	BROMO II GCNS(092830) I2 TAF1-D1(MP. 620278) I3 TAF1-D2(MP. 620278) I3 TAF1-D2(MP. 620278) I4 P/CAF (571788) I5 SNF2 beta(54552) I6 BAF180 1-2(MP. 606035) I8 BAF180 3-4(MP. 606035) I8 BAF180 3-4(MP. 606035) I9 BAF180 3-4(MP. 606035) I9 BAF180 3-4(MP. 606035) I1 BAF180 3-4(MP. 606035) I1 BAF180 3-4(MP. 606035) I1 Pa00(NP_004371) I1 Pa00(NP_004371) I1 2 WOR9 2(09N56)	BROMO /SANT /TSN J1 Bromo-BRDT 1(AAH62700) J2 Bromo-BRDT 1(AAH62700) J3 SANT-MPO11-114kc(XP 379000) J4 SANT-RHO-114kc(XP 379001) J4 SANT-REFIC(AAH62342) J6 SANT-REFIC(AAH62342) J6 SANT-RDA2(NP_001470) J7 SANT-Zuotin Rei.(XP -168500) J7 SANT-20001 Rei.(XP -168500) J9 TSN-p100(0) (NP_055205) J10 TSN-p100 m6(0) (NP_055205)	
CHROMO K1 TIPpo(h)(AAB18236) K2 CHD2(h)(AAB37382) K3 CHD2(h)(AAH33596) K4 MPP8(h) (NP 05990) K5 SMARCC2(h)(AAH3222) K6 MRG15(h)(AAD28222) K6 MRG15(h)(AAD41239) K8 PC2(h)(AAB60718) K9 PC3(h)(AAG09180) K10 CHD5(h)(AAK5405) K11 CHD7(+2)(AB807387) K12 CBX6/NPCD(BC012111)	CHROMO L1 MH-2(h)(CAA60384) L2 HP1alpha(h)(P45973) L3 HP1gamna(h)(NP 057671) L4 M13-like(h)(AAD38499) L5 SUV39H1(h)(AAD2224) L6 CBX1/HP1be1a(h)(AAD21972) L7 HP1 beta(h)(P23197) L8 CDY1(h)(AAD22735) L9 CHD1(e) (NP_001261) L10 CBX4/PC2(e) (NM_0303655) L11 CBX7/H2(e) (NM_175709) L12 CBX5/HP1alpha(e)(NM_012117)	CHROMO / BRK / MRG H1 CBX3(e) (MM 01587) M2 CBX2(e) (MM 01587) M3 CDY12(e) (MM 152342) M4 CBX3(e) (MM 152342) M5 BRK SMCA2 (e) (MM 003072) M6 BRK SMCA2 (e) (MM 003072) M7 BRK - CHOF(e) (MM 023221) M8 BRK CHOF(e) (MM 017780) M9 BRK CHOF(e) (MM 017780) M10 MRG M321 (e) (MM 2078529) M11 MRG_M321 (e) (MM 208539)	TWWP N1 BBPF1(AAH53851) N3 DNMT38(CQUEC3) N4 HDGF(P51858) N5 HRP-3(BAA90477) N6 MSH6(P52701) N7 NSD1(Q96L73) N8 WHSC1-1(NP_579877) N9 FSIP1(e) (NM_032222 N10 BB7(16) (NM_014577) N10 BB7(16) (NM_0145735) N12 XMBD5 (e)(NM_018328)	FWWP / CW/SWIFM 02 PWWP, HOCB1(e) (NML 183047 02 PWWP, HOCB3(e) (NML 016073) 03 PWWP, DNR3A (e) (NML 75629) 04 CW3(AAH02725) 05 CW6[AA00485] 06 CW6[XP 087384] 05 CW6[AA0485] 07 SWIFM_KIAA1915(GRAB67808) 08 SWIRM_KIAA0601(CAB72299) 09 SWIRM_ADA2(NP_001479)	ANK 01 ANK-BARD1 (NP. 000456) 02 ANK-GLP(m) (AAM09024.1) 03 ANK-Otto (NP. 060087) 04 ANK-IKB alpha F.L. (e) Other QS TULP1 06 McCP2(i) 07 PHD_ZFP-1 His/GST(n)
				4471	400/

