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Ongoing population study 

The present study is part of an ongoing population TB study.  This global study consisted in the 

recollection and WGS analysis of a total of 785 positive TB clinical samples during 2014-2016. Using 

SNPs distances between isolates (≤15 SNPs), we detected that 41% (n=325) of all samples were in 

transmission. Although the majority of clustered cases comprised two samples, we detected 

transmission clusters that involved up to 12 TB cases. From this first analysis, we obtained the 

samples that we used in the present study. We selected to 21 genomic clusters (17.3% of all clusters 

identified) that corresponded 117 isolates (36% of the total transmission). These genomic groups that 

had at least four cases and had 2 SNPs difference between all samples involved. Furthermore, we 

made a comparison analysis to see whether our sampling selection was representative of the whole 

population (S3 Table). 

 

Timed tree reconstruction 

Although the accepted value for the TB substitution rate in the community is approximately 0·3-0·5 

substitutions per genome per year[1,2], our data seem to suggest that the rate may vary both between 

clusters and within clusters. For example, in some clusters the SNP distances between pairs of hosts 

are not consistent with the case timings. For example, a host sampled earlier in time can seem to have 

accumulated more SNPs than a host sampled later (compared to inference of an ancestral sequence 

for a cluster), or vice versa. In such cases, an estimated timed phylogenetic tree using a low clock rate 

(as is normally assumed in TB) would place the earliest sequence in the cluster quite far back in time 

compared to the most recent sampled case. 

We therefore need to incorporate rate uncertainty in the inference framework. However, one 

challenge is that we do not know if and how rates vary across clusters, and furthermore, although 

treedater[3]  allows us to fit a relaxed clock, the consequence of increased number of parameters and 

lack of signal contained in small cluster data mean that the branch length estimates may not be 

reliable. Therefore, we adopt a simple approach whereby instead of using a single timed phylogenetic 

tree for each cluster, we sample clock rates from a known distribution and use treedater to estimate 

timed trees for all clusters by fixing the clock rate to be in the range of one of our sampled rate values 

with a margin of ±δ. So for each sampled clock rate, we obtain timed tress corresponding to all clusters 

and we used TransPhylo [4] and the method outlined below to infer the transmission trees. We then 

pool the transmission trees for each clock rate. By inspecting this combined posterior, we can compare 

between rates and see if any of the interesting quantities are sensitive to changes in clock rate. We 

perform a meta-analysis of 18 publications reporting clock rates per year from different studies of 

MTBC (see S1 Table). We obtained a mean rate of 0.32 (±0.022-0.44) but with very wide range of 

values (0.14-0.59). Thus, we chose to use a log-normal distribution with log-scale mean and standard 

deviation of -0.7 and 0.5, respectively, for the sampling distribution of the clock rate and  = 0.2. 



 

 

Transmission inference 

We develop our method of simultaneous transmission inference on many clusters based on 

TransPhylo, a Bayesian method to reconstruct transmission trees from pathogen phylogeny. In 

TransPhylo, an MCMC method is used to draw samples from the posterior distribution of 

transmission trees and model parameters given a timed phylogenetic tree reconstructed from 

sequenced isolates (1).  

 

where T is transmission tree, P is timed tree and  collects the model parameters. The transmission 

tree is represented by a matrix whose columns are the times of infection, times of sampling and the 

infectors, and whose rows correspond to infected individuals. If a case is not sampled, then the 

corresponding entry for time of sampling is empty. In the posterior trees that TransPhylo produces, 

the number of rows in T can be variable across iterations, because of the addition/removal of 

unsampled cases; reversible-jump MCMC is used in TransPhylo to account for changes of 

dimensionality. 

The transmission tree contains information about who infected whom and when, and also whether a 

case is sampled or not. The timed phylogenetic tree shows the ancestral history of a set of pathogen 

isolates sampled from hosts and is constructed using known methods of phylogenetic tree 

reconstruction. The TransPhylo posterior thus reflects our updated belief of the transmission pattern 

and epidemiological parameters after observing the timed tree of the sequences.  

In practice, especially in low-incidence settings, we often define transmission clusters based on our 

knowledge of the genomics and the epidemiology of cases, such that we are quite confident that 

transmissions occurred within clusters and were less likely between clusters. This makes it more 

amenable to analyze multiple clusters simultaneously than to work with a single large phylogeny of 

all sequences, because these clusters tend to be separated by long branches and a method like 

TransPhylo will need to place many unsampled cases along these branches and so will not explore 

transmission within clusters efficiently. 

In order to develop a framework for simultaneous transmission inference, a straightforward extension 

to (1) is to carry out our Bayesian inference in an augmented tree and parameter space. More precisely, 

let T, P and  be elements in the respective joint space of n clusters, that is, T = (T1,….Tn) with Ti the 

transmission tree for cluster i, and similarly for P and , then 

 

assuming independence between clusters. MCMC simulation of (2) proceeds as it would in (1), with 

each step consisting of separately updating parameters and trees for all clusters. This would be no 

different from independently running TransPhylo once for each cluster. In order to allow information 

to be shared between clusters, we decompose  into shared and non-shared parts,  = ( s,  ns). The 

posterior distribution becomes 



 

 

 

Note that  s does not have index i because it is the same for all clusters. The update of  s is based 

on the Metropolis-Hastings ratio of likelihoods of all clusters. 

