©RSNA, 2019 10.1148/radiol.2019190452

Appendix E1

MRI Methods

Parametric Mapping Sequences

Acquisition parameters used for parametric mapping are included in Table E3. For brain imaging, pixel-wise maps were generated in MATLAB (R2018a, Mathworks, Natwick, MA) using a 3-parameter monoexponential fit (T1 mapping) or 2-parameter monoexponential fit (T2 and T2* mapping). Regions-of-interest were manually drawn to calculate parametric values in each tissue. Fast inline parametric mapping sequences were used for cardiac and abdominal mapping (32–34), regions-of-interest were drawn on the inline pixel-wise maps using a Leonardo workstation (Siemens Healthcare, Erlangen, Germany).

Contrast Agents

Phantom T1 values were measured using an inversion recovery gradient echo sequence with multiple TIs (10–8000 ms) with TR = 15s. T1 was calculated using a 3-parameter monoexponential fit to the inversion recovery signal. Phantom T2 values were calculated using a spin echo sequence with TE = 10–1000 msec and TR = 15s. T2 was calculated using a 2-parameter fit to the monoexponential signal decay curve.

1.5T Literature Values for Parametric Mapping

The following references were used to generate range of literature values for T1, T2 and T2* at 1.5T for Table 1:

1. Vymazal J, Righini A, Brooks RA, et al. T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology 1999;211(2):489–495.

2. Stanisz GJ, Odrobina EE, Pun J, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 2005;54(3):507–512.

3. Siemonsen S, Finsterbusch J, Matschke J, Lorenzen A, Ding XQ, Fiehler J. Age-dependent normal values of T2* and T2' in brain parenchyma. AJNR Am J Neuroradiol 2008;29(5):950–955.

4. Kritsaneepaiboon S, Ina N, Chotsampancharoen T, Roymanee S, Cheewatanakornkul S. The relationship between myocardial and hepatic T2 and T2* at 1.5T and 3T MRI in normal and iron-overloaded patients. Acta Radiol 2018;59(3):355–362.

5. Grassedonio E, Meloni A, Positano V, et al. Quantitative T2* magnetic resonance imaging for renal iron overload assessment: normal values by age and sex. Abdom Imaging 2015;40(6):1700–1704.

6. Dabir D, Child N, Kalra A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2014;16(1):69.

7. Baeßler B, Schaarschmidt F, Stehning C, Schnackenburg B, Maintz D, Bunck AC. A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers. Eur J Radiol 2015;84(11):2161–2170.

8. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 1984;11(4):425–448.

9. Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 2004;183(2):343–351.

10. Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003;49(3):515–526.

11. de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004;230(3):652–659.

12. Schwenzer NF, Machann J, Haap MM, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol 2008;43(12):854–860.

13. Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005;53(1):237–241.

14. Westwood M, Anderson LJ, Firmin DN, et al. A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging 2003;18(1):33–39.

15. Rakow-Penner R, Daniel B, Yu H, Sawyer-Glover A, Glover GH. Relaxation times of breast tissue at 1.5T and 3T measured using IDEAL. J Magn Reson Imaging 2006;23(1):87–91.

16. Giri S, Chung YC, Merchant A, et al. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 2009;11(1):56.

17. Barth M, Moser E. Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol 1997;43(5):783–791.

18. Stadler A, Jakob PM, Griswold M, Barth M, Bankier AA. T1 mapping of the entire lung parenchyma: Influence of the respiratory phase in healthy individuals. J Magn Reson Imaging 2005;21(6):759–764.

19. Wild JM, Marshall H, Bock M, et al. MRI of the lung (1/3): methods. Insights Imaging 2012;3(4):345–353.

20. Hatabu H, Alsop DC, Listerud J, Bonnet M, Gefter WB. T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging. Eur J Radiol 1999;29(3):245–252.

21. Ulla M, Bonny JM, Ouchchane L, Rieu I, Claise B, Durif F. Is R2* a new MRI biomarker for the progression of Parkinson's disease? A longitudinal follow-up. PLoS One 2013;8(3):e57904.