Supplementary Figure 1: Binding of acetylated E2F1 with p300 and CBP. (a) Layout of Cador 5.0 protein domain microarray, which contains 174 GST recombinant domain proteins. These proteins have been separated into blocks with each block consisting of up to 12 domain proteins printed in duplicate. Each block also contains a GST control located in the middle (M). **(b)** ¹H, ¹⁵N heteronuclear single quantum coherence (HSQC) NMR titration experiments were performed using a recombinant GST-p300 fusion protein containing the bromo, the ring finger and PHD domains (BRP) and E2F1 peptides that were either acetylated (top) or unacetylated (bottom). **(c)** Biotinylated E2F1 peptides di-acetylated at K117/120, K117/125, or K120/125 were used as bait to pull down purified GST-fusion proteins containing the bromodomain domain of p300 (top) or CBP (bottom). Following pull down, western blot for GST was performed to examine binding between p300 or CBP and the E2F1 peptides. Source data of **c** is provided as Supplementary Data 5.

Supplementary Figure 2: Recruitment status of p300 and CBP to control and break sites. (a) Western blot analysis for E2F1, RB, p300, CBP and GAPDH was performed using whole cell extracts from primary wild type (WT) and *E2f1^{S29A/S29A}* (S29A) MEFs. (b) The I-Ppol ChIP assay was performed using primary wild type (WT) and *E2f1^{S29A/S29A}* (S29A) MEFs, uninfected (-) or infected (+) with a retrovirus expressing HA-ER*-I-Ppol as indicated, and induced with 4-OHT for 12h. The occupancy of the indicated factors was determined at the *Gapdh* locus. (c) The same I-Ppol ChIP assay was performed and analyzed as above and occupancy for the indicated proteins was determined for a region on mouse chromosome 10 (mChrom10), 269 bp 5' to an I-Ppol cut site. All graphs represent average ± SD of three independent experiments (n=3). P values were calculated by unpaired Student's *t*-test. (**) P ≤ 0.01 is highly significant. Source data of **a** is provided as Supplementary Data 5. Raw data of **b** and **c** are in Source Data File.

Supplementary Figure 3: Enrichment of proteins to control and DSB sites. (a) Western blot analysis for E2F1, RB, p300, CBP, Tip60 and GAPDH was performed using whole cell extracts from parental U2OS cells or U2OS cells depleted for RB (*shRB1*) or E2F1 (*shE2F1*). (**b and c**) The I-Ppol ChIP assay was performed using parental U2OS cells or U2OS cells depleted for RB (*shRB1*) or E2F1 (*shE2F1*), uninfected (-) or infected (+) with a retrovirus expressing HA-ER*-I-Ppol as indicated, and induced with 4-OHT for 12h. The occupancy of the indicated factors was determined at the *rDNA* locus (**b**) and *GAPDH* locus (**c**). (**d**) Western blot analysis for E2F1, RB, p300, CBP and GAPDH was performed using whole cell extracts from primary wild type MEFs, untreated (DMSO vehicle) or treated with the CBP112 bromodomain inhibitor compound (1µM for 24h), and either minus (-) or plus (+) I-Ppol induction as indicated. (**e**) The I-Ppol ChIP assay was performed in primary wild type (WT) MEFs as indicated above, either with DMSO or CBP112 treatment. The occupancy of the indicated factors was determined at the *Gapdh* locus. All graphs represent average ± SD of three independent experiments (n=3). P values were calculated by unpaired Student's *t*-test. (**) P ≤ 0.01 is highly significant. (*) P ≤ 0.05 is significant. Source data of **d** is provided as Supplementary Data 5. Raw data of **b**, **c** and **e** are in Source Data File.

