

Supporting Information

Catalyst-Controlled 1,2- and 1,1-Arylboration of α-Alkyl Alkenyl Arenes

Allison M. Bergmann⁺, Stanna K. Dorn⁺, Kevin B. Smith, Kaitlyn M. Logan, and M. Kevin Brown^{*}

anie_201812533_sm_miscellaneous_information.pdf

General. Infrared (IR) spectra were recorded on Bruker Tensor II FT-IR Spectrometer, v_{max} in Bands are characterized as broad (br), strong (s), medium (m), and weak (w). ¹H NMR spectra were recorded at room temperature on a Varian I400 (400 MHz), Varian VXR400 (400 MHz), Varian I500 (500 MHz), or a Varian I600 (600 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CHCl₃: δ 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. ¹³C NMR spectra were recorded on a Varian 1400 (100 MHz) and Varian I500 (125 M/z) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 77.16 ppm). ¹⁹F NMR spectra were recorded on a Varian VXR400 (375 MHz). ³¹P NMR spectra were recorded on a Varian VXR400 (162 MHz). Hgh-resolution mass spectrometry (HRMS) was performed on a Thermo Electron Corporation MAT 95XP-Tap (GC/MS). Melting points were obtained on a Thomas Hoover capillary melting point apparatus without correction. Illess otherwise noted, all reactions have been carried out with distilled and degassed solvents under an atmosphere of dry 2Nin oven- (135 °and flame-dried glassware with standard vacuum-line techniques. Tetrahydrofuran (THF) was purified under a positive pressure of dry argon by passage through two columns of activated alumina. Toluene was purified under a positive pressure of dry argon by passage through columns of activated alumina and Q5 (Grubbs apparatus). A work-up and purification procedures were carried out with reagent grade solvents (purchased from sma-Aldrich) in air. Standard column chromatography techniques using ZEOprep 60/40-63 silura gel. For difficult separations medium pressure liquid chromatography (MPLC) was performed using a Teledyne ISCO CombiFlash Rf 150 instrument. Dical rotations were measured on a PerkinElmer 241 polarimeter at 589 nm wavelength (sodium D-line) using a standard 10 cm cell (1 mL). Specific rotations, $[\alpha]_D^{20}$, are reported in degree mL/(g·dm) at the specific temperature. Concentrations (c) are given in grams per 100 mL of the specific solvent. Chiral HPLC analysis was performed on a Agilent 1220 Infinity LC system.

■ Reagents and Catalysts:

APhos was purchased from Sigma Aldrich and used as received.

APhosPdG3 was prepared in accordance with literature procedures.¹

Bis[[4-(N,N-dimethylamino)phenyl]di-t-butylphosphino] palladium(0) was purchased from Strem and used as received.

Bis(pinacolato)diboron was purchased from Oakwood Chemicals and recrystallized from pentane prior to use.

Bis(tricyclohexylphosphine)palladium(0) was purchased from Strem and used as received.

4-Bromoanisole was purchased from Combi-Blocks and purified via neat filtration through a 2 cm pad of dry silica in a 5.75-inch pipette prior to use.

Bromobenzene was purchased from Sigma-Aldrich and purified via neat filtration through a 2 cm pad of dry silica in a 5.75-inch pipette prior to use.

3-Bromobenzotrifluoride was purchased from Combi-Blocks and purified via neat filtration through a 2 cm pad of dry silica in a 5.75-inch pipette prior to use.

1-Bromo-2-chlorobenzene was purchased from Combi-Blocks and purified via neat filtration through a 2 cm pad of dry silica in a 5.75-inch pipette prior to use.

5-Bromo-1H-indole was purchased from CombiBlocks and used as received.

2-Bromotoluene was purchased from Oakwood Chemicals and purified via neat filtration through a 2 cm pad of dry silica in a 5.75-inch pipette prior to use.

But-1-en-2-ylbenzene was prepared in accordance with literature procedures.²

1-chloro-3-(1-methylethenyl)benzene was prepared in accordance with literature procedures.³

3'-Chloroacetophenone was purchased from Oakwood Chemicals and used as received.

CuCl (99.99%) was purchased from Strem and purified by washing with 1M HCl (3 x

3mL), ethanol (3x 3mL), and diethyl ether (3x 3mL) and dried *in vacuo* before use.

1-Indanone was purchased from Sigma Aldrich and used as received.

Iodomethane was purchased from Sigma Aldrich and used as received.

Isopropenylboronic acid pinacol ester was purchased from Oakwood Chemicals and used as received.

2-IsopropenyInaphthalene was purchased from Combi-Blocks and used as received. **Lithium** *tert*-butoxide was purchased from Strem and used as received.

((2R,3R)-6-Mesityl-2,3-diphenyl-2,3,5,6-tetrahydroimidazo[1,2-c]quinazolin-5-

yl)copper(I) chloride was prepared in accordance with literature procedures.⁴

4'-Methoxyacetophenone was purchased from Combi-Blocks and used as received.

1-methoxy-4-(prop-1-en-2-yl)benzene was prepared in accordance with literature procedures.⁵

4'-Methylacetophenone was purchased from Alfa Aesar and used as received.

¹ J. Huguet Clotet, L. Ozores Viturro, S. Rodriguez Ropero, P. Dalmases Barjoan, WO 2018115362, June 28, 2018.

² J. J. Eish, A. A. Adeosun, Eur. J. Org. Chem. 2005, 6, 993.

³ C. B. Tripathi, S. Mukherjee, Angew. Chem. Int. Ed. 2013, 52, 8450.

⁴ K. M. Logan, M. K. Brown, Angew. Chem. Int. Ed. 2017, 56, 851.

⁵ G. Bastug, S. P. Nolan, *Organometallics*, **2014**, *33*, 1253.

1-methylene-2,3-dihydro-1H-indene was prepared in accordance with literature procedures.⁶

1-methyl-4-(1-methylethenyl)benzene was prepared in accordance with literature procedures.⁵

 α -Methylstyrene was purchased from Sigma Aldrich and purified via neat filtration through a 2 cm pad of dry silica in a 5.75-inch pipette prior to use.

Methyltriphenylphosphonium bromide was purchased from TCI and used as received.

Palladium(II) acetate was purchased from Strem and used as received.

PCy₃PdG3 was prepared in accordance with literature procedures.⁷

Pi-Bu₃PdG3 was prepared in accordance with literature procedures.⁷

pent-1-en-2-ylbenzene was prepared in accordance with literature procedures.⁸

Pt-Bu₃PdG3 was prepared in accordance with literature procedures.⁷

Pd G3 dimer was prepared in accordance with literature procedures.⁷

Potassium t-butoxide (1.00 M in THF) was purchased from Sigma Aldrich and used as received.

Propiophenone was purchased from Sigma Aldrich and used as received.

SIMesCuCl was prepared in accordance with literature procedures.⁹

SIMesCuOt-Bu was prepared in accordance with literature procedures.¹⁰

Sodium hydride (60% dispersion in mineral oil) was purchased from Sigma Aldrich and used as received.

Tert-butyl 5-bromo-1H-indole-1-carboxylate was prepared in accordance with literature procedures.¹¹

Tert-butyl (4-bromophenyl)carbamate was purchased from Combi Blocks and used as received.

Tert-Butyl (4-bromophenyl)(methyl)carbamate was prepared in accordance with literature procedures.¹²

4,4,5,5-Tetramethyl-2-[(1E)-2-phenyl-1-propen-1-yl]-1,3,2-dioxaborolane was prepared in accordance with literature procedures.¹³

Tricyclohexylphosphine was purchased from Sigma Aldrich and used as received.

Triisobutylphosphine was purchased from Sigma Aldrich and used as received.

Tri-tert-butylphosphine was purchased from Sigma Aldrich and used as received.

Tris(dibenzylideneacetone)dipalladium(0) was purchased from Strem and used as received.

Valerophenone was purchased from Combi-Blocks and used as received.

⁶ M. Hisano, K. Takeda, T. Takashima, Z. Jin, A. Shiibashi, A. Matsumoto, *Macromolecules*, **2013**, *46*, 3314.

⁷ N. C. Bruno, M. T. Tudge, S. L. Buchwald, *Chem. Sci.* **2013**, *4*, 916.

⁸ A. Abramovitch, I. Marek, Eur. J. Org. Chem. 2008, 29, 4924.

⁹ S. Diez-Gonzalez, E. C. Escudero-Adan, J. Benet-Buchholz, E. D. Stevens, A. M. Z. Slawinc, S. P. Nolan, *Dalton Trans.* **2010**, *39*, 7595.

¹⁰ G. G. Dubinima, J. Ogikubo, D. A. Vicic, Organometallics 2008, 27, 6233.

¹¹ T. Furuya, A. E. Strom, T. Ritter, J. Am. Chem. Soc. 2009, 131, 1662.

