Molecular harvesting with electroporation for tissue profiling.

Alexander Golberg^{1*}, Julia Sheviryov¹, Oz Solomon², Leon Anavy³, Zohar Yakhini^{2,3**}.

¹ Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.

² School of Computer Science, Herzliya Interdisciplinary Center, Herzliya, Israel.

³ Computer Science Department, Technion, Haifa, Israel.

Supplementary information

Analysis of the molecular weight of the extracted with electroporation proteins from mouse liver and kidney.

Using semi-quantitative proteomic data, we calculated the molecular weight (MW), the normalized intensity for each sample (LFQ), intensity and normalized within sample intensity (iBAQ, **Fig. S 2,3a**) for proteins extracted from the liver (**Table S1**) and the kidney (**Table S2**). Using these quantitative data, we selected the list of most abundant proteins with iBAQ>10⁷ for further analysis. The histogram and density function (**Fig. S3 b,c,d, S4 b,c,d**) suggested the e-harvested proteins have a not-normal and skewed to the write distribution function. The skewness and kurtosis plots of MW (**Fig. S3e, S4e**) suggested that MW has lognormal, gamma or Weibull distributions. Histogram of the fitted densities, Q-Q plot, CDF and P-P plots of these three distributions appear in **Fig. S3 f, g, h, i, and Fig 4f, g, h, i** respectively. The goodness of fit analysis (**Table S15, S16**) suggests that MW of the most abundant proteins extracted by electroporation is closer to lognormal distribution (smallest statistics for all checked criteria) (**Table S17, S18**). The parameters and the uncertainty in the parameters (confidence interval) for the lognormal distribution function were determined using bootstrapping ¹.

Interesting, the proteins extracted from the kidney had almost twice smaller MW than the proteins extracted from the liver. This can be explained by a different electroporation threshold of cells and by different diffusion properties of properties in these two media².

Analysis of the molecular weight of the extracted with electroporation proteins from the HepG2 tumor.

Using semi-quantitative proteomic data, we calculated the molecular weight (MW), the normalized intensity for each sample (LFQ), and intensity and normalized within sample intensity (iBAQ, **Fig. S5a**) for proteins extracted from the HepG2 tumor (**Table S8**). Using these quantitative data, we selected the list of most abundant proteins with iBAQ>10⁷ for further analysis. The histogram and density functions (**Fig. S5 b, c, d**) suggested the e-harvested proteins have a not-normal and skewed to the write distribution function. The skewness and kurtosis plots of MW (**Fig. S5e**) suggested that MW has lognormal, gamma or Weibull distributions. Histogram of the fitted densities, Q-Q plot, CDF and P-P plots of these three distributions appear in **Fig. S5 f, g, h, i** respectively. The goodness of fit analysis (**Table S19**) suggests that MW of the most abundant proteins extracted by electroporation is closer to lognormal distribution (smallest statistics for all checked criteria) (**Table S20**).

Supplementary references

1. Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; 1993.

2. Golberg, A.; Rubinsky, B. Mass transfer phenomena in Electroporation. In *Transport in Biological Media*; Elsevier, 2013; pp. 456–492.

Figure S1. Differential expression of genes detected with RNA extracted with electroporation molecular harvesting in mouse liver and kidney N=6. **a**. Gel digital image. GAPDH was run on separate gels. **b**. Quantification of a signal.

Figure S2. Differential expression of genes detected with RNA extracted using the proposed e-harvesting protocol from mouse liver and from HepG2. N=6. **a**. Gel digital image. GAPDH was run on separate gels. **b**. Quantification of a signal.

Figure S3. Molecular weights (MW) of proteins extraction with electroporation from a normal mouse liver. **a**. Histogram of MW of all extracted and identified proteins. **b**. Density function and **c**. Cumulative distribution of MW of the extractable proteins. **d**. Histogram of MW of extracted and identified proteins with iBAQ>10⁷. **e**. Cullen and Frey graph for MW distribution analysis. f. Histogram of fitted densities. g. Q-Q plot of the fitted molecular weight distributions. h. CFD of the fitted molecular weight distributions. i. Q-Q plot of the fitted molecular weight distributions.

Figure S4. Molecular weights (MW) of proteins extraction with electroporation from a normal mouse kidney. **a**. Histogram of MW of all extracted and identified proteins. **b**. Density function and **c**. Cumulative distribution of MW of the extractable proteins. **d**. Histogram of MW of extracted and identified proteins with iBAQ>10⁷. **e**. Cullen and Frey graph for MW distribution analysis. f. Histogram of fitted densities. g. Q-Q plot of the fitted molecular weight distributions. h. CFD of the fitted molecular weight distributions. i. Q-Q plot of the fitted molecular weight distributions.

Figure S5. Molecular weights (MW) of proteins extraction with electroporation from a HepG2 tumor model in the mouse liver. **a**. Histogram of MW of all extracted and identified proteins. **b**. Density function and **c**. Cumulative distribution of MW of the extractable proteins. **d**. Histogram of MW of extracted and identified proteins with iBAQ>10⁷. **e**. Cullen and Frey graph for MW distribution analysis. f. Histogram of fitted densities. g. Q-Q plot of the fitted molecular weight distributions. h. CFD of the fitted molecular weight distributions.

Table S13. Primers used for the mouse liver and mouse kidney differentiation by the RNA extracted with electroporation.