а Exon2₁Exon3 E2F1 WT protein: Κ G V Κ \mathbf{L} Ρ G \mathbf{E} Κ E2f1WT DNA: AAAGGTGTGAAATCTCCGGGGGGAGAAG ſ ↓↓ E2f1 3KR DNA: AGAGGTGTGAGATCTCCGGGGGGGGGGGGGG E2F1 3KR protein: G V R \mathbf{L} Ρ G R Ε R **Bgl II site** Founder #2 b F1 pups 1 2 3 4 5 6 Wild type Kb E2f1^{3KR} С Apaf1 Casp3 **Relative mRNA** 3 **Relative mRNA** WT WT n.s n.s. S29A S29A 3 2 3KR 3KR 2 1 Т 1 0 0 NCS (h) 3 NCS (h) 0 3 0

Supplementary Figure 4: Generation of an E2F1 3KR knock-in mouse model. (a) DNA and protein sequences of wild type and 3KR knock-in *E2f1* alleles with targeted mutations indicated. (b) Genotyping of founder *E2f1^{3KR}* mouse (#2) and F1 generation offspring by PCR amplification of *E2f1* genomic region spanning exons 2 and 3 followed by digestion with Bgl II. Heterozygous founder and F1 pups having both wild type and 3KR knock-in alleles and homozygous F1 pups having only wild type allele are shown by agarose gel electrophoresis. (c) Primary wild type (WT), *E2f1^{S29A/S29A}* and *E2f1^{3KR/3KR}* (3KR) MEFs were untreated or treated with NCS (250 ng per ml) for 3h. Total RNA was isolated and cDNA was prepared by RT-PCR. Expression of *Apaf1* and *Caspase3* (*Casp3*) was determined by qPCR of three independent experiments (n=3) and represented as average ± SD. P values were calculated by unpaired Student's *t*-test. (*) P ≤ 0.05 is significant. Source data of **b** is provided as Supplementary Data 5. Raw data of **c** is given in Source Data File.

Supplementary Figure 5: E2F1 3KR mutation impairs recruitment of p300/CBP to DSBs. (a) The I-Ppol ChIP assay was performed using primary wild type (WT) and *E2f1*^{3KR/3KR} (3KR) MEFs and occupancy of the indicated factors was determined for a region on mChrom5 locus. **(b)** The same assay was performed as above and occupancy was determined at the *Gapdh* locus. Graphs represent average \pm SD of three independent experiments (n=3). P values were calculated by unpaired Student's *t*-test. (**) P \leq 0.01 is highly significant. **(c)** Wild type and *E2f1*^{3KR/3KR} MEFs were mock treated (NT) or exposed to 5 Gy of IR 2h prior to in situ extraction and fixation. Representative images show formation of IR-induced foci for p300 (green) and γH2AX (red) and merged with DAPI staining (blue) of nuclei. Bar, 10 µm. Quantification of p300 and γH2AX foci from the same experiment was performed. Each treatment group was in triplicate, and in total at least 450 cells (n > 450) were counted per treatment group. Graphs represent average \pm SD of foci per cell. Overlaid scattered dot plot shows the distribution of foci. P values were calculated by unpaired Mann-Whitney *U* test. (****) P < 0.0001 is highly significant. Raw data of averages in graphs underlying **a** – **c** are given in Source Data File.

Supplementary Figure 6: Recruitment status of Tip60 and induction of H4K16ac at control and break sites. (a) The I-Ppol ChIP assay was performed using primary wild type (WT), $E2f1^{S29A/S29A}$ (S29A), and $E2f1^{3KR/3KR}$ (3KR) MEFs and occupancy of Tip60 and H4K16ac was determined for a region on mChrom5 locus. (b) The same assay was performed as above and occupancy was determined at the *Gapdh* locus. (c and d) The I-Ppol ChIP assay was performed using parental U2OS cells or U2OS cells depleted for RB (*shRB1*) or E2F1 (*shE2F1*) and occupancy of Tip60 and H4K16ac was determined at the *rDNA* locus (c) and *GAPDH* locus (d). All experiments were done in triplicate (n=3). P values were calculated by unpaired Student's *t*-test. (**) P ≤ 0.01 is highly significant. (e) GST-TopBP1 (BRCT1-6) or GST control protein were incubated with whole cell extract from wild type (WT) or $E2f1^{S29A/S29A}$ (S29A) MEFs that were either untreated (-) or treated (+) with IR (10 Gy). Following pull down, binding of Tip60 was analyzed 2h post-IR by western blotting. From the same experiment CBP was also blotted which served as a positive control and is shown in Fig. 2a. Source data of **e** is provided as Supplementary Data 5. Raw data of **a** - **d** are in Source Data File.