22. Hedgire SS, McDermott S, Wojtkiewicz GR, Abtahi SM, Harisinghani M, Gaglia JL. Evaluation of renal quantitative T2* changes on MRI following administration of ferumoxytol as a T2* contrast agent. Int J Nanomedicine 2014;9:2101–2107.

Gadobutrol	<i>Gadovist</i> , Bayer Healthcare, Berlin Germany	0–10mM
Gadoterare meglumine	Dotarem, Guerbet, Villepinte, France	0–10mM
Gadopentetate dimeglumine	<i>Magnevist</i> , Bayer Healthcare, Berlin Germany	0–10mM
Gadofosveset	<i>Ablavar</i> , Lantheus Medical Imaging, North Billerica, MA	0–1mM
Gadofosveset +	<i>Ablavar</i> , Lantheus Medical Imaging, North Billerica, MA	0–1mM
Human Serum Albumin	 + HAS Fraction V, Millipore Sigma, Burlington MA (Catalog #12668) 	0.2mM
Ferumoxytol	Feraheme, AMAG Pharmaceuticals Inc, Waltham MA	0–0.8mM
Gd-Dendrimers	[26]	0-0.02mM
Oxygen	N/A	0 mmHg, 159.6 mmHg, 760 mmHg

$rapic \square r$	Table E1:	Contrast	agents	used	for re	laxivit	v calcu	ulations
-------------------	-----------	----------	--------	------	--------	---------	---------	----------

Table E2: Commercially available metallic guidewires and catheters tested for RFinduced heating at 0.55T. Devices with heating < 1°C after 2 minutes of continuous imaging are potentially suitable for in vivo application (final column).

0.035"/straight /0.035"/angled 0.035"/straight	>
0.035"/angled	
0.035"/straight	1
0.035"/angled	1
0.035"/straight	х
0.035"/angled	х
0.035"/angled	~
0.018"/angled	1
0.035"/angled	х
0.035"/Micro-J	1
0.035"/angled	х
0.018"/angled	х
0.035"/angled	х
0.035"/angled	х
6F	~
6F	1
	0.035"/angled 0.035"/straight 0.035"/angled 0.035"/angled 0.035"/angled 0.035"/Angled 0.035"/Angled 0.035"/angled 0.035"/angled 0.035"/angled 0.035"/angled 6F 6F

Table E3: Imaging parameters used for parametric mapping

	Acquisition	FOV (mm)	matrix	averages	Slice thickness (mm)	TE (ms)	TR (ms)	TI (ms)	Reciever Bandwidth (Hz/Px)	flip angle (°)
Brain	Gradient echo T1 mapping	230 × 230	128	1	10	3.85	10000	100, 150, 200, 300, 500, 1000, 5000, 8000	300	15
	TSE T2 mapping	208 × 230	87 × 128	3	10	13, 25, 36, 48, 72, 96, 171	1000	N/A	120	150
	Gradient echo T2* mappng	230 × 230	123 × 128	2	10	4.84, 13.32, 21.8, 30.28,	790	N/A	130	25

						38.76, 47.24, 55.72, 64.2, 72.68, 81.16, 89.64, 98.12, 106.6, 115.08, 128.56, 132.04				
Cardiac and Body	MOLLI T1 mapping (bSSFP)	270 × 360	144 × 256	1	8	1.3	1036	Gated 4 (3)3 (3)2 scheme	545	35
	Cardiac T2- prepared bSSFP (prep lengths = 0 ms, 25s, 40 ms, 60s)	270 × 360	144 × 256	1	8	1.3	730	N/A	545	70
	Body T2- prepared bSSFP (prep lengths = 0 ms, 25s, 55s)	340 × 255	108 × 192	1	8	1.09	194	N/A	1184	70
	Multi-echo gradient echo	270 × 360	144 × 256	1	8	1.8, 4.6, 7.4, 10.2, 13.0, 15.8, 18.6, 21.4	361.5	N/A	590	15