¹² S. Yoshida, K. Igawa, K. Tamooka J. Am. Chem. Soc., 2012, 134, 19358.

¹³ R. Alfaro, A. Parra, J. Aleman, J. L. Garcia Ruano, M. Tortosa, *J. Am. Chem. Soc.*, **2012**, *134*, 15165.

■ General Procedure A: 1,2-Arylboration of 1,1-disubstituted alkenes to form quaternary centers

In an N₂-filled glovebox, to a 13 x 100 mm screw-capped vial was added SIMes-CuCl (8.10 mg, 5.00 mol%), APhos-PdG3 precatalyst (1.30 mg, 0.500 mol%), bis(pinacolato)diboron (152 mg, 0.600 mmol, 1.50 equiv), LiO*t*-Bu (94.0 mg, 1.20 mmol, 3.00 equiv), and 3.00 mL of a solution of 10:1 toluene/THF. Alkene (0.400 mmol, 1.00 equiv) and arylbromide (0.600 mmol, 1.50 equiv) were immediately added via microsyringes, followed by another 1.00 mL of the 10:1 toluene/THF solution down the sides of the vial. The vial was sealed with a Teflon-lined screw cap then removed from the glovebox. The mixture was allowed to stir at 30°C for 12 h then was quenched upon addition of 2M HCl (4 mL). The mixture was extracted with EtOAc (3 x 4 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography to obtain the desired product or oxidized to the corresponding alcohol according to General Procedure C prior to purification.

■ General Procedure B: 1,1 Arylboration of 1,1-disubstituted alkenes

In an N₂-filled glovebox, to a 13 x 100 mm screw-capped vial was added SIMes-CuCl (8.10 mg, 5.00 mol%), PCy₃-PdG3 precatalyst (2.60 mg, 1.00 mol%), bis(pinacolato)diboron (152 mg, 0.600 mmol, 1.50 equiv), LiO*t*-Bu (44.8 mg, 0.560 mmol, 1.40 equiv), and 3.00 mL of a solution of 10:1 toluene/THF. Alkene (0.400 mmol, 1.00 equiv) and arylbromide (0.600 mmol, 1.50 equiv) were immediately added via microsyringes, followed by another 1.00 mL of the 10:1 toluene/THF solution down the sides of the vial. The vial was sealed with a Teflon-lined screw cap then removed from the glovebox. The mixture was allowed to stir at 30°C for 12 h then was quenched upon addition of 2M HCl (4 mL). The mixture was extracted with EtOAc (3 x 4 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography to obtain the desired product or oxidized to the corresponding alcohol according to General Procedure C prior to purification.

■ General Procedure C: Oxidation of the crude alkyl-Bpin product to the corresponding alcohol

The crude product mixture obtained by General Procedure A or B was dissolved in 2.00 mL of THF then 2M NaOH (1 mL, 2.00 mmol, 5.00 equiv) was added. The resulting biphasic mixture was stirred vigorously and cooled to 0 °C before 30% H₂O₂ (4.00 mmol, 10.0 equiv) was added. The flask was removed from the ice bath and allowed to stir at room temperature for 3 h. The reaction was diluted with H₂O (5 mL) then extracted with Et₂O (3 x 5 mL). The combined organic extract was dried with Na₂SO₄, filtered, and concentrated. The crude mixture was purified by silica gel column chromatography to obtain the desired product.

■ General Procedure D: Enantioselective 1,2-Arylboration of 1,1-disubstituted alkenes to form quaternary centers

In an N₂-filled glovebox, to a 13 x 100 mm screw-capped vial was added chiral Cu catalyst 17 (10.8 mg, 5.00 mol%), APhos-Pd precatalyst (2.50 mg, 1.00 mol%),

bis(pinacolato)diboron (152 mg, 0.600 mmol, 1.50 equiv), and LiO*t*-Bu (48.0 mg, 0.600 mmol, 1.50 equiv). To this, alkene (0.400 mmol, 1.00 equiv) was added via a microsyringe, immediately followed by 3.00 mL of 10:1 toluene/THF solution. Arylbromide (0.600 mmol, 1.50 equiv) was immediately added via microsyringe, followed by another 1.00 mL of the 10:1 toluene/THF solution down the sides of the vial. [Note: it is vital to add the alkene before the solvent—reaction does not perform well otherwise. If solvent is added first, followed by alkene, the reaction mixture will turn blue. If alkene is added first, the solution should turn a dark red, which indicates a potentially successful reaction]. The vial was sealed with a Teflon-lined screw cap then removed from the glovebox. The mixture was allowed to stir at 30°C for 12 h before quenching with aqueous 2 M HCl (4 mL). The mixture was extracted with EtOAc (3 x 4 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography to obtain the desired product or oxidized to the corresponding alcohol according to General Procedure C prior to purification.

■ Characterization Data:

Note: In ¹³C NMR spectra, signals of carbons directly bonded to boron were not detected because of quadrupolar relaxation.

2,2-diphenylpropan-1-ol (2): The title compound was prepared according to general procedure A. Purification by MPLC (gradient: 100% hexanes to 20:1 hexanes/ethyl acetate) yields **2** as a colorless oil (62% avg. yield of two runs). **IR (neat):** 3381 (br), 3023 (w), 2968 (w), 1493 (m), 1023 (m). ¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.25 (m, 4H), 7.25 – 7.14 (m, 6H), 4.09 (d, *J* = 6.8 Hz, 2H), 1.70 (s, 3H), 1.28 (t, *J* = 6.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 146.7, 128.4, 127.7, 126.3, 70.9, 48.8, 25.6. HRMS (EI): Calculated for C₁₅H₁₆O [M⁺]: 212.1201, Found: 212.1297.

2-(4-Methoxyphenyl)-2-phenylpropan-1-ol (7): The title compound was prepared according to general procedure A using 4-bromoanisole and α -methylstyrene as coupling partners. Purification by MPLC (isocratic steps at 8% and 40% separated by gradient; hexanes/ethyl acetate) yields 7 as a colorless oil (62% avg. yield of two runs). All characterization data are in agreement with previous literature.¹⁴ ¹H NMR (500 MHz, CDCl₃): δ 7.36 – 7.30 (m, 2H), 7.27 – 7.21 (m, 3H), 7.21 – 7.13 (m, 2H), 6.90 – 6.83 (m, 2H), 4.10 (d, *J* = 6.2 Hz, 2H), 3.82 (s, 3H), 1.72 (s, 3H), 1.36 – 1.24 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 157.9, 146.8, 138.4, 128.7, 128.3, 127.5, 126.2, 113.6, 70.9, 55.2, 48.1, 25.7.

2-Phenyl-2-(4-(trifluoromethyl)phenyl)propan-1-ol (8): The title compound was prepared according to general procedure A. Purification by MPLC (0-40% gradient; hexanes/ethyl acetate) yields **8** as a colorless oil (47% avg. yield of two runs). **IR (neat):**

¹⁴ R. P. Sonawane, V. Jheengut, C. Rabalakos, R. Larouche-Gauthier, H. K. Scott, V. K. Aggarwal, *Angew. Chem. Int. Ed.* **2011**, 50, 3760.

3384 (br), 3060 (w), 2939 (w), 1618 (w), 1325 (s), 1115 (s), 701 (m). ¹H NMR (600 MHz, CDCl₃): δ 7.56 (m, 2H), 7.39 – 7.35 (m, 2H), 7.33 (m, 2H), 7.26 – 7.23 (m, 1H), 7.23 – 7.15 (m, 2H), 4.19 – 4.02 (m, 2H), 1.73 (s, 3H), 1.35 (dd, J = 6.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 151.0, 145.5, 128.5 (q, J = 32 Hz), 128.5, 128.1, 127.6, 126.7, 125.2 (q, J = 3.7 Hz), 124.2 (q, J = 271 Hz), 70.5, 48.9, 25.4. HRMS (EI): Calculated for C₁₆H₁₅F₃O [M⁺]: 280.1075, Found: 280.1069.

tert-Butyl (4-(1-hydroxy-2-phenylpropan-2-yl)phenyl)(methyl)carbamate (9): The title compound was prepared according to general procedure A. Purification by MPLC (isocratic steps at 8% and 40% separated by gradient; hexanes/ethyl acetate) yields 9 as a colorless oil (72% avg. yield of two runs). IR (neat): 3440 (br), 2972 (w), 2931 (w), 1679 (s), 1365 (s), 1152 (s), 701 (m). ¹H NMR (600 MHz, CDCl₃): δ 7.33 – 7.25 (m, 2H), 7.25 – 7.19 (m, 3H), 7.18 (m, 4H), 4.05 (s, 2H), 3.25 (s, 3H), 1.70 (s, 3H), 1.47 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 154.8, 146.5, 143.6, 141.8, 128.2, 127.8, 127.6, 126.3, 125.0, 80.3, 70.7, 48.4, 37.2, 28.3, 25.5. HRMS (ESI): Calculated for C₂₁H₂₇NO₃ [M+Na]: 364.1883 Found: 364.1886.

