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Supplementary Figure 1: Coupling coefficient numerical derivation. (a) Unit cell model 
employed in CST for coupling coefficient simulation. (b) The Z21 of the two ports with 
spacing of 38 mm between two unit cells demonstrating the resonant frequency splitting. 

 

Supplementary Figure 2: Schematic drawing of the helix labeled with parameters used in 
Eq. S6 to S11 to derive the magnetic field strength. 

 

Supplementary Figure 3: Magnetic field vector distribution of the magnetic metamaterial 
at the resonance frequency.



 

Supplementary Figure 4: Birdcage RF antenna employed during the simulations to derive 
the noise. 

 

Supplementary Figure 5: Cylindrical sample with labeled geometry used in Eq. S15 to 
S19 to calculate the equivalent resistance. 
  



 
Supplementary Figure 6: Simulation of the electric field distribution in the MRI body coil. 
(a) The configuration for modeling the electric field. (b) and (c) are the simulation results 
of the electric field distribution with and without the MRI metamaterial, respectively. The 
dashed square indicates the location of the phantom. 
  



Supplementary Tables 
 

Supplementary Table 1. Parameters used in resistance derivation in Eqs. S13 and S14. 
 

w (rad)	 63.8´10-7´2p	 r(mm) 15 er	 2 
r(Wm)	 1.78´10-8 a(mm) 0.28 C(F) 8.57´10-13 
µ0(H/m)	 4p´10-7 l(mm) 32 	  
n 25 ei	 0.06 	  
 
  



Supplementary Notes 
 
 
Supplementary Note 1: Coupling coefficient derivation based on simulation 

In order to validate the coupling coefficient theoretical results, a numerical method 
was introduced to derive the coupling coefficient. Two adjacent helices were modeled 
using commercial electromagnetic field simulation software (CST Studio Suite 2017). 
The adjacent helices were modeled in CST as shown in Supplementary Figure 1a, in 
which two discrete ports were placed across the two helices. The simulated Z21 is 
depicted in Supplementary Figure 1b. The two peaks of Z21 indicate the two resonant 
modes of the coupled helices, and the splitting of the two peaks may be utilized to 
retrieve the coupling coefficient (36): 
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in which fo (fe) represents the resonant frequency of the mode with opposite (identical) 
current direction in the two unit cells. The simulated coupling coefficients as a function 
of unit cell separation distance are plotted in Fig. 2, demonstrating a high degree of 
agreement with the theoretical results. 
 
Supplementary Note 2: Coupling mode theory derivation of resonant frequency and 
strength of each unit cell 

The resonant mode and the resonant strength of each unit cell may be derived by 
utilizing the coupled mode theory, as shown in Eq. 4. By neglecting the loss (Gn), the 
resonant frequency and the corresponding resonant strength of each unit cell can be 
derived by solving the following equation matrix. 
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For a 2 × 2 array with separation distance of 8 mm, the eigenvalue of the resultant 
matrix is: 

[ ] 659.82 49.84 49.84 43.20 10A = - - - - ´  
Each value corresponds to the frequency of a specific resonant mode. The eigenvector of 
the resultant matrix is: 
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Each column corresponds to the resonant strength of each unit cell at a specific 
resonant mode with the resonant frequency in the exact column in A. The minus sign 
refers to the fact that the current is in the opposite direction. It can be seen that the current 
direction in each unit cell is identical for the resonant mode with the highest resonant 
frequency, which is employed for the magnetic field enhancement. By increasing the 
number of unit cells, the resonant frequency and the corresponding resonant strength may 
be readily calculated for larger arrays.  
 



Supplementary Note 3: Magnetic field distribution and field enhancement 
The induced voltage along the helix of the unit cell may be calculated as follows: 
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where B1 is the magnetic field strength of the MRI, n is the number of turns, and r is the 
radius of the helix. Furthermore, the impedance of the helix may be calculated as follows: 
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where L and C represent the equivalent inductance and capacitance of the helix 
(including the self-reactance and mutual reactance), respectively. The typical bandwidth 
of the MRI is 50 kHz, therefore, the working frequency was selected to be 300 kHz lower 
than the resonant frequency. We also note that when the frequency of the working mode 
is lower than the working frequency of MRI, the induced magnetic field will cancel the 
original magnetic field, resulting in even weaker field strength. Therefore, the frequency 
of the working mode was set to 300 kHz higher than the working frequency of the MRI, 
considering the bandwidth of the MRI (typically 50 kHz) for frequency encoding. The 
current can be evaluated with Eq. S5 by dividing Eq. S3 with Eq. S4. 