Gene Abbreviation	Gene name	forward/reverse primer
Slc34a1	solute carrier family 34 (sodium phosphate), member 1	5'- GAT GTC CTA CAG CGA GAG ATT G -3' 5'- GGG AGC AGA CAA AGA GGT AAA -3'
Umod	uromodulin	5'- TCC CGG TTT GTA CTG CTA ATG -3' 5'- TGG ACA CCT TGT CGT GTT ATG -3'
Tmem27	collectrin, amino acid transport regulator	5'- GTT TGC GGC TCT GAA AGA ATG -3' 5'- CAC TGT TGA TCC GGT TCC TAT T -3'
Apoa5	Apolipoprotein A-V	5'- GAC GAC CTG TGG GAA GAT ATT G -3' 5'- CAG GAG GTA GGG ACT GTA TGA -3'
F12	coagulation factor XII (Hageman factor	5'- GAG GAA CTG ACA GTG GTA CTT G -3' 5'- GGG AAG GAT AAA GCC TGG TTA G -3'
Abcb11	ATP Binding Cassette Subfamily B Member 11	5'- CTG TGG GTT GGT GGA CAT TA -3' 5'- GAG AGG ACT TCA TCG GCA ATA G -3'
GAPDH_mouse	Glyceraldehyde 3-phosphate dehydrogenase	5'- GGG TGT GAA CCA CGA GAA ATA -3' 5'- GGG TCT GGG ATG GAA ATT GT -3'

Gene Abbreviation	Gene name	forward/reverse primer
PLK1	Serine/threonine-protein kinase	5'- CAG CAA GTG GGT GGA CTA TT -3' 5'- ATC AGT GGG CAC AAG ATG AG -3'
TMED3	Transmembrane p24 trafficking protein 3	5'- GAT TGA CTC CCA GAC GCA TTA C -3' 5'- CAG TCG GAT GCC TTC TGA TTA C -3'
TMSB10	Thymosin beta-10	5'- CGA GAC TGC ACG GAT TGT T -3' 5'- CAT CTT GCA GGT GGC TCT T -3'
S100P	S100 calcium-binding protein P	5'- AGG AAG GTG GGT CTG AAT CT -3' 5'- AGG AAG GTG GGT CTG AAT CT -3'
KIF23	Kinesin-like protein KIF23	5'- AGT GTG AGG TTG ATG CCT TAT T -3' 5'- CTC TGG TCC GGT TAG TTC TTT C -3'
GAPDH_mouse	Glyceraldehyde 3-phosphate dehydrogenase	5'- GGG TGT GAA CCA CGA GAA ATA -3' 5'- GGG TCT GGG ATG GAA ATT GT -3'
GAPDH_human	Glyceraldehyde 3-phosphate dehydrogenase	5'- GAT TCC ACC CAT GGC AAA TTC -3' 5'- GTC ATG AGT CCT TCC ACG ATA C -3'

Table S14. Primers used for the mouse liver and HepG2 kidney differentiation by the RNA extracted with electroporation.

Table S15. The goodness of fit analysis of highly abundant electroporation extracted kidney proteins ($iBAQ > 10^7$).

Goodness-of-fit statistics

	Weibull	lognormal	gamma
Kolmogorov-Smirnov statistic	0.1049928	0.06978198	0.1079061
Cramer-von Mises statistic	1.3454622	0.43578147	1.1439954
Anderson-Darling statistic	8.1846425	2.68808789	6.5859668
Goodness-of-fit criteria			·

Akaike's Information Criterion	2776.322	2706.840	2746.318
Bayesian Information Criterion	2783.968	2714.486	2753.965

Table S16. The goodness of fit analysis of highly abundant electroporation extracted liver proteins ($iBAQ > 10^7$).

Goodness-of-fit statistics

	Weibull	lognormal	gamma
Kolmogorov-Smirnov statistic	0.05698024	0.0374255	0.03459732
Cramer-von Mises statistic	0.84034789	0.4859410	0.36004244
Anderson-Darling statistic	7.69096820	2.9875080	2.82114915
Goodness-of-fit criteria			

Akaike's Information Criterion	10940.07	10805.36	10845.93
Bayesian Information Criterion	10950.31	10815.59	10856.16

Table S17. Parametric bootstrap medians and 95% percentile CI for lognormal distribution of the MW of electroporation extracted kidney proteins.

	Median	2.5%	97.5%
meanlog	3.0043648	2.9364384	3.0735471
sdlog	0.6527423	0.6061976	0.7046646

Table S18. Parametric bootstrap medians and 95% percentile CI for lognormal distribution of the MW of electroporation extracted liver proteins.

	Median	2.5%	97.5%	
meanlog	3.3893310	3.3525484	3.4260361	
sdlog	0.6514971	0.6241754	0.6792361	

Table S19. The goodness of fit analysis of highly abundant electroporation extracted HepG2 proteins ($iBAQ > 10^7$).

Goodness-of-fit statistics

	Weibull	lognormal	gamma
Kolmogorov-Smirnov statistic	0.08502379	0.02567092	0.05181307
Cramer-von Mises statistic	2.15728759	0.16256876	1.04995599
Anderson-Darling statistic	17.59556665	1.31084115	7.67302556

Goodness-of-fit criteria

Akaike's Information Criterion	11712.26	11440.62	11584.03
Bayesian Information Criterion	11722.56	11450.91	11594.33

Table S20. Parametric bootstrap medians and 95% percentile CI for lognormal distribution of the MW of PEF extracted HepG2 proteins.

	and the first protonis.			
	Median	2.5%	97.5%	
meanlog	3.4474497	3.4095316	3.486965	
sdlog	0.6928734	0.6671016	0.719039	