tert-Butyl 5-(1-hydroxy-2-phenylpropan-2-yl)-1*H*-indole-1-carboxylate (11): The title compound was prepared according to general procedure A. Purification by MPLC (isocratic steps at 8% and 40% separated by gradient; hexanes/ethyl acetate) yields 11 as a white solid (62% avg. yield of two runs). m.p.: 94-97 °C. IR (neat): 3390 (br), 2973 (w), 2931 (w), 1731 (s), 1370 (s), 1087 (s), 700 (m). ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, *J* = 8.8 Hz, 1H), 7.61 (d, *J* = 3.8 Hz, 1H), 7.51 (d, *J* = 2.0 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.28 – 7.22 (m, 3H), 7.16 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.55 (d, *J* = 3.8 Hz, 1H), 4.24 – 4.13 (m, 2H), 1.79 (s, 3H), 1.68 (s, 9H), 1.36 – 1.29 (m, 1H).¹³C NMR (125 MHz, CDCl₃): δ 149.7, 147.1, 140.8, 130.5, 128.3, 127.6, 126.2, 124.3, 119.7, 115.0, 107.4, 83.7, 64.4, 71.0, 48.6, 28.2, 25.9, 25.4. HRMS (ESI): Calculated for C₂₂H₂₅NO₃ [M+Na]: 374.1727, Found: 374.1729.

2-(Naphthalen-2-yl)-2-phenylpropan-1-ol (12): The title compound was prepared according to general procedure A using 2-bromonaphthalene and α -methylstyrene as coupling partners. Purification by MPLC (0-40% gradient; hexanes/ethyl acetate) yields **12** as a yellow oil (73% avg. yield of two runs). **IR (neat):** 3392 (br), 3056 (w), 2969 (w), 1026 (s), 701 (s), 477 (m). ¹H NMR (500 MHz, CDCl₃): δ 7.88 – 7.80 (m, 3H), 7.77 (d, J = 8.7 Hz, 1H), 7.55 – 7.44 (m, 2H), 7.36 – 7.31 (m, 2H), 7.29 – 7.24 (m, 4H), 4.24 (s, 2H), 1.84 (s, 3H), 1.34 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 146.4, 143.8, 133.2, 132.0, 128.4, 128.1, 128.0, 127.7, 127.4, 126.6, 126.4, 126.1, 125.8, 125.6, 70.7, 48.9, 25.5. HRMS (EI): Calculated for C₁₉H₁₈O [M⁺]: 262.1356, Found: 262.1350.

2-(4-methoxyphenyl)-2-phenylpropan-1-ol (7): The title compound was prepared according to general procedure A using 1-methoxy-4-(prop-1-en-2-yl)benzene and bromobenzene as coupling partners. Purification by MPLC (20:1 hexanes/ethyl acetate) yields 7 as a colorless oil (63% avg. yield of two runs). All characterization data are in agreement with previous literature.¹⁴ ¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.30 (m, 2H), 7.29 – 7.22 (m, 3H), 7.20 – 7.15 (m, 2H), 6.90 – 6.85 (m, 2H), 4.10 (s, 2H), 3.82 (s, 3H), 1.72 (s, 3H), 1.45 (m, 1H).¹³C NMR (125 MHz, CDCl₃): δ 157.9, 146.8, 138.4, 128.7, 128.3, 127.5, 126.2, 113.6, 70.9, 55.2, 48.1, 25.7.

2-phenyl-2-(p-tolyl)propan-1-ol (13): The title compound was prepared according to general procedure A. Purification by MPLC (20:1 hexanes/ethyl acetate) yields **13** as a colorless oil (72% avg. yield of two runs). **IR (neat):** 3374 (br), 3055 (w), 2969 (w), 1511 (m), 1019 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.29 (m, 2H), 7.29 – 7.20 (m, 3H), 7.14 (m, 4H), 4.11 (d, J = 6.6 Hz, 2H), 2.35 (s, 3H), 1.72 (s, 3H), 1.33 (t, J = 6.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 147.8, 144.5, 136.9, 130.1, 129.4, 128.7, 128.6, 127.3, 72.0, 49.5, 26.7, 22.0. HRMS (EI): Calculated for C₁₆H₁₈O [M⁺]: 226.1358, Found: 226.1351.

4,4,5,5-tetramethyl-2-(2-(naphthalen-2-yl)-2-phenylpropyl)-1,3,2-dioxaborolane (12): The title compound was prepared according to general procedure A using 2isopropenylnaphthalene and bromobenzene as coupling partners. Purification by MPLC (gradient: 100% hexanes to 30:1 hexanes/ethyl acetate) yields **12** as a white solid (51% avg. yield of two runs). **m.p.**: 84.5-86.1 °C. **IR (neat)**: 3024 (m), 2973 (w), 1357 (s), 1142 (s), 853 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (s, 1H), 7.78 (m, 1H), 7.73 (m, 1H), 7.64 (m, 1H) 7.45 – 7.36 (m, 2H), 7.24 (m, 4H), 7.17 (m, 1H), 7.12 (m, 1H), 1.87 (s, 3H), 1.79 (s, 2H), 0.95 (s, 6H), 0.92 (s, 6H). ¹³C NMR (**125 MHz, CDCl₃**): δ 151.0, 148.5, 133.1, 131.7, 128.0, 127.9, 127.5, 127.4, 127.2, 127.1, 125.7, 125.5, 125.3, 124.2, 82.8, 44.6, 29.8, 24.6, 24.5. **HRMS (EI)**: Calculated for C₂₅H₂₉BO₂ [M⁺]: 372.2261, Found: 372.2262.

2-(3-chlorophenyl)-2-phenylpropan-1-ol (14): The title compound was prepared according to general procedure A. Purification by MPLC (20:1 hexanes/ethyl acetate) yields **14** as a colorless oil (67% avg. yield of two runs). **IR (neat):** 3392 (br), 2921 (s), 2853 (s), 1458 (m), 698 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.26 (m, 2H), 7.26 – 7.16 (m, 6H), 7.12 – 7.06 (m, 2H), 4.06 (d, *J* = 6.8 Hz, 2H), 1.68 (s, 3H), 1.28 (t, *J* = 6.8 Hz, 1H).¹³C NMR (125 MHz, CDCl₃): δ 148.9, 145.7, 134.2, 129.5, 128.5, 127.9, 127.5, 126.6, 126.5, 126.0, 70.6, 48.8, 25.4. HRMS (EI): Calculated for C₁₅H₁₅ClO [M⁺]: 246.0811, Found: 246.0809.

2,2'-(2-(4-methoxyphenyl)propane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (15): The title compound was prepared according to general procedure A. Purification by MPLC (gradient: 100% hexanes to 30:1 hexanes/diethyl ether) yields 15 as a colorless oil (58% avg. yield of two runs). All characterization data are in

agreement with previous literature.¹⁵ ¹**H** NMR (400 MHz, CDCl₃): δ 7.39 (m, 2H), 7.25 (m, 2H), 7.10 (m, 1H), 1.49 (d, J = 15.6 Hz, 1H), 1.41 (s, 3H), 1.21 (s, 6H), 1.21 (s, 6H), 1.20 (s, 6H), 1.18 (6H, s), 1.15 (d, J = 15.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): 149.1, 127.9, 126.4, 124.8, 83.2, 82.9, 29.7, 25.1, 24.7, 24.5, 24.4.

(1-phenyl-2,3-dihydro-1H-inden-1-yl)methanol (17): The title compound was prepared according to general procedure A. Purification by MPLC (gradient: 100% hexanes to 9:1 hexanes/ethyl acetate) yields 17 as a colorless oil (42% avg. yield of two runs). IR (neat): 3362 (br), 3020 (w), 2936 (m), 1476 (m), 1020 (s). ¹H NMR (600 MHz, CDCl₃): δ 7.40 - 7.08 (m, 9H), 4.15 (d, J = 11.2 Hz, 1H), 4.00 (d, J = 11.2 Hz, 1H), 3.05 - 2.78 (m, 2H), 2.47 (m, 1H), 2.35 (m, 1H), 1.45 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 145.9, 145.1, 144.8, 128.4, 127.4, 127.2, 126.5, 126.4, 125.1, 125.0, 68.5, 58.5, 38.0, 30.4. HRMS (EI): Calculated for C₁₆H₁₆O [M⁺]: 224.1201, Found: 224.1195.

tert-Butyl (*R*)-(4-(1-hydroxy-2-phenylpropan-2-yl)phenyl)(methyl)carbamate ((*R*)-9): The title compound was prepared according to general procedure D. Purification by MPLC (isocratic steps at 8% and 30% separated by gradient; hexanes/ethyl acetate) yields (*R*)-9 as a colorless oil (40% avg. yield of two runs). All characterization data are in agreement with the racemic substrate (9). ¹H NMR (500 MHz, CDCl₃): δ 7.33 – 7.25 (m, 2H), 7.25 – 7.19 (m, 3H), 7.20 (m, 4H), 4.05 (s, 2H), 3.25 (s, 3H), 1.70 (s, 3H), 1.47 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 154.8, 146.5, 143.6, 141.8, 128.2, 127.8, 127.6, 126.3, 125.0, 80.3, 70.7, 48.4, 37.2, 28.3, 25.5. Optical Rotation: [α]_D²⁰: +1.80 (c = 1.00, CHCl₃) for an enantiomerically enriched sample of 94:6 er (er in text is an average of two HPLC runs). The enantiomeric purity was established by HPLC analysis using a chiral column (Lux 3µ Cellulose-4 column, 22 °C, 0.75 mL/min, 96:4 hexane:isopropanol, 220 nm, t_{major} = 29.446 min, t_{minor} = 27.089 min). Absolute stereochemistry was determined through analogy with (*R*)-12. Racemic material was obtained using general procedure A (see racemic substrate 9).

