SUPPLEMENTAL MATERIALS

Figure S1. GC-MS identification of the formation of BQ during dry acid pretreatment of the representative lignocellulose feedstock of corn stover. The compound with retention time at 5.64 min was identified as BQ (at m/z 108).

(a) Zymomonas mobilis ZM4

Figure S2. GC-MS identification of the intermediates generated during degradation of p-benzoquinone (BQ) by *Z. mobilis* ZM4 and *G. oxydans* DSM2003. (a) *Z. mobilis* ZM4; and (b) *G. oxydans* DSM2003. The whole flask of the *Z. mobilis* ZM4 and *G. oxydans* DSM2003 cell mass in exponential growth were harvested, washed by phosphate buffered saline (PBS, pH 7.0) and resuspended in the same volume of PBS, then inoculated into the fresh PBS containing 20 g/L glucose and 200 mg/L BQ. The cell cultures were collected at 0 h and 6 h for GC-MS analysis. Conditions: 10% (v/v) inoculum size, 30 °C, in static state culture for *Z. mobilis* ZM4; and 30 °C, 220 rpm for *G. oxydans* DSM2003. The compound with retention

time at 5.13 min and 9.17 min was identified as BQ (at m/z 108) and hydroquinone (HQ) (at m/z 110), respectively.

Figure S3. Cell growth, glucose consumption and D-lactic acid fermentation of *P. acidilactici* ZY15 recombinant strains with different genes in MRS medium containing 35 mg/L BQ.

Figure S4. Construction of the plasmids for overexpression of key genes with up-regulations by more than twofold in response to p-benzoquinone. pHW20a represents the empty plasmid vector without gene overexpression. The eight genes include one oxidoreductase gene *ZMO1772* encoding NAD(P)H quinone oxidoreductase; three reductase genes *ZMO0833* encoding UDP-N-acetylenolpyruvoylglucosamine reductase, *ZMO1303* encoding pyrroline-5-carboxylate reductase, and *ZMO1984* encoding aldo/keto reductase; three dehydrogenase genes *ZMO1949* encoding NAD(P)H dehydrogenase, *ZMO1696* encoding Zinc-binding alcohol dehydrogenase, and *ZMO1576* encoding short-chain dehydrogenase/reductase; and one fatty acid hydroxylase gene *ZMO1399*.

Table S1Genes and primers used in qRT-PCR assay.

Gene	Annotation	Primer sequence (5'-3')		
		Forward	Reverse	
Primers fo	or the oxidoreductase gene			
ZMO1116	Oxidoreductase	TGTGGTTTGGGCCATCCG	TGTCGGTGCGTCCTGTTTGT	
ZMO1772	NAD(P)H quinone oxidoreductase	GGTCGCCTTGTCATTGTCG	GGCTGTTCTGGCACGCAT	
ZMO1885	NADH flavin oxidoreductase	TGGAGTGATGCCCAAGTAGAAG	CACTGACATTAGACGGCACCATA	
Primers fo	or the reductase gene			
ZMO1993	NADPH quinone reductase	GCGGTGTCGGTAGCTTGTT	GCCTTCGCCGTGATTCTG	
ZMO0833	UDP-N-acetylenolpyruvoylglucosamine	ATCGCCTGCGTTGTGGTG	GCATTCATGCGGATCATACCA	
	reductase			
ZMO1222	3-oxoacyl-(acyl-carrier-protein) reductase	TTAGCCGTGCCGTCATCAGA	CGATCATGCCTGCCTTTGC	
ZMO1303	Pyrroline-5-carboxylate reductase	ACAACCCTGATTTCTATTCTTGCC	AACAACGCCCTTCCCTAACG	
ZMO1984	Aldo/keto reductase	TCGCCATTTGTCAGCCTATC	CAGCAAAGTTACTGCTACCCAC	
ZMO1254	Redoxin domain-containing protein	CGCTATGGTAATCCCTATCAGGC	GCTCATAAGCTGTGGCAAATCC	
Primers for the dehydrogenase gene				

ZMO1335	NAD(P)H dehydrogenase (quinone)	CCCGATTTGGGCGTTTG	AGACCGCTCCGACCTTTCC
ZMO1949	NAD(P)H dehydrogenase (quinone)	TGGAGGCAAGCGGTTCTAC	GCAACAGCGGTTTGAGCAT
ZMO0157	D-isomer specific 2-hydroxyacid	TATGGCTGTCGGGTTATTCC	TTCGGCGATGGCTTGG
	dehydrogenase		
ZMO0788	D-sorbitol dehydrogenase	CAGTTGTCACGGTCGCAATG	GCCGCAATCTGACTATCGTTTA
ZMO1576	Short-chain dehydrogenase/reductase	TCTATCGTCGCTAAGGGTGGTC	GCTGCAATCCCATAAAGAACG
ZMO1696	Zinc-binding alcohol dehydrogenase	TCCGAAGACAGGCGAAGAATG	CCTCGTCACCGACCTTAAATAGC
Primers for other genes			
ZMO1399	Fatty acid hydroxylase	GAAACGGATTCACTATGACCAC	CCGACAGCATAACCGATACA
ZMO0020	Hypothetical protein	CCGATCTAGTAAGCCAATTCACC	TTTCAAATCTGTTGGTTGGGTGT
ZMO0021	Hypothetical protein	CCACTTCATATCGCTTCTGTCG	GCGTAATCGGTGATCCCAAA
ZMO0074	Hypothetical protein	CGATAAAGACCGCCCGACC	TCGCCAAGCAGGCATTCG
ZMO1821	Hypothetical protein	AGAAAGCCGCCGCCATC	CACCATCATACCAACTGTCAACG
ZMOr003	16S rRNA	TTAAGTTGGGCACTTTAGAGGAAC	TGTCACCGCCATTGTAGCAC

Note: The 16S rRNA gene ZMOr003 was used as the internal control to normalize the difference of the data.

