Molecular signatures of retinal ganglion cells revealed through single cell profiling

Lauren A. Laboissonniere¹, Jillian J. Goetz², Gregory M. Martin³, Ran Bi⁴, Terry J.S. Lund⁵, Laura Ellson⁵, Madison R. Lynch⁵, Bailey Mooney⁵, Hannah Wickham⁵, Peng Liu⁴, Gregory W. Schwartz², and Jeffrey M. Trimarchi⁶*

Supplementary Figure 1. RGC marker genes expressed in tdTomato+ cells.

The expression of RGC genes was examined in our tdTomato+ cells and visualized by heatmap. Genes examined included *Sncg*, *Nefl*, *Nefm*, *Gap43*, *Ebf3*, and *Brn3b*.

Supplementary Figure 2. Parvalbumin gene correlates detected in RGCs.

Genes highly correlated with *Pvalb* in the tdTomato+ cell population were determined through Pearson correlation and visualized by heatmap (A). Among the physiologically classified RGCs, *Pvalb* correlated genes were also defined by Pearson correlation and demonstrated through heatmap (B). *Pvalb* correlated genes from both datasets were then examined by ISH: *Sncg* (C), *Pvalb* (D), *Anxa6* (E), *Chrna6* (F), *Kcna6* (G), *Pcdh7* (H), *Slc6a17* (I), and *Clec2l* (J). Scale bars represent 100 µm.

Supplementary Figure 3. Genes correlated with RGC subtype markers.

The genes which were most highly correlated (Pearson correlation) with previously identified RGC subtype markers, *Mmp17*, *Cartpt*, and *Jam2*, were identified within the characterized RGCs.

Supplementary Figure 4. Standard deviation of microarray data across RGCs and non-RGCs. The standard deviation of gene expression among the physiologically characterized RGCs (A) and non-RGCs (B) was examined.