¹⁵ D. J. Blair, D. Tanini, J. M. Bateman, H. K. Scott, E. L. Myers, V. K. Aggarwal, *Chem. Sci.* **2017**, *8*, 2898.

(R)-4,4,5,5-Tetramethyl-2-(2-(naphthalen-2-yl)-2-phenylpropyl)-1,3,2-dioxaborolane ((R)-12): The title compound was prepared according to general procedure D using 2bromonaphthalene as a coupling partner. Purification by MPLC (isocratic steps at 1% and 5% separated by gradient; hexanes/ethyl acetate) yields (R)-12 as a white solid (37% avg. yield of two runs). All characterization data are in agreement with the racemic substrate (12). m.p.: 109-113 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.85 (d, J = 1.8 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.66 (d, J = 8.6 Hz, 1H), 7.50 – 7.37 (m, 3H), 7.26 (m, 3H), 7.19 (dd, J = 8.6, 1.6 Hz, 1H), 7.17 – 7.12 (m, 1H), 1.90 (s, 3H), 1.82 (s, 2H), 0.98 (s, 6H), 0.96 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 150.9, 148.5, 133.1, 131.7, 127.9, 127.8, 127.4, 127.3, 127.1, 127.0, 125.7, 125.5, 125.2, 124.1, 82.7, 44.6, 29.7, 24.6, 24.6. Optical Rotation: $[\alpha]_D^{20}$: -5.80 (c = 0.73, CHCl₃) for an enantiomerically enriched sample of 93:7 er (er in text is an average of two HPLC runs). The enantiomeric purity was established by HPLC analysis using a chiral column (Lux 3µ Cellulose-2 column, 22 °C, 0.25 mL/min, 99:1 hexane:isopropanol, 254 nm, t_{major} = 18.331 min, $t_{minor} = 16.897$ min). Absolute stereochemistry was determined via X-ray crystallography. Racemic material was obtained using general procedure A (see racemic substrate 12).

(S)-2-(3-Chlorophenyl)-2-phenylpropan-1-ol ((S)-14): The title compound was prepared according to general procedure D. Purification by MPLC (isocratic steps at 10% and 30% separated by gradient; hexanes/ethyl acetate) yields (S)-14 as a colorless oil (31% avg. yield of two runs). All relevant characterization data are in agreement with the racemic substrate (14). ¹H NMR (400 MHz, CDCl₃): δ 7.30 (m, 2H), 7.23 – 7.15 (m, 6H), 7.09 (m, 1H), 4.06 (s, 2H), 1.68 (s, 3H), 1.48 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 149.0, 145.8, 134.3, 129.5, 128.5, 127.9, 127.6, 126.6, 126.5, 126.0, 70.6, 48.8, 25.5. Optical Rotation: $[\alpha]_D^{20}$: +1.90 (c = 0.96, CHCl₃) for an enantiomerically enriched sample of 87:13 er (er in text is an average of two HPLC runs). The enantiomeric purity was established by HPLC analysis using a chiral column (Lux 3µ Cellulose 3 column, 22 °C, 0.75 mL/min, 95:5 hexane:isopropanol, 220 nm, t_{major} = 27.677 min, t_{minor} = 35.004 min). Absolute stereochemistry was determined through analogy with (*R*)-12. Racemic material was obtained using general procedures A (see racemic substrate 14).

1,2-diphenylpropan-1-ol (3): The title compound was prepared according to general procedure B. Purification by MPLC (30:1 hexanes/ethyl acetate) yields **3** as a colorless oil (64% avg. yield of two runs, >20:1 d.r.). All characterization data are in agreement with previous literature.¹⁶ ¹**H** NMR (400 MHz, CDCl₃): δ 7.30 – 7.10 (m, 10H), 4.80 (dd, J = 6.8, 3.4 Hz, 1H), 3.10 (app p, J = 6.8 Hz, 1H), 1.88 (d, J = 3.4 Hz, 1H), 1.30 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 143.9, 143.3, 128.6, 128.5, 128.4, 127.6, 126.8, 126.7, 79.1, 47.6, 15.3.

2-(2-(3-chlorophenyl)-1-phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30): The title compound was prepared according to general procedure B. Purification by MPLC (gradient: 100% hexanes to 30:1 hexanes/ethyl acetate) yields **30** as a colorless oil (67% avg. yield of two runs, >20:1 dr, major diastereomer determined by analogy with **3**). **IR (neat):** 3029 (w), 2975 (w), 1453 (m), 783 (m), 695 (s). ¹H NMR (400 MHz, CDCI₃): δ 7.12 – 7.06 (m, 2H), 7.06 – 6.97 (m, 6H), 6.89 – 6.83 (m, 1H), 3.25 (dq, *J* = 11.1, 6.9 Hz, 1H), 2.54 (d, *J* = 11.1 Hz, 1H), 1.36 (d, *J* = 6.9 Hz, 3H), 1.22 (s, 6H), 1.20 (s, 6H). ¹³C NMR (125 MHz, CDCI₃): δ 148.7, 140.7, 133.6, 129.1, 129.0, 128.0, 127.4, 125.8, 125.6, 125.3, 83.5, 42.6, 24.6, 22.5. HRMS (EI): Calculated for C₂₁H₂₆BClO₂ [M⁺]: 356.1714, Found: 356.1715.

1-phenyl-2-(p-tolyl)propan-1-ol (28): The title compound was prepared according to general procedure B. Purification by MPLC (20:1 hexanes/ethyl acetate) yields **28** as a colorless oil (46% avg. yield of two runs, >20:1 dr). All characterization data are in agreement with previous literature.¹⁷ ¹H NMR (400 MHz, CDCl₃): δ 7.32 – 7.14 (m, 6H), 7.10 – 6.98 (m, 3H), 4.79 (dd, J = 5.6, 3.0 Hz, 1H), 3.16 – 2.98 (m, 1H), 2.29 (s, 3H), 1.84 (s, 1H), 1.25 (d, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): 142.9, 140.4, 135.9, 128.9, 127.9, 127.9, 127.1, 126.3, 78.6, 46.7, 20.9, 14.7.

¹⁶ B. Chen, P. Cao, Y. Liao, M. Wang, J. Liao, *Org. Lett.*, **2018**, *20*,1346.
 ¹⁷ A. R. Almeida, R. D. Dias, C. J. P. Monteiro, A. R. Abreu, P. M. P. Gois, J. C. Bayon, M. M. Pereira, *Adv. Synth. Catal.* **2014**, *356*, 1223.

2-phenyl-1-(o-tolyl)propan-1-ol (27): The title compound was prepared according to general procedure B. Purification by MPLC (20:1 hexanes/ethyl acetate) yields **27** as a colorless oil (56% avg. yield of two runs, >20:1 dr, major diastereomer determined by analogy with **3**). **IR (neat):** 3416 (br), 3025 (w), 2966 (w), 1451 (m), 762 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (dd, J = 7.8, 1.4 Hz, 1H), 7.31 – 7.23 (m, 3H), 7.24 – 7.19 (m, 3H), 7.14 (td, J = 7.5, 1.5 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 5.03 (dq, J = 7.0, 2.8 Hz, 1H), 3.10 (m, 1H), 2.18 (s, 3H), 1.34 (d, J = 7.0 Hz, 3H), 0.94 – 0.80 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 144.1, 141.3, 134.5, 130.2, 128.3, 127.9, 127.1, 126.5, 126.2, 125.9, 74.8, 45.3, 19.1, 14.1. HRMS (EI): Calculated for C₁₆H₁₈O [M⁺]: 226.1358, Found: 226.1355.

