Supporting Information

Colorimetric Assay Reports on Acyl Carrier Protein Interactions

Kofi K. Acheampong,¹ Bashkim Kokona¹ Gabriel A. Braun^{,1} Danielle R. Jacobsen,² Karl A. Johnson,^{2,*} Louise K. Charkoudian^{1,*}

¹Department of Chemistry, Haverford College, Haverford, PA 19041-1391, USA 2 Department of Biology, Haverford College, Haverford, PA 19041-1391, USA

*Correspondence and requests for materials should be addressed to K.A.J. (kjohnson@haverford.edu) and L.K.C. (lcharkou@haverford.edu)

Figure S1. ES mass spectrum of *holo*-AcpP (A) and AcpP-TNB- (B). The different charge states (z) are marked on the plot and are calculated according to the theoretical molecular weight of the ACP (minus the *N*-terminus methionine). The addition of +197.9 Da is consistent with the loading of TNB- onto the ACP Ppant arm.

Figure S2. ES mass spectrum of *holo*- C17S ACT ACP (A) and ACT ACP-TNB- (B). The different charge states (z) are marked on the plot and are calculated according to the theoretical molecular weight of the ACP (minus the *N*-terminus methionine). The addition of + 197.9 Da is consistent with the loading of TNB- onto the ACP Ppant arm.

Figure S3. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of acyl carrier proteins used in this study. Lanes: 1. Protein standards ladder; 2 h*olo*-AcpP (-BME); 3. *holo*-AcpP (+BME); 4. AcpP-TNB- (-BME); 5. AcpP-TNB- (+BME); 6. Protein standards ladder; 7. *holo*-ACT ACP (- BME); 8. *holo*-ACT ACP (+BME); 9. C17S ACT ACP-TNB- (-BME); 10. ACT ACP-TNB- (+BME). The migration of *holo*-AcpP to \sim 20 kDa despite its molecular weight of \sim 10 kDa is consistent with previous observations¹⁶ and is likely due to the unusual charge distribution of the protein. A second higher molecular weight band at \sim 40 kDa represents a dimer.¹⁷ *Holo*-ACT ACP migrated to the expect molecular weight of \sim 10 kDa also exhibited dimer formation under nonreducing conditions.

Figure S4. Oligomeric state of proteins used in this study. Sedimentation coefficient distributions c(s) of *holo*-AcpP (A) and *holo*-ACT ACP (B) shows a single peak at 1.7S and 1.5 S, respectively, which suggests that these proteins sediment as a monomer. The *E. coli* KS FabF sediments as a dimer in solution with an s-value centered at 5.9 S. There is no additional self-association observed with the increase of the monomer concentrations which suggests that all proteins used in this study exist in a single oligomeric state in solution under reducing conditions.

Figure S5. Binding constant for *holo-*AcpP (5-230 μM) interacting with FabF (16 μM) was determined from the concentration-dependent sedimentation velocity experiments. EPTswfast and sw isotherms of the weight-average sedimentation coefficient versus *holo-*AcpP concentration were best fitted to a A + B \leftrightarrow AB model with a binding constant k_D = 6.4 \pm 1.8 μM. The AcpP peak is centered at 2.0 S in the presence of FabF. A) Unnormalized sedimentation coefficient distribution, c(s), of FabF titrated with *holo*-AcpP. B) Effective Particle Theory (EPT) weightaverage sedimentation coefficient, EPTswfast (purple circles) and weight-average sedimentation coefficient isotherm sw (blue squares) plotted against *E. coli* ACP concentrations fitted to $A + B$ ↔ AB model. The fitted isotherms are shown as solid lines. Bottom panel represent the residuals.

Figure S6. Far-UV CD data of *holo*-AcpP versus AcpP-TNB- (black) and *holo-* C17S ACT ACP versus C17S ACT ACP-TNB- (red) in phosphate buffer. The spectrum of ACPs in their *holo*versus TNB- -labeled form are nearly identical within the signal:noise of the instrument.

Figure S7. Zoomed in mass spectrum of the trypsinized sample from the excised ~75 kDa band from the SDS PAGE gel shown in Figure 3 representing a putative AcpP-FabF cross-link. Under dilute conditions, the excised band is appeared as a doublet and so both the top band (top panel) and bottom band (bottom panel) were analyzed by tandem proteolysis mass spectrometry. The *m/z* peak at 7256 represents the expected mass of the peptide fragment expected from a trypsinized AcpP-FabF complex linked via a disulfide bond between the thiol of the AcpP Ppant arm and the catalytic active site cysteine of FabF. The *m/z* peak at 7272 likely corresponds to the oxidized products at +16 Da.

Figure S8*.* Analysis of the ACT ACP-TNB- reaction with FabF reveals that neither the ACT ACP-FabF complex nor the release of TNB²⁻ is observed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis under non-reducing (A) and reducing conditions (B) indicate that the ACT ACP-FabF complex not formed under non-reducing conditions. Lanes: 1. Protein standards ladder; 2. ACT ACP-TNB; 3. FabF; 4. ACT ACP:FabF mixed in molar ratio of 0.2:1; 5. ACT ACP:FabF mixed in molar ratio of 0.5:1; 6. ACT ACP:FabF mixed in molar ratio of 1:1; 7. ACT ACP:FabF mixed in molar ratio of 1.5:1; 8. ACT ACP:FabF mixed in molar ratio of 2:1; and ACT ACP:FabF mixed in molar ratio of 3:1. Upon mixing ACT ACP-TNB⁻ with FabF no release of TNB²⁻ is observed as shown by a lack of increase in A412 (C).