Supplementary Figure 7: The E2F1 knock-in mutations do not affect BRG1, Mre11 and NBS1 protein levels. (a) Western blot analysis for BRG1 and GAPDH was performed using whole cell extracts from primary wild type (WT) and *E2f1^{3KR/3KR}* (3KR) MEFs without (-) or with (+) I-Ppol induction. (b) Western blot analysis for Mre11, NBS1 and GAPDH was performed using whole cell extracts from primary wild type (WT), *E2f1^{S29A/S29A}* (S29A) and *E2f1^{3KR/3KR}* (3KR) MEFs, plus (+) and minus (-) I-Ppol induction. Source data of **a** and **b** are provided as Supplementary Data 5.

Supplementary Table 1: List of reagents used in this study

REAGENT	SOURCE	IDENTIFIER
Dithiothreitol	Gold Biotechnology	27565-41-9
¹⁵ NH ₄ Cl	Sigma	299251
IPTG	Gold biotechnology	I2481C100
Glutatahione-Sepharose 4B beads	Thermo Fisher Sci	16101
NI-NTA Agarose	Qiagen	30250
PreScission protease	Home expressed	N/A
Streptavidin Agarose beads	EMD-Millipore	16-126
L-Glutathione Reduced	Sigma	G4251
I-CBP112	Xcess Biosciences Inc	M60128-2s
Formaldehyde	Sigma	F8775
4-hydroxy tamaoxifen	Sigma	H-7904
ChIP-Grade Protein G Magnetic Beads	Cell Signaling Technology	9006
Protease Inhibitor Cocktail tablets	Roche	11873580001
(Complete, EDTA-free)		
Phosphatase Inhibitor Cocktail tablets	Roche	04906837001
Trichostatin A (TSA)	Sigma	T1952
FX-527	Selleckchem.com	S1541
iTag Universal SYBR Green Supermix	Bio-Rad	172-5124
Western Lightning ^R Plus - ECL	Perkin Elmer	NEL 104001EA
	Invitrogen	D1306
Background Spiner	Biocare	BS966H
DaVinci Green	Biocare	PD9001
SuperScript II Reverse Transcriptase	Invitrogen	18064-014
dNTP Mix	Invitrogen	18427-013
Neocarzinostatin (NCS)	Sigma	N9162
	Gibco	15212_012
Colocitiu	Cibco	15212-012

Supplementary Table 2: List of antibo	odies used in this study
---------------------------------------	--------------------------

ANTIBODY	DILUTION	SOURCE	IDENTIFIER
anti-GST (Z-5)	WB – 1:1000	Santa Cruz	Cat#sc-459; RRID: AB_631586
anti E2E1 (C. 20)	\M/P 1:10000	Sonto Cruz	Cat#co 103: DDID: AB 631304
TransCruz	$ChIP = 6 \mu a$	Biotechnology	Cal#SC-195, INNID. AB_051594
anti-E2E1 (KH95)	WB = 1.1000	Santa Cruz	Cat#sc-251: RRID: AB_627476
	11000	Biotechnology	
Anti-Ac-lysine	WB – 1:1000	Santa Cruz	Cat#sc-32268; RRID: AB_627898
(AKL5C1)	MD 1:10000	Biotechnology	
TransCruz	Ch D = 1.10000	Biotechnology	Cal#SC-50, RRID. AB_052559
anti $n300 (C 20)$	$\frac{1}{1000} = 0 \mu g$	Santa Cruz	Cat#cc 585: PPID: AB 2231120
TransCruz	$ChIP = 6 \mu q$	Biotechnology	Cal#SC-303, NNID. AD_2231120
Tunooraz	IF = 1.500	Diotocimiology	
anti-CBP (A-22)	WB – 1:5000	Santa Cruz	Cat#sc-369; RRID: AB 631006
TransCruz	ChIP – 6 µg	Biotechnology	· _
	IF – 1:250		
anti-H3K18ac	ChIP – 5 µl	EMD-Millipore	Cat#07-354; RRID: AB_441945
anti-H3K56ac	ChIP – 10 µl	Cell Signaling	Cat#4243; RRID: N/A
		Technology	
anti-γH2AX	WB – 1:2000	Cell Signaling	Cat#2577; RRID: AB_2118010
(Ser139)	ChIP – 6 µg	Technology	
anti-γH2AX (Ser139)	IF – 1:10000	EMD-Millipore	Cat#05-636; RRID: AB_309864
anti-pATM	WB – 1:2000	Cell Signaling	Cat#5883; RRID: AB_10835213
(Ser1981)		Technology	
anti-Cleaved	IHC – 1:100	Cell Signaling	Cat#2035; RRID: N/A
Lamin A	15 4:050	I echnology	
anu-53BPT	IF - 1:250	Laboratories Inc	Cal#A300-272A; RRID: AB 185520
anti-GAPDH	WB – 1·10000	EMD-Millinore	Cat#MAB374: RRID:
(clone 6C5)	1.10000		AB 2107445
anti-Tip60	WB – 1:1000	Abcam	Cat#ab23886; RRID: AB 778485
•	ChIP – 6 µg		
anti-H4K16ac	ChIP – 6 µg	EMD-Millipore	Cat#07-329; RRID: AB_310525
anti-BRG1 (H-88)	WB – 1:1000	Santa Cruz	Cat#sc-10768; RRID:
	ChIP – 6 µg	Biotechnology	AB_2255022
anti-Histone H3	WB – 1:5000	Cell Signaling	Cat#4499; RRID: AB_10544537
(D1H2) XP	ChIP – 10 µl	Technology	
anti-NBS1	WB – 1:1000	Cell Signaling	Cat#3002; RRID: AB_331499
	ChIP – 10 µl	lechnology	
anti-Mre11	WB – 1:4000	Cell Signaling	Cat#4895; RRID: AB_2145100
anti nhasha = 50	$\frac{\text{ChiP} - 10 \mu\text{I}}{100000}$		
(Ser15)	WB - 1:2000		Cal#9284; KRID: AB_331464
		тесппоюду	