1-(2-chlorophenyl)-2-phenylpropan-1-ol (26): The title compound was prepared according to general procedure B. Purification by MPLC (20:1 hexanes/ethyl acetate) yields **26** as a colorless oil (52% avg. yield of two runs, >20:1 dr). All characterization data are in agreement with previous literature.¹⁸ ¹H NMR (400 MHz, CDCl₃): δ 7.55 (m, 1H), 7.37 – 7.28 (m, 6H), 7.28 – 7.21 (m, 2H), 7.21 – 7.15 (m, 1H), 5.25 – 5.22 (m, 1H), 3.32 (m, 1H), 1.80 (s, 1H), 1.20 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 144.0, 140.2, 131.8, 129.4, 128.4, 128.3, 128.2, 127.9, 126.6, 126.6, 74.8, 43.6, 12.5.

1-(4-methoxyphenyl)-2-phenylpropan-1-ol (25): The title compound was prepared according to general procedure B. Purification by MPLC (20:1 hexanes/ethyl acetate) yields **25** as a colorless oil (68% avg. yield of two runs, >20:1 dr). All characterization data are in agreement with previous literature.¹⁹ ¹H NMR (400 MHz, CDCl₃): δ 7.21 (m, 2H), 7.16 (d, *J* = 7.2 Hz, 1H), 7.09 (m, 4H), 6.77 (m, 2H), 4.74 (d, *J* = 6.1 Hz, 1H), 3.75 (s, 3H), 3.15 – 3.01 (m, 1H), 1.78 (s, 1H), 1.30 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 143.9, 143.3, 128.6, 128.5, 128.4, 127.6, 126.8, 126.7, 79.1, 47.6, 18.4, 15.3.

¹⁸ C. Zhou, Z. Wang, *Synthesis* 2005, 10, 1649.
¹⁹ T. Taniguchi, H. Zaimoku, H. Ishibashi, *Chem. Eur. J.* 2011, 17, 4307.

4,4,5,5-tetramethyl-2-(2-phenyl-1-(4-(trifluoromethyl)phenyl)propyl)-1,3,2dioxaborolane (24): The title compound was prepared according to general procedure B. Purification by MPLC (gradient: 100% hexanes to 30:1 hexanes/ethyl acetate) yields **24** as a colorless oil (63% avg. yield of two runs, >20:1 dr, major diastereomer determined by analogy with **3**). **m.p.**: 96.8 – 101.5 °C. **IR (neat):** 3028 (w), 2981 (w), 1614 (w), 1321 (s), 851 (m). ¹H NMR (400 MHz, CDCl₃: δ 7.29 (m 2H), 7.09 (m, 4H), 7.01 (d, *J* = 7.1 Hz, 1H), 6.96 (m, 2H), 3.26 (dq, *J* = 11.5, 6.8 Hz, 1H), 2.65 (d, *J* = 11.5 Hz, 1H), 1.37 (d, *J* = 6.8 Hz, 3H), 1.21 (s, 6H), 1.19 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 146.2, 146.0, 129.5, 128.3, 127.4, 126.1, 125.1, 124.8 (q, J = 272.5 Hz), 84.0, 42.9, 24.9, 23.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.26. HRMS (EI): Calculated for C₁₆H₁₅F₃O [M⁺]: 390.1978, Found: 390.1981.

1,2-diphenylbutyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (32): The title compound was prepared according to general procedure B. Purification by MPLC (gradient: 100% hexanes to 30:1 hexanes/ethyl acetate) yields **32** as a colorless oil (73% avg. yield of two runs, >20:1 dr, major diastereomer determined by analogy with **3**). **IR (neat):** 3026 (m), 2957 (s), 2853 (m), 1493 (s), 848 (m). ¹H NMR (400 MHz, CDCl₃): δ 7.07 (m, 2H), 7.04 – 6.89 (m, 8H), 3.02 (td, J = 11.3, 3.6 Hz, 1H), 2.62 (d, J = 11.3 Hz, 1H), 1.83 (m, 1H), 1.65 (m, 1H), 1.21 (s, 6H), 1.18 (s, 6H), 0.72 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): 144.0, 140.9, 129.1, 128.2, 127.7, 127.6, 125.5, 124.9, 83.4, 50.2, 29.7, 24.6, 24.5, 12.3. HRMS (EI): Calculated for C₂₂H₂₉BO₂ [M⁺]: 336.2261, Found: 336.2265.

1,2-diphenylhexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (33): The title compound was prepared according to general procedure B. Purification by column chromatography (gradient: 100% hexanes to 1:1 hexanes/dichloromethane) yields **33** as a colorless oil

(51% avg. yield of two runs, >20:1 dr, major diastereomer determined by analogy with **3**). **IR (neat):** 3018 (m), 2986 (s), 2871 (m), 1463 (s), 867 (m). ¹H NMR (400 MHz, **CDCl₃):** δ 7.07 (m, 2H), 7.04 – 6.89 (m, 8H), 3.02 (m, 1H), 2.62 (m, 1H), 1.97 (m, 2H), 1.83 (m, 1H), 1.65 (m, 3H), 1.20 (s, 6H), 1.17 (s, 6H), 0.72 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): 144.3, 141.1, 129.3, 127.8, 127.5, 127.4, 125.0, 124.9, 84.6, 50.1, 30.3, 26.7, 25.4, 24.6, 24.5, 12.2. **HRMS (EI):** Calculated for C₂₄H₃₃BO₂ [M⁺]: 364.2574, Found: 364.2568.

2,3-dihydro-1H-inden-1-yl)(phenyl)methyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (34): The title compound was prepared according to general procedure B. Purification by MPLC (gradient: 100% hexanes to 30:1 hexanes/ethyl acetate) yields **34** as a colorless oil (53% avg. yield of two runs, >20:1 dr, major diastereomer determined by analogy with **3**). **IR (neat):** 3023 (w), 2976 (m), 2930 (w), 1354 (s), 849 (m). ¹H NMR (400 MHz, CDCl₃): δ 7.23 (m, 4H), 7.17 – 7.12 (m, 2H), 7.03 (t, J = 7.5 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 6.45 (d, J = 7.5 Hz, 1H), 3.72 – 3.60 (m, 1H), 2.92 (m, 1H), 2.79 (m, 1H), 2.55 (m, 1H), 2.34 (m, 1H), 1.87 (m, 1H), 1.17 (s, 6H), 1.13 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 147.1, 144.1, 141.7, 129.4, 128.3, 126.2, 125.5, 125.4, 124.8, 124.2, 83.4, 47.3, 32.4, 31.2, 24.6, 24.5. HRMS (EI): Calculated for C₂₂H₂₇BO₂ [M⁺]: 334.2104, Found: 334.2105.

(1*S*,2*R*)-1,2-Diphenylpropan-1-ol ((1*S*,2*R*)-3): The title compound was prepared according to a slightly modified version of general procedure D; 3.00 equiv (1.20 mmol) of bromobenzene was added to the reaction mixture instead of 1.50 equiv (0.60 mmol), and 5 mol % PCy₃-Pd precatalyst (13.0 mg) was used instead of 1 mol %. Purification by MPLC (0-10% gradient; hexanes/ethyl acetate) yields (*1S*,2*R*)-3 as an off-white solid (10% avg. yield of two runs, >20:1 d.r.). All characterization data are in agreement with the racemic substrate (3). m.p.: 49-51 °C. ¹H NMR (400 MHz, CDCl₃): 7.23 – 7.10 (m, 8H), 7.10 – 7.03 (m, 2H), 4.75 (dd, J = 5.7, 3.3 Hz, 1H), 3.04 (dq, J = 7.0, 5.7 Hz, 1H), 1.77 (d, J = 3.3 Hz, 1H), 1.24 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 143.5, 142.8, 128.2, 128.0, 127.9, 127.2, 126.4, 126.2, 78.7, 47.2, 14.8. Optical Rotation: [α]_D²⁰: +37.4 (c = 0.43, CHCl₃) for an enantiomerically enriched sample of 92:8 er (er in text is an average of two HPLC runs). The enantiomeric purity was established by HPLC analysis using a chiral column (Lux 3µ Cellulose-4 column, 22 °C, 0.75 mL/min, 95:5 hexane:isopropanol, 220 nm, t_{maior} = 8.567 min, t_{minor} = 9.420 min). Absolute

stereochemistry was determined through comparison to previously reported literature values of optical rotation (literature = +47.12)²⁰. Racemic material was obtained using general procedures B and C (see racemic substrate **3**).

