From taxonomic deflation to newly detected cryptic species: Hidden diversity in a widespread African squeaker catfish

Dagmar Jirsová^{1,2}*, Jan Štefka^{1,2}, Radim Blažek^{3,4}, John O. Malala⁵, David E. Lotuliakou⁵, Zuheir N. Mahmoud⁶, Miloslav Jirků²

Supplementary data

Table S1. Sequences of *coxl, cytb* and *RAG2* for *Synodontis* spp. from the Nile and Turkana deposited in GenBank, including detailed information on localities. Data provided in separate file.

Table S2. List of GenBank *coxl, cytb* and *RAG2 Synodontis* spp. sequences used in phylogenetic and haplotype analyses Data provided in separate file. The data obtained from the same sample are highlighted by bold.

Table S3. Results of chi-square test for spatial distribution of *S. schall*, *S. frontosus* and intermediate morphotypes.

ODS.		El Molo		Kalokol		Todonyang	totals(marginals)
	1		35		19	32	86
	2		16		11	31	58
	3		7		0	14	21
			58		30	77	165
obs. frekv.		El Molo		Kalokol		Todonyang	null (expected)
	1		0,603		0,63	0,415	0,52
	2		0,276		0,36	0,402	0,35
	3		0,121		0	0,181	0,13
expected counts		El Molo		Kalokol		Todonyang	
	1		30,23		15,63	40.13	
			'			- , -	
	2		20,38		10,54	27,06	
	2 3		20,38 7,38		10,54 3,81	27,06 9,8	
	2 3		20,38 7,38		10,54 3,81	27,06 9,8	
	2 3	El Molo	20,38 7,38	Kalokol	10,54 3,81	27,06 9,8 Todonyang	
χ2	2 3	El Molo	20,38 7,38 0,753	Kalokol	10,54 3,81 0,723	27,06 9,8 <u>Todonyang</u> 1,648	
χ2	2 3	El Molo	20,38 7,38 0,753 0,944	Kalokol	10,54 3,81 0,723 0,019	27,06 9,8 Todonyang 1,648 0,571	
χ2	2 3	El Molo	20,38 7,38 0,753 0,944 0,019	Kalokol	10,54 3,81 0,723 0,019 3,818	27,06 9,8 <u>Todonyang</u> 1,648 0,571 1,8	
χ2	2 3	El Molo	20,38 7,38 0,753 0,944 0,019 1,716	Kalokol	10,54 3,81 0,723 0,019 3,818 4,561	27,06 9,8 Todonyang 1,648 0,571 1,8 4,019	10,297

Table S4. Results of population genetics analyses between *S. schall*-like and *S. frontosus*-like morphotype from Eastern Africa (the Nile and Turkana) obtained for this study. The genetic differentiation between the sequences from three Turkana localities was tested by the *Snn* test and showed that the saline locality differs from the freshwater and medium part.

	Haplotype	diversity				
	coxl	cytb				
S. schall-like	0.36	0.97				
S. frontosus-like	0.65	0.97				
	Fs	t				
	coxl	cytb				
S. schall-like x	0.08	0.04				
S. frontosus-like						
	Genetic differentiation					
	COX	d	cytb			
	Chi-square	Р	Chi-square	Р		
S. schall-like x	34.487	0.0029	51.934	0.1922		
S. frontosus-like						
	Genetic d	listance				
	coxl	cytb				
S. schall-like	0 - 0.88 %	0 - 1.75%				
S. frontosus-like	0 - 1.06%	0 - 1.95%				
S schall-like x	0 1 06%	0 - 2.06%				
	0 - 1.00 /8	0 - 2.00 /0				

Turkana localities								
	Haplotype diversity							
	coxl	cytb						
Medium salinity	0.38	1.00						
Freshwater	0.40	0.98						
Saline water	0.67	0.93						
	Fst							
	coxl				cytb			
	Medium salinity	Freshwater	Saline water		Medium salinity	Freshwater	Saline water	
Medium salinity	х			Medium salinity	х			
Freshwater	0.00585	x		Freshwater	0.063	x		
Saline water	0.18779	0.17877	x	Saline water	0.047	0.010	х	
	Snn test							
	coxl	cytb						
Snn	0.68	0.543						
P-value	0.018	0.094*						
* not significant P-value								

b

Figure S1. Phylogenetic trees for *coxl* a), *cytb* b) and *RAG2* c) as revealed by BI analyses, showing detailed branching with posterior probabilities as branch supports. Final trees were created by software MrBayes. Sequence data of *S. schall* Eastern clade obtained within the scope of this study are presented with GenBank numbers. Data provided in separate file (see Tab. S2).

Figure S2. Phylogenetic trees for *coxl* a), *cytb* b) and *RAG2* c) as revealed by ML analyses, showing detailed branching with bootstraps as branch supports. Sequence data of *S. schall* Eastern clade obtained within the scope of this study are presented with GenBank numbers (see Tab. S2).

Figure S3. Phylogenetic analysis of concatenated dataset for mt genes (*coxl* and *cytb*) as revealed by BI analyses, showing detailed branching with posterior probabilities as branch supports. Final trees were created by software MrBayes. Sequence data of *S. schall* Eastern clade obtained within the scope of this study are presented with GenBank numbers. Data provided in separate file (see Tab. S1 and S2).

Figure S4. Haplotype networks for *cox1* (a) and *cytb* (b) constructed in software PopART v1.7. Networks were constructed only for samples obtained for this study. Sizes of haplo-nodes are relative to the sample size.