At the resonant state, the current inside the helix exhibits a sinusoidal distribution 
with a maximum value at the middle and a value of zero at the two ends. The mean 
spatial current value can be calculated with Eq. S5 and with the maximum value 2-1/2-fold 
of the mean value. To simplify the calculation process, the helix can be assumed to be a 
continuous current sheet with the current density dependent on the amplitude of current 
in the middle of the helix (I0), the number of turns (n), and the height of the helix (l). 
Assuming the helix along the z-axis is from –l/2 to l/2, as shown in Supplementary Figure 
2, the current at the position of z’ may be expressed as: 

'
0

d cos I nzI
l l
pæ ö

= ç ÷
è ø

      (S6) 

According to the Biot-Savart law, the magnetic field at any point in space can be 
expressed as: 
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in which R
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 is the distance between the target point and the integral elements in the 
vector. Expanding the equation in polar coordinates: 
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in which r, j, and z are the points in free space in polar coordinates, and a is the radius of 
the helix. Therefore, the magnetic field components along the axial and radial directions 
may be expressed: 
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The magnetic field enhancement in an arbitrary coordinate system may be calculated 
by multiplying Eq. S10 with the relative resonant strength of each unit cell, adding the 
results for all the unit cells with the exciting magnetic field (B1), and normalizing the 
summation by the exciting magnetic field. The calculation results are plotted in Fig. 4. 

The direction of the magnetic field also varies at locations in the vicinity of the 
metamaterial. The simulation results, as shown in Supplementary Figure 3, demonstrate 
that the electric field is along the axial direction in the center of the metamaterial, but 
becomes tangential near the corners of the metamaterial. The variation in magnetic field 
direction, along with the magnetic field strength decay, ultimately determines the 
gradient of the SNR enhancement. 
 
Supplementary Note 4: Resistance derivation in metamaterial unit cells 

The resistance of the unit cells includes both the ohmic loss from the copper wire as 
well as the dielectric loss from the scaffolding core. Considering the skin depth of the 
wire, the ohmic loss may be calculated as follows: 
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in which w is the angular frequency, r is the resistivity, µ0 is the permeability of free 
space, lt is the length of the copper wire, a is the diameter of the copper wire, n is the 
number of turns, r is the radius of the helix, and l is the height of the helix. This results in 
an ohmic loss of 2.78 W from the copper wire in the unit cell. 

The dielectric loss from the scaffolding core may be calculated as follows: 
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where ei and er represent the real and imaginary permittivity of the core material, and C is 
the equivalent capacitance of the helix. This results in a dielectric loss of 38.8 W from the 
scaffolding core in the unit cell. All the parameters employed in the derivation process 
are listed in Table S1. 
 
Supplementary Note 5: Noise derivation 

The birdcage coil located within the bore of the MRI was simulated using 
commercial electromagnetic field simulation software (CST Studio Suite 2017) with a 
diameter of 0.5 m and a length of 0.6 m (Supplementary Figure 4). The excitation source 
was set to 1 ampere of current in the port. The excited magnetic field strength at the 
center of the coil was simulated as 1.93 A/m. 



By substituting B1 = 1.93µ0 T into Eq. S5, the current amplitude in the unit cell can 
be calculated as 0.28 A. The power dissipation rate can be transferred to an equivalent 
resistance serial connected in the excitation port as 3.26 W (0.282 ´ 41.58). Assuming the 
number of unit cells in the array is 16, the total resistance from the metamaterial array is 
52.16 W. 

The loss of the sample to be imaged also introduces additional noise. The geometry 
of the target sample is assumed to be a cylinder with height and radius of hs and rs, 
respectively. The integration unit may be chosen as a ring, as shown in Supplementary 
Figure 5. The resistance for the unit is: 
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in which r is resistivity of the sample. The induced voltage can be derived as: 
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in which B(h) is the magnetic field strength related to the distance from the metamaterial 
array. The power dissipation rate is: 
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in which w is the angular frequency. A factor of 2 is introduced to yield the average 
power dissipation rate. The total power dissipation rate is: 
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In the absence of the metamaterial array, B(h) is a constant value of 1.93µ0 T, and Eq. 
S18 can be further simplified as: 
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Assuming the resistivity of the target sample is 0.85 Wm (37), the radius is 0.05 m, and 
the height is 0.1 m, the calculated power dissipation rate is 0.14 watt, which can be 
transferred to the equivalent resistance in the port as 0.28 W. In the presence of the 
metamaterials, taking the enhancement ratio into consideration, the calculated power 
dissipation is 2.24 watt, which can be transferred to the equivalent resistance in the port 
as 4.48 W. The total equivalent resistance values with and without the metamaterials are 
106.64 and 50.28 W, respectively, and, according to Eq. 6, the noise is increased by the 
factor of 1.46. 
 
Supplementary Note 6: Effect of metamaterial on the electric field in MRI 
In order to investigate the effect of the metamaterial on the electric field distribution in 
MRI, we performed numerical simulation using CST Studio Suite 2017 by considering 
the birdcage body coil and the magnetic metamaterials, as shown in Supplementary 
Figure 6a. In the absence of the metamaterial, the electric field is uniform and weak 
throughout the bore of the MRI. When the metamaterial is in place, the resonance of the 
metamaterial generates oscillating currents in the unit cells, leading to the generation of 
an electric field confined within the metamaterial unit cells, as shown in Supplementary 
Figure 6b. The electric field in the phantom area in the presence of the metamaterial 



approximates the condition in the absence of the metamaterial in this region. These 
results indicate that the metamaterial has little effect on the electric field in the region of 
interest. 