Mechanism Studies:

Synthesis of APhosPd(Ph)Br (38), procedure 1: In an N₂-filled glovebox, to an ovendried 16 x 100 mm screw-capped vial was added APhos₂Pd (100 mg, 0.141 mmol). Dry pentane (10.0 mL) was added, followed immediately by bromobenzene (0.550 mL, 5.17 mmol). The flask was sealed with a screw cap and removed from the glovebox. The reaction was stirred at 70 °C for 2 hours then was allowed to cool to room temperature. The vial cap was quickly replaced with a septum. With a N₂ line in the vial, the solvent was removed via syringe. Two more 10 mL portions of dry pentane were added then removed via syringe to eliminate any unreacted starting material and APhos byproduct, then the vial was placed under vacuum, yielding **38** as a light yellow powder (54% yield). The NMR data closely resembled that of the previously reported APhosPd(*o*-tolyl)Br.²¹

APhosPd(Ph)Br (38): ¹**H NMR (400 MHz, C₆H₆):** δ 7.88 (m, 2H), 7.68 (m, 2H), 6.87 (m, 2H), 6.73 (d, J = 7.0 Hz, 1H), 6.29 (m, 2H), 2.43 (d, J = 1.8 Hz, 6H), 1.28 (d, J = 13.7 Hz, 18H). ¹³**C NMR (125 MHz, C₆H₆):** δ 150.5, 146.0, 138.1 (d, J = 11.1 Hz), 130.6 (d, J = 157.3 Hz), 126.4, 122.7, 115.3 (d, J = 40.8 Hz), 109.8 (d, J = 10.4 Hz), 39.0, 37.4 (d, J = 16.3 Hz), 30.5 (d, J = 4.2 Hz). ³¹**P NMR (162 MHz, C₆H₆)** δ 60.1. **HRMS (ESI):** Calculated for C₂₂H₃₃NPPd⁺ [M-Br⁺]: 448.1380, Found: 448.1391.

²⁰ F. A. A. Elhavez, D. J. Cram. J. Am. Chem. Soc. 1952, 74, 5846.
 ²¹ K. Kosaka, T. Uchida, K. Mikami, Y. Ohta, T. Yokozawa, Macromolecules 2018, 51, 364.

Synthesis of APhosPd(Ph)Br (38), procedure 2: In an N₂-filled glovebox, to an ovendried 13 x 100 mm screw-capped vial was added PdG4-APhos precatalyst (17.5 mg, 0.027 mmol) and LiOtBu (2.40 mg, 0.030 mmol). A 10:1 solution of toluene- d_8 /THF (0.75 mL) was added, followed immediately by bromobenzene (28.8 µL, 0.270 mmol). The solution was transferred to an NMR tube and NMR spectra were recorded to reveal the consumption of the PdG4-APhos precatalyst and formation of APhosPd(Ph)Br (38).

Procedure for reaction of stoichiometric copper complex (39) and stoichiometric APhosPd(Ph)Br (38): In an N₂-filled glovebox, to an oven-dried 13 x 100 mm screwcapped vial was added SIMesCuOt-Bu (22.1 mg, 0.050 mmol) and B2pin2 (14.1 mg, 0.055 mmol). Benzene-d₆ (0.7 mL) was added (Note: benzene-d₆ was used in place of toluene- d_8 because it allowed for cleaner NMR spectra to be obtained) followed immediately by α -methylstyrene (7.1 μ L, 0.055 mmol) to provide a dark brown solution. The solution was transferred to an NMR tube and a ¹H NMR spectrum was quickly recorded to reveal that the SIMesCuOt-Bu was completely consumed (Note: while SIMesCuOtBu was consumed, $30-40\% \alpha$ -methylstyrene remained unreacted, meaning not all of the SIMesCu-Bpin (formed via transmetalation of SIMesCuOt-Bu and (Bpin)₂) underwent migratory insertion. See the crossover experiment below in which we probed whether product was formed via reaction with the unreacted alkene and [Cu]). The NMR tube was then brought back into the glovebox and transferred to a screw-capped vial containing a solution of Pd complex **38** (26.5 mg, 0.050 mmol, obtained by procedure 1) in a 3:1 benzene- d_6 :THF solution (0.4 mL). The vial was sealed with a Teflon-lined screw cap then removed from the glovebox. The mixture was allowed to stir at 30°C for 4 h then was quenched upon addition of 2M HCl (1 mL). The mixture was extracted with EtOAc (3 x 1 mL) then dodecane (internal standard) was added and the mixture was analyzed by GC to reveal a 51% yield of 2 and a 6% yield of 3 (4:1 d.r.).

C(sp³)-Cu complex (39): Full characterization was not possible due to the relative instability of the product and the presence of multiple compounds in the solution. The spectrum of this compound closely matches a related Csp³-Cu complex of known confirmation.²² ¹H NMR (600 MHz, C₆H₆): δ 7.19 (m, 1H), 7.03 (m, 1H), 6.90 (m, 2H), 6.76 (m, 4H), 6.66 (s, 1H), 3.54 (d, *J* = 6.2 Hz, 2H), 3.03 (s, 3H), 2.11 (d, *J* = 3.1 Hz, 12H), 2.06 (s, 6H), 1.61 (d, *J* = 7.6 Hz, 3H), 1.45 (s, 2H), 1.01 (s, 12H).

²² D. S. Laitar, E. Y. Tsui, J. P. Sadhigi, Organometallics 2006, 25, 2405.

Generation of stoichiometric tertiary alkyl copper (39) and cross coupling using catalytic APhosPdG3: In an N₂-filled glovebox, to an oven-dried 13 x 100 mm screw-capped vial was added SIMesCuOt-Bu (22.1 mg, 0.050 mmol) and B₂pin₂ (14.1 mg, 0.055 mmol). Benzene-d₆ (0.7 mL) was added, followed immediately by α -methyl styrene (7.10 μ L, 0.055 mmol) to provide a dark brown solution. The solution was transferred to an NMR tube and a ¹H NMR spectrum was quickly recorded to reveal that the SIMesCuOt-Bu was completely consumed. The NMR tube was then brought back into the glovebox and added to a screw-capped vial containing a solution of PhBr (8.0 μ L, 0.075 mmol), Pd-APhos Precatalyst (6.40 mg, 0.01 mmol), LiOt-Bu (0.80 mg, 0.01 mmol), and a 3:1 benzene-d₆:THF solution (0.4 mL). The vial was sealed with a Teflon-lined screw cap then removed from the glovebox. The mixture was allowed to stir at 30°C for 4 h then was quenched upon addition of 2M HCl (1 mL). The mixture was extracted with EtOAc (3 x 1 mL) then dodecane (internal standard) was added and the mixture was analyzed by GC to reveal a 47% yield of **2** and a 5% yield of **3** (4:1 d.r.).

Procedure for the attempted synthesis of (PCy₃)_nPd(Ph)Br (42): In an N₂-filled glovebox, to an oven-dried 13 x 100 mm screw-capped vial was added PdG4-PCy₃ precatalyst (17.9 mg, 0.027 mmol) and LiOtBu (2.40 mg, 0.030 mmol). A 10:1 solution of toluene-d₈:THF (0.75 mL) was added, followed immediately by bromobenzene (28.8 μ L, 0.270 mmol). The solution was transferred to an NMR tube and NMR spectra were recorded to reveal a complex mixture of phosphorous-containing products.

Procedure for reaction of stoichiometric copper complex (39) and stoichiometric (PCy₃)₂Pd(Ph)Br (41): In an N₂-filled glovebox, to an oven-dried 13 x 100 mm screw-capped vial was added SIMesCuOt-Bu (22.1 mg, 0.050 mmol) and B₂pin₂ (14.1 mg, 0.055 mmol). Benzene-d₆ (0.7 mL) was added followed immediately by α -methylstyrene

(7.1 μ L, 0.055 mmol) to provide a dark brown solution. The solution was transferred to an NMR tube and a ¹H NMR spectrum was quickly recorded to reveal that the SIMesCuOt-Bu was completely consumed. The NMR tube was then brought back into the glovebox and transferred to a screw-capped vial containing a solution of Pd complex **41**²³ (40.4 mg, 0.050 mmol) in a 3:1 benzene-d₆:THF solution (0.4 mL). The vial was sealed with a Teflon-lined screw cap then removed from the glovebox. The mixture was allowed to stir at 30°C for 4 h then was quenched upon addition of 2M HCl (1 mL). The mixture was extracted with EtOAc (3 x 1 mL) then dodecane (internal standard) was added and the mixture was analyzed by GC to reveal that no arylboration products were formed.

Generation of stoichiometric tertiary alkyl copper (39) and cross coupling using catalytic PCy₃PdG3: In an N₂-filled glovebox, to an oven-dried 13 x 100 mm screw-capped vial was added SIMesCuOt-Bu (22.1 mg, 0.050 mmol) and B₂pin₂ (14.1 mg, 0.055 mmol). Benzene-d₆ (0.7 mL) was added followed immediately by α -methylstyrene (7.10 μ L, 0.055 mmol) to provide a dark brown solution. The solution was transferred to an NMR tube and a ¹H NMR spectrum was quickly recorded to reveal that the SIMesCuOt-Bu was completely consumed. The NMR tube was then brought back into the glovebox and added to a screw-capped vial containing a solution of PhBr (8.0 μ L, 0.075 mmol), PdG3-PCy₃ Precatalyst (6.50 mg, 0.01 mmol), LiOt-Bu (0.80 mg, 0.01 mmol), and a 3:1 benzene-d₆:THF solution (0.4 mL). The vial was sealed with a Teflon-lined screw cap then removed from the glovebox. The mixture was allowed to stir at 30°C for 4 h then was quenched upon addition of 2M HCl (1 mL). The mixture was extracted with EtOAc (3 x 1 mL) then dodecane (internal standard) was added and the mixture was analyzed by GC to reveal a 41% yield of **3** (>20:1 dr) and a 6% yield of **2**.