Cat# - Catalog Number; RRID – Research Resource Identifiers

WB – Western blotting; ChIP – Chromatin Immunoprecipitation; IF – Immunofluorescence; IHC - Immunohistochemistry

Supplementary Table 3: List of primers used in this study

PRIMER	SOURCE	IDENTIFIER
Random Hexamer	Thermo Scientific	SO142
5'-d (NNNNN) -3' N = G, A, T or C		
mChrom5 locus_Forward:	This paper	N/A
TGGGAATCTCATTCATCCATT		
mChrom5 locus_Reverse:	This paper	N/A
CCAGAAGGTCAGAAGGATCG		
mChrom10 locus_Forward:	This paper	N/A
CATGCATGAATGGAATGAGGA		
mChrom10 locus_Reverse:	This paper	N/A
CAGGGAAGGAAGAGCATGAG		
mGapdh locus_Forward:	This paper	N/A
TTCTCGGGCAAAAATGAGAG		
m <i>Gapdh</i> locus_Reverse:	This paper	N/A
TTCCATCCTCCAGAAACCAG		
hChrom1 locus:		
TGCTGCTTTTTCTTCTTCTCC	²² Berkovich et al., 2008	N/A
CTTCTTTCCCACCAAGTCTTC		
h <i>rDNA</i> locus:		
TGGAGCAGAAGGGCAAAAGC	²² Berkovich et al., 2008	N/A
TAGGAAGAGCCGACATCGAAGG		
h <i>GAPDH</i> locus:		
TCGGTTCTTGCCTCTTGTC	²² Berkovich et al., 2008	N/A
CTTCCATTCTGTCTTCCACTC		
<i>p</i> 73 mRNA_Forward:	PrimerBank	30794514a1
GCACCTACTTTGACCTCCCC		
<i>p</i> 73 mRNA_Reverse:	PrimerBank	30794514a1
GCACTGCTGAGCAAATTGAAC		
Apaf1 mRNA_Forward:	PrimerBank	6857755a1
AGTAATGGGTCCTAAGCATGTTG		
Apaf1 mRNA_Reverse:	PrimerBank	6857755a1
GCGATTGGGAAAATCACGTAAAA		
Casp3 mRNA_Forward:	PrimerBank	24416451a1
TGGTGATGAAGGGGTCATTTATG		
Casp3 mRNA_Reverse:	PrimerBank	24416451a1
TTCGGCTTTCCAGTCAGACTC		
Gapdh mRNA_Forward:	This paper	N/A
AGAACATCATCCCTGCATCC		
Gapdh mRNA_Reverse:	This paper	N/A
CACATTGGGGGTAGGAACAC		