Strains	Genotype	Sources/references
Zymomonas mobilis ZM4	Wild-type strain, ATCC31821	ATCC
Gluconobacter oxydans DSM2003	Wild-type strain, DSM2003	DSMZ
Saccharomyces cerevisiae XH7	Co-metabolize glucose and xylose into ethanol	Li et al., 2016 ^[1]
Saccharomyces cerevisiae DQ1	Thermal tolerant mutant	Chu et al., 2012 ^[2]
Pediococcus acidilactici TY112	Co-fermentation of L-lactic acid from glucose and xylose	Yi et al., 2016 ^[3]
Zymomonas mobilis 8b	Co-fermentation of ethanol from glucose and xylose	Zhang et al., 1995 ^[4]
<i>Escherichia coli</i> S 17-1 λπ	Pro, res ⁻ , mod ⁺ ; chromosomal integrated RP4, 2-Tc::Mu-Km::Tn7; Tp, sm	Simon et al., 1983 ^[5]
Amorphotheca resinae ZN1	Wild-type strain	Zhang et al., 2010 ^[6]
Plasmids	Description	Sources/references
pHW20a	<i>Tc</i> ^r , <i>mob</i> (RP4), <i>mob</i> (RSF1010), <i>lac</i> Zα, MCS, and <i>ori</i> V	Dong et al., 2011 ^[7]
pHW20a-ZMO1772	NAD(P)H quinone oxidoreductase gene ZMO1772 from ZM4	This study
pHW20a-ZMO0833	UDP-N-acetylenolpyruvoylglucosamine reductase gene ZMO0833 from ZM4	This study
pHW20a-ZMO1303	Pyrroline-5-carboxylate reductase gene ZMO1303 from ZM4	This study
pHW20a-ZMO1984	Aldo/keto reductase gene ZMO1949 from ZM4	This study

Table S2Microbial strains, plasmids and primers used in this study.

pHW20a-ZMO1949	NAD(P)H dehydrogenase (quinone) gene ZMO1949 from ZM4	This study
pHW20a-ZMO1696	Zinc-binding alcohol dehydrogenase gene ZMO1696 from ZM4	This study
pHW20a-ZMO1576	Short-chain dehydrogenase/reductase gene ZMO1576 from ZM4	This study
pHW20a-ZMO1399	Fatty acid hydroxylase gene ZMO1399 from ZM4	This study
Primers for gene amplification	Sequence (5'-3')	
<i>ZMO1772-</i> F	CCC <u>AAGCTT</u> ATGGCAGGCAACATGATGAAAG	
<i>ZMO1772-</i> R	CGG <u>GGTACC</u> TCAAAAAGCGCCTCTGGC	
<i>ZMO0833-</i> F	CCCAAGCTTATGACGACTGCTACATCTTCC	
<i>ZMO0833-</i> R	CGG <u>GGTACC</u> TCATGCCTTATCCCCATC	
<i>ZMO1303-</i> F	CCCAAGCTTATGAGTGATACCGCATCAGATTC	
<i>ZMO1303-</i> R	CGG <u>GGTACC</u> TTATTGCGCGATAGTCTCTTTG	
<i>ZMO1984-</i> F	CCCAAGCTTATGGATTATACGTATTTGGGTCG	
<i>ZMO1984</i> -R	GC <u>TCTAGA</u> CTACCATGCATAGGCTTCAGG	
<i>ZMO1949-</i> F	CCCAAGCTTATGAAAGTATTGATCGTTCACGC	
<i>ZMO1949-</i> R	CGG <u>GGTACC</u> TCATGGTTGTTGTTTCCTCAAAC	
<i>ZMO1696-</i> F	CCCAAGCTTATGCGCGCCATAGGTTATC	

Note: The underline indicates the digestion sites.

REFERENCES

- 1. Li H, Shen Y, Wu M, Hou J, Jiao C, Li Z, Liu X, Bao X. 2016. Engineering a wild-type diploid *Saccharomyces cerevisiae* strain for second-generation bioethanol production. Bioresour Bioprocess 3:51.
- 2. Chu D, Zhang J, Bao J. 2012. Simultaneous saccharification and ethanol fermentation of corn stover at high temperature and high solids loading by a thermotolerant strain *Saccharomyces cerevisiae* DQ1. Bioenergy Res 5:1020-1026.
- 3. Yi X, Zhang P, Sun J, Tu Y, Gao Q, Zhang J, Bao J. 2016. Engineering wild-type robust *Pediococcus acidilactici* strain for high titer 1- and d-lactic acid production from corn stover feedstock. J Biotechnol 217:112-121.
- 4. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. 1995. Metabolic Engineering of a pentose metabolism pathway in ethanologenic *Zymomonas mobilis*. Science 267:240-243.
- 5. Simon R, Priefer U, Puhler A. 1983. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in

gram negative bacteria. Bio Technol 1:784-791.

- 6. Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J. 2010. Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, *Amorphotheca resinae* ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels 3:26.
- Dong HW, Bao J, Ryu DDY, Zhong JJ. 2011. Design and construction of improved new vectors for *Zymomonas mobilis* recombinants. Biotechnol Bioeng 108:1616-1627.