²³ J. P. Stambuli, C. D. Incarvito, M. Buhl, J. F. Hartwig, J. Am. Chem. Soc. **2004**, *126*, 1184.

Crossover experiment to probe whether unreacted alkene is undergoing arylboration: In an N₂-filled glovebox, to an oven-dried 13 x 100 mm screw-capped vial was added SIMesCuOt-Bu (22.1 mg, 0.050 mmol) and B₂pin₂ (14.1 mg, 0.055 mmol). Benzene-d₆ (0.7 mL) was added followed immediately by α -methyl styrene (7.1 μ L, 0.055 mmol) to provide a dark brown solution. The solution was transferred to an NMR tube and a ¹H NMR spectrum was quickly recorded to reveal that the SIMesCuOt-Bu was completely consumed. The NMR tube was then brought back into the glovebox and added to a screw-capped vial containing a solution of 1-methvl-4-(1methylethenyl)benzene (3.6 µL, 0.025 mmol), PhBr (8.0 µL, 0.075 mmol), Pd-APhosG3 Precatalyst (6.4 mg, 0.01 mmol), LiOt-Bu (0.80 mg, 0.01 mmol), and a 3:1 benzene d_6 :THF solution (0.4 mL). The vial was sealed with a Teflon-lined screw cap then removed from the glovebox. The mixture was allowed to stir at 30°C for 4 h then was quenched upon addition of 2M HCl (1 mL). The mixture was extracted with EtOAc (3 x 1 mL) then dodecane (internal standard) was added and the mixture was analyzed by GC to reveal a 48% yield of 2 and <2% of 13.

Crossover experiment to probe stability of alkene-Pd complex 36: In an N₂-filled glovebox, to a 13 x 100 mm screw-capped vial was added SIMes-CuCl (8.10 mg, 5.00 mol%), PCy₃-Pd precatalyst (1.30 mg, 0.500 mol%), bis(pinacolato)diboron (152 mg, 0.600 mmol, 1.50 equiv), NaOt-Bu (94.0 mg, 0.600 mmol, 1.50 equiv), and 3.00 mL of a solution of 10:1 toluene/THF. Vinylboronic ester **S2** (98.9 μ L, 0.400 mmol, 1.00 equiv), α -methylstyrene (51.9 μ L, 0.400 mmol, 1.00 equiv), and bromobenzene (64.1 μ L, 0.600 mmol, 1.50 equiv) were immediately added via microsyringes, followed by another 1.00 mL of the 10:1 toluene/THF solution down the sides of the vial. The vial was sealed with a Teflon-lined screw cap then removed from the glovebox. The mixture was allowed to stir at 30°C for 12 h then was quenched upon addition of 2M HCl (4 mL). The mixture was extracted with EtOAc (3x 4 mL) then dodecane (internal standard) was added. The crude mixture was analyzed by GC and H NMR to reveal a 40% yield of **28** and <2% of **3**.

 $^{1}\mathrm{H}$ NMR (600 MHz, CDCl_3)

S21

¹³ C NMR (125 MHz, CDCl ₃)		- 128.33 - 127.64	~126.32					70.84				25.56		S22	
1990 180 170	(140	130	120	110	100 f1 (p	₩₩₩₩₩₩₩ 90 pm)	Ndwily (Ndv il) 80	WHAINWAN WAAVA 	60	,	/////////////////////////////////////	1////////////////////////////////////	 	MMMMMMMM 	0 -1

¹³ C NMR (125 MeO		з) 》	from: N	1e0	-157.90	// a) + —146.81	BL -138.44	128.66 128.26 127.51		— 113.63				70.89	Ţ	91.60 			90.c2 —		S36	
Interpression of the second	14 14 14 14 14 14 14 14 14 14 14 14 14 1	10.64.40.64.64.01.04.04	informational indication of	h) watan (kawa ya	urverulijanju liter	(Vervaldskaped) (Mart Terr	()-journalise	Normality of the second	hipuquitu	e viral alla forma	winnappul	W(Q4/J <mark>an./W</mark>)Q20	Minutanity	ilinin-nar (viciniya	VØrygilfissignaktig	- Traffording with the	anaya na ana ana ana ana ana ana ana ana	er begring minaderikapin	1 Y/YHVHADJANUUN	Antonina international and the second se	nd (lacos) and a lacos (na	lealed on which we
30 220 21	0 200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0	-10

 ^{13}C NMR (125 MHz, CDCl_3)

hondo se	(NII)	whowenew	uly and the line	n in the second s	ladiaten eta	n fan Lingellingel	NAN MARINA	Marana ana ana ana ana ana ana ana ana an	uniorina di Angelia di Angelia di Angelia di Ang	lati di territori di	Internation of the second s	ian di katika katika	u, di la di tipo di si	lahmilaina ala	tamlinajut ^a w	I/BLAND NAVIM	un imum iki	(hjuriden der j	hiy oyuliy	HWARIN DAVIN	ilitettikation oli kusta	(w)/workupenhown	phhylochum	() beyond the provide state of	invyali livletny
230	220	210	200	190	180	170	160	150	140	130	120	110 f1 (ppm	100 1)	90	80	70	60)		40	30	20	10	0	-10

— 146.66

f1 (ppm)

-10

S42

 $^1\!\mathrm{H}$ NMR (600 MHz, $\mathrm{CDCl}_3)$

 $^{13}\mathrm{C}\,\mathrm{NMR}$ (100 MHz, $\mathrm{CDCl}_3)$

f1 (ppm)

"Industriation of the state of

-10

 13 C NMR (500 MHz, CDCl₃)

100 90 f1 (ppm) de fan de generale werde werde werde generale fan de generale werde werde werde de generale generale generale y

Т

-10

N THE PARTY IN

والألبالية التأريك والمرار

f1 (ppm)

S54

-10

4.74 3.55 2.74-] 2.80-1.00 1.05 <u>–96.0</u> 9.0 4.5 f1 (ppm) 8.5 7.5 6.5 2.5 8.0 6.0 5.5 5.0 4.0 3.5 3.0 1.5 1.0 0.5 0.0 .5 7.0 2.0

iy vynainia (diwyliyddia) yw llyddiaegol (diwyliyddiaegol (di

han Nela weeka i di ana kata Natah ka da da ka ka

120 110 f1 (ppm)

-42.56

S58

. Alianan (Alianterana)

-10

— 74.82 — 45.27 — 19.13 — 14.06

S60

neisi di simila kul pertet kun taka daki si kala da sata sata kun taki kata ku suka ta sata kun ta da sa sa sa	en ein die beschlichten die einste der die beschlicht ab die der der die einste die einste die einste die die d	kaf bandu ki sa	de Waarden die aan die de aan maak keert een aan die de die die die die die die die die	particular a material field of orbit security address in state of a

120 110 100 f1 (ppm) -10

—42.90

~ 23.19

¹⁹F NMR (376 MHz, CDCl3)

		- I	·	· · ·	·	·	· · · ·		·	· · ·	·	· 1	· I	· · · ·	·	· 1	·	- I	· 1		- I	· · · ·	
0	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80 f1 (j	-90 pm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-20

¹³ C NMR (125 MHz, CD	Cl₃)
----------------------------------	------

-157.90 -146.81 -138.44 -138.66 128.26 128.26 126.21	
--	--

ahara dan alala ahili bekari karan kina di bekari belan Mili dan dan barbar kari pertan karan yang karapatan per

110 100 f1 (ppm)

in the second second

S67

-10

~32.42 ~31.21 ~24.62 ~24.57

¹³C NMR (125 MHz, CDCl₃)

147.05 144.06 141.68	129.37 128.25 126.19 125.51 125.41 125.41 125.41 124.80
111	

120 110 100 f1 (ppm) ~32.42 ~31.21 ~24.62 ~24.57

S73

-10

 13 C NMR (125 MHz, CDCl₃)

Me

ЮH

. In the first way was all a stand before a plant and provide a part of the plant way by the provided of the p

-78.72

-47.22

-1

100 90 f1 (ppm)

S75

— 14.89

	·			-	· · · ·	· -	·	· · ·	· · · · ·		· · · ·	·	·	·	· · · ·			· · ·	· · · ·	· · · ·	· · · ·	· -		·
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50
											f	1 (ppm))											