With the above framework, not only can we handle the statistical inference with multiple transmission 

clusters simultaneously, we can also choose which parameters should be shared. The latter has both 

epidemiological and computational implications; if we believe that certain parameters, such as the 

basic reproduction number (the expected number of secondary infections from any primary infection) 

and/or the sampling rate are similar across clusters, then we can easily encode this belief into (3). 

This offers great computational savings as the number of parameters is significantly reduced — 

avoiding (n -1)n( s) parameter estimations where n( s) denotes the number of parameters in  s. 

  



 

 

Supplementary References 

1.  Duchêne S, Holt KE, Weill F-X, Le Hello S, Hawkey J, Edwards DJ, et al. Genome-scale 

rates of evolutionary change in bacteria. Microb Genomics. 2016;2.  

2.  Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U, Blom J, et al. Whole Genome Sequencing 

versus Traditional Genotyping for Investigation of a Mycobacterium tuberculosis Outbreak: A 

Longitudinal Molecular Epidemiological Study. PLOS Med. 2013;10: 1–12. 

doi:10.1371/journal.pmed.1001387 

3.  Volz EM, Frost SDW. Scalable relaxed clock phylogenetic dating. Virus Evol. 2017;3: 

vex025. doi:10.1093/ve/vex025 

4.  Didelot X, Fraser C, Gardy J, Colijn C. Genomic infectious disease epidemiology in partially 

sampled and ongoing outbreaks. Mol Biol Evol. 2017;34: 997–1007.  

5.  Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, et al. Use of whole genome 

sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent 

infection. Nat Genet. 2011;43: 482–486. doi:10.1038/ng.811 

6.  Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome 

sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational 

study. Lancet Infect Dis. 2013;13: 137–146. doi:10.1016/S1473-3099(12)70277-3 

7.  Bryant JM, Schürch AC, van Deutekom H, Harris SR, de Beer JL, de Jager V, et al. Inferring 

patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing 

data. BMC Infect Dis. 2013;13: 110. doi:10.1186/1471-2334-13-110 

8.  Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, et al. Mycobacterium 

tuberculosis mutation rate estimates from different lineages predict substantial differences in 

the emergence of drug-resistant tuberculosis. Nat Genet. 2013;45: 784–790. 

doi:10.1038/ng.2656 

9.  Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, et al. Pre-Columbian 

mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 

2014;514: 494–497. doi:10.1038/nature13591 

10.  Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, et al. Evolutionary 

history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 

2015;47: 242–249. doi:10.1038/ng.3195 

11.  Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, et al. Southern East Asian origin and 

coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad 

Sci. 2015;112: 8136–8141. doi:10.1073/pnas.1424063112 

12.  Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, et al. Four decades of 

transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat 

Commun. 2015;6: 7119. doi:10.1038/ncomms8119 

13.  Kay GL, Sergeant MJ, Zhou Z, Chan JZ-M, Millard A, Quick J, et al. Eighteenth-century 

genomes show that mixed infections were common at time of peak tuberculosis in Europe. 

Nat Commun. 2015;6: 6717. doi:10.1038/ncomms7717 



 

 

14.  Bjorn-Mortensen K, Soborg B, Koch A, Ladefoged K, Merker M, Lillebaek T, et al. Tracing 

Mycobacterium tuberculosis transmission by whole genome sequencing in a high incidence 

setting: a retrospective population-based study in East Greenland. Sci Rep. 2016;6: 33180. 

doi:10.1038/srep33180 

15.  Liu Q, Ma A, Wei L, Pang Y, Wu B, Luo T, et al. China’s tuberculosis epidemic stems from 

historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol. 2018;2: 

1982–1992. doi:10.1038/s41559-018-0680-6 

16.  Merker M, Barbier M, Cox H, Rasigade J-P, Feuerriegel S, Kohl TA, et al. Compensatory 

evolution drives multidrug- resistant tuberculosis in Central Asia. Evol Biol. : 31.  

17.  Duchene S, Duchene DA, Geoghegan JL, Dyson ZA, Hawkey J, Holt KE. Inferring 

demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic 

methods. BMC Evol Biol. 2018;18: 95. doi:10.1186/s12862-018-1210-5 

18.  Rutaihwa LK, Menardo F, Stucki D, Gygli SM, Ley SD, Malla B, et al. Multiple 

Introductions of Mycobacterium tuberculosis Lineage 2–Beijing Into Africa Over Centuries. 

Front Ecol Evol. 2019;7: 112. doi:10.3389/fevo.2019.00112 

19.  Brynildsrud OB, Pepperell CS, Suffys P, Grandjean L, Monteserin J, Debech N, et al. Global 

expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local 

adaptation. Sci Adv. 2018;4: eaat5869. doi:10.1126/sciadv.aat5869 

20.  Meehan CJ, Moris P, Kohl TA, Pecerska J, Akter S, Merker M, et al. The relationship 

between transmission time and clustering methods in Mycobacterium tuberculosis 

epidemiology. EBioMedicine. 2018; doi:https://doi.org/10.1016/j.ebiom.2018.10.013 

 

  