Data File C:\CHEM32\2\DATA\SKD\SD-I-202-4-C223.D Sample Name: SKD-I-202-4-C22c

=======================================	= = :		=====	=======	===	=====	====	
Acq. Operator	:	SYSTEM	Sec	4. Line	:	3		
Acq. Instrument	:	1220 HPLC	Lc	ocation	:	Vial	21	
Injection Date	:	10/26/2018 11:51:09 PM		Inj	:	1		
			Inj	Volume	:	10.00	00 μl	
Acq. Method	:	C:\CHEM32\2\METHODS\SKD_TRY.M	I					
Last changed	:	10/26/2018 11:46:04 PM by SYS)/26/2018 11:46:04 PM by SYSTEM					
		(modified after loading)						
Analysis Method	:	C:\CHEM32\2\METHODS\DEF_LC.M						
Last changed	:	10/2/2018 2:47:22 PM by SYSTE	M					
Sample Info	:	Lux 3u Cellulose-2, 99:1 Hex:	IPA,	0.25 mI	Ľ∕n	nin, 2	254 nm,	
		25 min						

Totals : 3.44863e4 1372.63519

Data File C:\CHEM32\2\DATA\SKD\SKD-II-19-20002.D Sample Name: SKD-II-19-2b

==================	==		=======	==========	==	========
Acq. Operator	:	SYSTEM	Se	eq. Line	:	2
Acq. Instrument	:	1220 HPLC	I	Location	:	Vial 21
Injection Date	:	10/27/2018 1:47:40 AM		Inj	:	1
			In	j Volume	:	10.000 µl
Acq. Method	:	C:\CHEM32\2\METHODS\SKD_TR	RY.M			
Last changed	:	10/27/2018 12:17:24 AM by	SYSTEM			
Analysis Method	:	C:\CHEM32\2\METHODS\DEF_LC	C.M			
Last changed	:	10/2/2018 2:47:22 PM by SY	STEM			
Sample Info	:	Lux 3u Cellulose-2, 99:1 H	lex:IPA	, 0.25 mI	ն/1	min, 254 nm,
		30 min				

Signal 1: VWD1 A, Wavelength=254 nm

Peak 1	RetTime	Туре	Width	Area	Height	Area
# .	[min]		[min]	[mAU*s]	[mAU]	%
1	16.897	BV	0.3537	1269.42810	54.71751	7.3624
2	18.331	VB	0.4036	1.59727e4	607.74768	92.6376
Total	s :			1.72421e4	662.46519	

Data File C:\CHEM32\2\DATA\SKD\SKD-I-249-1C001.D Sample Name: SKD-I-249-1c

=======================================	==:		====	======	==:	=====	====	
Acq. Operator	:	SYSTEM	Seg	[. Line	:	1		
Acq. Instrument	:	1220 HPLC	Lo	cation	:	Vial	31	
Injection Date	:	8/3/2018 3:36:45 PM		Inj	:	1		
			Inj	Volume	:	10.00	00 μl	
Acq. Method	:	C:\CHEM32\2\METHODS\SKD_TRY.M						
Last changed	:	8/3/2018 4:03:59 PM by SYSTEM						
		(modified after loading)						
Analysis Method	:	C:\CHEM32\2\METHODS\DEF_LC.M						
Last changed	:	10/2/2018 2:47:22 PM by SYSTER	M					
Sample Info	:	Lux 3u Cellulose 4, 96:4 Hex:	IPA,	0.75 ml	Լ/ղ	min, 2	220 nm	ı,
		20 min						

Area Percent Report

Sort	ed By		:	nal				
Mult	iplier:			:	-	L.0000		
Dilu	ution:			:	-	L.0000		
Use	Multiplier	&	Dilution	Factor	with	ISTDs		

Signal 1: VWD1 A, Wavelength=220 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	27.033	 BB	0.6400	 1.47541e4	348.78790	49.9611
2	29.624	BB	0.7099	1.47771e4	315.53693	50.0389
Total	ls :			2.95312e4	664.32483	

Data File C:\CHEM32\2\DATA\SKD\SKD-I-249-2E001.D Sample Name: SKD-I-249-2e

=======================================	==:		
Acq. Operator	:	SYSTEM	Seq. Line : 1
Acq. Instrument	:	1220 HPLC	Location : Vial 41
Injection Date	:	8/3/2018 4:56:23 PM	Inj: 1
			Inj Volume : 10.000 µl
Acq. Method	:	C:\CHEM32\2\METHODS\SKD_TRY.M	
Last changed	:	8/3/2018 4:12:41 PM by SYSTEM	
Analysis Method	:	C:\CHEM32\2\METHODS\DEF_LC.M	
Last changed	:	10/2/2018 2:47:22 PM by SYSTEM	/I
Sample Info	:	Lux 3u Cellulose 4, 96:4 Hex:	IPA, 0.75 mL/min, 220 nm,
		35 min	

Totals : 3.52525e4 738.32410

Data File C:\CHEM32\2\DATA\SKD\AMBRAC-MCL00001.D Sample Name: AMBrac-mCl-a

	= = :	
Acq. Operator	:	SYSTEM Seq. Line : 1
Acq. Instrument	:	1220 HPLC Location : Vial 21
Injection Date	:	10/30/2018 11:05:31 PM Inj: 1
		Inj Volume : 10.000 µl
Acq. Method	:	C:\CHEM32\2\METHODS\SKD_TRY.M
Last changed	:	10/30/2018 10:54:30 PM by SYSTEM
Analysis Method	:	C:\CHEM32\2\METHODS\DEF_LC.M
Last changed	:	10/2/2018 2:47:22 PM by SYSTEM
Sample Info	:	Lux3u Cellulose-3, 95:5 Hex:IPA, 0.75 mL/min, 220 nm,40
		min

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	22.022	BB	0.9515	4404.32715	66.08842	51.0363
2	27.838	BB	1.3442	4225.47266	44.80743	48.9637
Total	ls :			8629.79980	110.89585	

*** End of Report ***

Data File C:\CHEM32\2\DATA\SKD\SKD-II-11-20003.D Sample Name: SKD-II-11-2c

=======================================	==	
Acq. Operator	:	SYSTEM Seq. Line : 3
Acq. Instrument	:	1220 HPLC Location : Vial 21
Injection Date	:	10/30/2018 10:17:06 PM Inj : 1
		Inj Volume : 10.000 µl
Acq. Method	:	C:\CHEM32\2\METHODS\SKD_TRY.M
Last changed	:	10/30/2018 10:44:31 PM by SYSTEM
		(modified after loading)
Analysis Method	:	C:\CHEM32\2\METHODS\DEF_LC.M
Last changed	:	10/2/2018 2:47:22 PM by SYSTEM
Sample Info	:	Lux3u Cellulose-3, 95:5 Hex:IPA, 0.75 mL/min, 220 nm,40
		min

Additional Info : Peak(s) manually integrated

Totals : 3.78565e4 522.27566

Data File C:\CHEM32\2\DATA\SKD\AMB-V-137-1-A02.D Sample Name: AMB-V-137-1-A-b

Acq. Operator	:	SYSTEM	Seq. Line	:	2		
Acq. Instrument	:	1220 HPLC	Location	:	Vial 21		
Injection Date	:	10/25/2018 1:03:54 AM	Inj	:	1		
			Inj Volume	:	10.000 µl		
Acq. Method	:	C:\CHEM32\2\METHODS\SKD_T	TRY.M				
Last changed	:	10/25/2018 12:34:56 AM by	/ SYSTEM				
Analysis Method	:	C:\CHEM32\2\METHODS\DEF_L	JC.M				
Last changed	:	10/2/2018 2:47:22 PM by S	SYSTEM				
Sample Info	:	Lux3u Cellulose-4, 95:5 H	Hex:IPA, 0.75 mL/	/ m.	in, 220 nm, 2		
		0 min					

*** End of Report ***

Data File C:\CHEM32\2\DATA\SKD\SKD-I-264-2B005.D Sample Name: SKD-I-264-2d

Acq. Operator	:	SYSTEM	Seq. Line	:	5		
Acq. Instrument	:	1220 HPLC	Location	:	Vial 21		
Injection Date	:	10/25/2018 12:02:00 AM	Inj	:	1		
			Inj Volume	:	10.000 µl		
Acq. Method	:	C:\CHEM32\2\METHODS\SKD_	FRY.M				
Last changed	:	10/24/2018 10:54:04 PM by	Y SYSTEM				
		(modified after loading)					
Analysis Method	:	C:\CHEM32\2\METHODS\DEF_I	LC.M				
Last changed	:	10/2/2018 2:47:22 PM by S	SYSTEM				
Sample Info	:	Lux3u Cellulose-4, 95:5 H	Hex:IPA, 0.75 mL,	/ m:	in, 220 nm, 2		
		0 min					

Signal 1: VWD1 A, Wavelength=220 nm

Peak H #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
-						
1	8.567	MF	0.1962	4404.74756	374.11041	92.2827
2	9.420	FM	0.2900	368.35257	21.16996	7.7173
Totals	s :			4773.10013	395.28037	
